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1 Discrete-time renewal processes

Imagine busloads of passengers, where the ith bus contains Hi passengers, and the {Hi} are iid
with pmf

p(k) = P (H = k), k ≥ 1. (1)

Imagine further that the seats on a bus are labeled 1, 2, . . . ,H, from the back of the bus to
the front in one long line. A passenger is said to be in the jth position on their bus if they are
in the seat labeled j.

We shall assume the expected bus size is positive, 0 < E(H) <∞, to avoid trivialities. (We
also allow the bus to be of unlimited size, if necessary.) If we “randomly select a passenger way
out among all passengers among all buses”, then it is of intrinsic interest to determine such
quantities as

1. The distribution (and mean) of the position of the passenger in question.

2. The distribution (and mean) of the bus size containing the passenger in question.

3. The distribution (and mean) of the number of passengers in front of (or in back of) this
passenger on the bus.

A little thought reveals that to determine the above quantities (and to make this framework
precise), we simply need to construct a discrete-time renewal process in which the “interarrival”
times are the Hi, and N(n) def= the number of bus arrivals by time n defines the discrete-
time counting process{N(n) : n ≥ 0}. The “arrival times” are given by t1 = H1, t2 =
H1 + H2, . . . , tn =

∑n
i=1Hi, n ≥ 1. Thus “time” n denotes the nth passenger (among all

infinite of them), and every chosen such passenger is on some bus in some position. Thus
our quantities of interest are essentially determined by considering limiting (in distribution)
quantities like spread, backward, and forward recurrence times–but in discrete time in insead of
continuous time. We can simply use renewal reward arguments (e.g., discrete-time regenerative
process results) to obtain our quantities of interest, where the Hi are the cycle lengths.

1. The distribution (and mean) of the position of the passenger in question:

Let J denote the position of a randomly chosen passenger. We define the distribution of
J as

P (J = j) = lim
n→∞

1
n

n∑
k=1

I{kth passenger is in position j on their bus}, j ≥ 1.

From renewal reward, the answer is given by E(R)/E(H) where R = I{H ≥ j}. The
point is that R = the number of passengers on the (first) bus who are in position j. There
can only be at most one such passenger, and there will be one if and only if the bus is at
least of size j. Thus

P (J = j) =
P (H ≥ j)
E(H)

, j ≥ 1.
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To compute E(J) we could either directly take the mean of the above distribution, or
simply take the corresponding average:

E(J) = lim
n→∞

1
n

n∑
k=1

{position of the kth passenger}.

From renewal reward, the answer is given by E(R)/E(H) where now

R = 1 + · · ·+H =
H(H + 1)

2
,

the sum of all the positions over the (first) cycle. Thus

E(J) =
E(H(H + 1))

2E(H)
, (2)

2. The distribution (and mean) of the bus size containing the passenger in question: This is
simply the spread: The total size of the bus containing a randomly chosen customer has
distribution given by

jP (H = j)
E(H)

=
jp(j)
E(H)

j ≥ 1, (3)

interpreted as the long run proportion of customers who are in a bus of size j. Once
again, this follows from renewal reward, with R = jI{H = j}: Buses of size j each contain
exactly j customers from a bus of size j (no other buses are relevant). This yields (3). The
multiplicative factor of j in jp(j) is a discrete-time analog of the length-biasing cause of
the inspection paradox (in which, for a continuous distribution with density function f(x)
and mean λ−1, the density function of the spread is given by fs(x) = λxf(x)): Larger
buses contain more customers and thus a randomly chosen customer is more likely to be
from a larger bus; the bus size of a randomly chosen customer is stochastically larger than
a regular bus size H.

The mean of the distribution in (3) is given by

E(H2)
E(H)

, (4)

3. The distribution (and mean) of the number of passengers in front of (or in back of) this
passenger on the bus:

This is the discrete-time analogue of the forward and backward recurrence time, and is
simply the distribution of J − 1, and E(J − 1).

P (J − 1 = j) = P (J = j + 1) =
P (H ≥ j + 1)

E(H)
, j ≥ 0.

E(J − 1) =
E(H(H − 1))

2E(H)
. (5)

Notice how the mean is slightly different from that of He, E(H2)/2E(H); that is due to
the discrete nature of J . He is defined as a continuous distribution, while the distribution
of J is discrete.
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The above notions are very useful in queueing theory, when arrivals occur in batches (bus-
loads) as opposed to only one at a time. For example, we could consider a model where the
buses themselves arrive according to a Poisson process at rate λ with counting process {N(t)},
and then consider the arrival process of customers as

X(t) =
N(t)∑
j=1

Hj , t ≥ 0,

where the Hi are iid and independent of the Poisson process. This is an example of a compound
Poisson process. E(X(t)) = λtE(H) and {X(t)} has both stationary and independent incre-
ments. The case when P (H = 1) = 1 is the Poisson process. (The Hi need not be positive in
the general definition of compound Poisson).

We can still use PASTA too: Although the individual customers do not see time averages,
the buses do because they are arriving as a Poisson process!
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