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IEOR 6711: Introduction to Renewal Theory II

Here we will present some deeper results in renewal theory such as a central limit theorem for
counting processes, stationary versions of renewal processes, renewal equations, the key renewal
theorem, weak convergence.

1 Central limit theorem for counting processes

Consider a renewal process {tn : n ≥ 1} with iid interarrival times Xn = tn− tn−1, n ≥ 0, such
that 0 < E(X) = 1/λ < ∞ and 0 < σ2 = V ar(X) < ∞. Let N(t) = max{n : tn ≤ t}, t ≥ 0,
denote the counting process. =⇒ denotes convergence in distribution (weak convergence). Z
denotes a rv with a N(0, 1) distribution (standard unit normal);

P (Z ≤ x) = Θ(x) def=
1√
2π

∫ x

−∞
e−y2/2dy, x ∈ R.

Because tn =
∑n

j=1Xj , and the Xj are iid, the central limit theorem applies: as n→∞,

Zn
def=

tn − n/λ
σ
√
n

=⇒ Z ∼ N(0, 1); (1)

P (Zn ≤ x)→ Θ(x), x ∈ R. (2)

Because our {Xn} here are non-negative, we can also obtain an “inverse” version corresponding
to the counting process {N(t) : t ≥ 0}. Just as tn is asymptotically normal as n→∞, it turns
out that N(t) is asymptotically normal as t→∞:

Theorem 1.1 (central limit theorem for counting processes) As t→∞,

Z(t) def=
N(t)− λt
σ
√
λ3t

=⇒ Z ∼ N(0, 1).

Before we prove this let us observe what it indicates: As t → ∞, N(t) becomes normally
distributed and both E(N(t)) ∼ λt and V ar(N(t)) ∼ σ2λ3t. The “first order” result, E(N(t)) ∼
λt we already proved earlier directly from the elementary renewal theorem, E(N(t))/t→ λ, so
what this new theorem here provides are some new higher order results.

Proof :[Theorem 1.1] The key is in using the fact that P (N(t) < n) = P (tn > t), so that
we can convert a probability involving Z(t) into one involving Zn and then use the familiar
form of the central limit theorem in (1) and (2). To this end, fix x and define (for t large)
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n(t) = bλt+ x
√
σ2λ3tc, where byc = the greatest integer ≤ y. Then (algebra),

P (Z(t) < x) = P (N(t) < n(t)) (3)
= P (tn(t) > t) (4)

= P

(
tn(t) − n(t)/λ

σ
√
n(t)

>
t− n(t)/λ
σ
√
n(t)

)
(5)

= P

(
Zn(t) >

t− n(t)/λ
σ
√
n(t)

)
(6)

= P

(
Zn(t) >

−x√
1 + (xσ)/

√
t/λ

)
. (7)

As t → ∞, Zn(t) =⇒ Z from (1), while the (non-random) value in the right-hand side of the
inequality in (7) converges to the constant −x (because the denominator tends to 1). Thus (via
formally using Slutsky’s theorem)

P (Z(t) < x)→ P (Z > −x) = Θ(x),

and the proof is complete.

Remark 1 It is worth noting that we do not need the point process to be a renewal process in
order to obtain the result in Theorem 1.1: As long as the point process {tn} satisfies a central
limit theorem (1) for some λ > 0 and some σ > 0, Theorem 1.1 follows by the same proof.
Moreover, one can use the argument in reverse to obtain the converse; we conclude that there
is an equivalence between the two kinds of central limit theorems.

There are many useful examples in applications of point processes that indeed would satisfy
(1) but are not renewal processes, such as when {Xn} forms a positive recurrent Markov chain
or is the departure process from a complex queueing model.

Remark 2 We know from the elementary renewal theorem that E(N(t)) = λt + o(t) (e.g.,
o(t)/t→ 0 as t→∞.) It can further be proved that

V ar(N(t)) = σ2λ3t+ o(t).

Both such results remain valid for delayed renewal processes.

2 Delayed renewal processes: the stationary version

Unlike a Poisson process, the counting process {N(t) : t ≥ 0} of a renewal process generally does
not have stationary increments. But we can make it have them by allowing the first interarrival
time t1 = X1 to be distributed as the equilibrium distribution Fe of F . We will proceed now
to show why this is so.

A point process ψ = {tn : n ≥ 1} has for each s ≥ 0 a shifted by time s version ψs =
{tn(s) : n ≥ 1}, which is the point process obtained by moving the origin to be time t = s
and then counting only the points to the right of s. If we denote the counting process of ψs

by {Ns(t) : t ≥ 0}, then Ns(t) = N(s + t) − N(s). We thus observe that if ψs has the same
distribution for all s ≥ 0, then {N(t) : t ≥ 0} has stationary increments:
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Definition 2.1 A point process for which ψs has the same distribution for all s ≥ 0 is called a
(time) stationary point process. Its counting process has stationary increments.

Let us now focus on the case when ψ is a (positive recurrent) renewal process and look more
closely at the structure of ψs. Specifically we note that, t1(s) = tN(s)+1− s = A(s), the forward
recurrence time, and t2(s) = tN(s)+2−s = A(s)+XN(s)+2, and in general tn(s) = tN(s)+n−s =
A(s) + XN(s)+2 + · · · + XN(s)+n, for any n ≥ 2. But the interarrival times XN(s)+n, n ≥ 2,
are again iid distributed as F and independent of A(s). (Recall that only the spread XN(s)+1

is “biased” via the inspection paradox since it is the only one covering the time s; after that
none of the others are biased.) Thus ψs is (in distribution) the same renewal process but with
its first point t1(s), independently, distributed as A(s) instead of distributed as F . This is an
example of a delayed renewal process:

Definition 2.2 A delayed renewal process is a renewal process in which the first arrival time,
t1 = X1, independently, is allowed to have a different distribution P (X1 ≤ x) = F1(x), x ≥ 0,
than F , the distribution of all the remaining iid interarrival times {Xn : n ≥ 2}. t1 is then
called the delay. When there is no such delay, that is, when t1 ∼ F as usual, the renewal process
is said to be a non-delayed version.

With λ = E(X2)−1, it is easily seen that the elementary renewal theorem remains valid
(the same proof goes through) for a delayed renewal process; both N(t)/t → λ wp1, and
E(N(t))/t→ λ. (F1 does not need to have finite first moment.)

Anyhow, as s varies, the only part of the delayed renewal process ψs that can change in
distribution is the independent delay t1(s) = A(s). We conclude that ψ will be a stationary
renewal process if and only if A(s) has the same distribution for all s ≥ 0. For example, the
Poisson process is stationary because A(s) ∼ exp(λ) for all s ≥ 0 by the memoryless property.
In any case, as s→∞ we know that the limiting distribution of A(s) is in fact Fe, that is,

lim
t→∞

1
t

∫ t

0
P (A(s) ≤ x)ds = Fe(x) = λ

∫ x

0
F (y)dy, x ≥ 0.

This is the distribution of A(s) obtained by randomly choosing the shift time s, way out in the
infinite future. We conclude that as s → ∞, ψs has a limiting distribution represented by a
delayed version of ψ, denoted by ψ∗ = {t∗n : n ≥ 1}, in which the delay t∗1 ∼ Fe. Denoting its
counting process by {N∗(t) : t ≥ 0}, and its forward recurrence time process by {A∗(t) : t ≥ 0},
where A∗(t) = tN∗(t)+1 − t, it will be shown next that A∗(u) ∼ Fe, u ≥ 0, that is, it has the
same distribution for all u ≥ 0 and hence that ψ∗ is indeed a stationary renewal process, called
a stationary version of ψ. To see this, observe that for any u ≥ 0, the distribution of A∗(u) is
obtained as the limiting distribution, as s→∞, of A(s+u) which of course is the same as just
the limiting distribution of A(s), namely Fe: for any u ≥ 0,

P (A∗(u) ≤ x) = lim
t→∞

1
t

∫ t

0
P (A(s+ u) ≤ x)ds = lim

t→∞

1
t

∫ t+u

u
P (A(s) ≤ x)ds = Fe(x).

The point is that we obtained ψ∗ by selecting ψs at a time s that was chosen randomly way
out in the infinite future. By going further into the future another u times units we are still in
the infinite future; nothing changes.
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Proposition 2.1 The stationary version ψ∗ of a renewal process at rate λ = E(X)−1 satisfies
E(N∗(t)) = λt, t ≥ 0, and λ = E(N∗(1)).

Proof : Let U(t) = E(N∗(t)). First we show that U(t) = tU(1) for all t ≥ 0, then we show that
U(1) = λ. For any integer n ≥ 1,

N∗(n) =
n∑

i=1

N∗(i)−N∗(i− 1),

and taking expected values while using the stationary increments, yields U(n) = nU(1). By
a similar argument, U(1) = nU(1/n), and so U(1/n) = (1/n)U(1). Thus, continuing in this
spirit, we see that for any rational number r = n/m, U(r) = rU(1). For any t > 0 irrational,
choosing a decreasing sequence of rationals rk ↓ t implies by the right-continuity and non-
decreasing properties of counting processes that N∗(rk) ↓ N∗(t). Thus U(rk) ↓ U(t) by the
dominated convergence theorem since 0 ≤ N∗(rk) ≤ N∗(r1), k ≥ 1. Thus U(t) = tU(1) since
on the other hand U(rk) = rkU(1) ↓ tU(1). By the elementary renewal theorem U(t)/t → λ,
but here U(t) = tU(1) and we conclude that U(1) = λ.

Example

1. (Deterministic renewal process:) Consider the case when P (X = c) = 1 for some c > 0.
Thus tn = nc, n ≥ 1. Fe is thus the uniform distribution over (0, c). Letting U denote
a unform(0, c) rv we can explicitly construct a stationary version {t∗n} of this renewal
process: Define t∗n = U + (n− 1)c, n ≥ 1.

Remark 3 While the stationary version of a (simple) renewal process has stationary incre-
ments, it of course does not also have independent increments unless it is a Poisson process.

3 Renewal equations

For a (non-delayed) renewal process {tn : n ≥ 1} with P (X ≤ x) = F (x), consider computing
P (A(t) > x) for a given fixed t > 0 and x > 0. If we condition on t1 = X1, the time
of the first arrival, we can obtain an equation as follows: P (A(t) > x | X1 = s ≤ t) =
P (A(t − s) > x) because time t is exactly t − s units of time past the first renewal, and
the distribution of {A(t) : t ≥ 0} starts over again at each renewal with a new iid cycle
length and is independent of the past. Meanwhile if X1 > t, then A(t) = X1 − t yielding
in this case that P (A(t) > x |X1 > t) = P (X1 − t > x | X1 > t) = F (x + t)/F (t). Thus
P (A(t) > x;X1 = s ≤ t) = P (A(t− s) > x)dF (s) and P (A(t) > x;X1 > t) = F (x+ t) yielding
a renewal equation:1

P (A(t) > x) = F (x+ t) +
∫ t

0
P (A(t− s) > x)dF (s). (8)

1An integral of the form
R

g(s)dF (s) is an example of a Riemann-Stieljies integral. If F represents a continuous
rv, with density function f(t) then the integral reduces to

R
g(s)f(s)ds. For any non-negative non-decreasing

function J(t), such an integral
R

g(s)dJ(s) can be defined (in fact it is only required that J(t) be of bounded
variation meaning that it can be expressed as J(t) = J1(t) − J2(t), where each of the Ji are non-decreasing
functions). In our application here to the renewal equation, we will need to use the non-decreasing function
m(t) = E(N(t)) and consider integrals of the form

R
g(s)dm(s).
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Letting H(t) = P (A(t) > x) and Q(t) = F (x + t), we can re-write (8) more generally in the
form of

H(t) = Q(t) +H ? F (t), (9)

where ? denotes convolution. We view this as an equation for solving for the unknown H, in
terms of the known distribution F and known function Q.

Letting F ?n(t) = P (X1 + X2 + · · · + Xn ≤ t) = P (tn ≤ t), n ≥ 1, denote the nth-
fold convolution of F , we can solve this equation iteratively (by consecutively replacing H by
H = Q+H ? F ):

H = Q+H ? F (10)
= Q+ (Q+H ? F ) ? F (11)
= Q+Q ? F +H ? F ?2 (12)
= Q+Q ? F + (Q+H ? F ) ? F ?2 (13)
= Q+Q ? F +Q ? F ?2 +H ? F ?3 (14)
... (15)

= Q+
n∑

j=1

Q ? F ?j +H ? F ?(n+1). (16)

But for fixed t, F ?(n+1)(t) = P (tn+1 ≤ t) → 0, as n → ∞, since tn → ∞, wp1, and thus
H ? F ?(n+1)(t)→ 0.

Thus we conclude, by taking n→∞ that

H = Q+Q ∗
∞∑

n=1

F ?n.

Letting m(t) = E(N(t)) and observing that

m(t) = E(N(t)) = E

( ∞∑
n=1

I{tn ≤ t}

)
=
∞∑

n=1

F ?n(t). (17)

Thus we can elegantly write the solution as

H = Q+Q ∗m, (18)

meaning that

H(t) = Q(t) +
∫ t

0
Q(t− s)dm(s).

It is rare that we can explicitly compute the integral
∫ t
0 Q(t− s)dm(s), hence rare that we

ever get a solution explicitly. But in the case when Q(t)→ 0 as t→∞, it is often possible to do
so in the limit as t→∞, as long as certain regularity conditions are met. The two conditions
needed are as follows:
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Non-lattice and directly Reimann integrable conditions

1. The distribution F must be non-lattice, meaning that there does not exist a δ > 0 and an
initial point a ≥ 0 such that P (X ∈ {a+nδ : n ≥ 0}) = 1. In other words the mass of the
distribution is not concentrated on a countable equidistant lattice of points. Of course
any continuous distribution is non-lattice and it helps to assume continuity in the rest of
our analysis in order to understand the essentials without getting tied up in unnecessary
technical details.

2. The function Q(t) must be directly Reimann integrable (DRI), meaning that its integral∫∞
0 Q(t)dt must exist when it is defined on all of the interval (0,∞) at once in the Riemann

sense (upper and lower sums defined on all of (0,∞) converging to the same thing). The
point here is that it is not sufficient that the integral exist only in the “improper integral”
way we learn in calculus, as limb→∞

∫ b
0 Q(s)ds, where each integral

∫ b
0 is defined in the

classic Riemann sense. DRI is a stronger condition on Q than the improper integral
approach.

Here is a precise definition. Assume that Q ≥ 0. Divide all of R+ = [0,∞) into subinter-
vals of length h > 0 (small), I(n, h) = (nh, (n + 1)h], n ≥ 0. Define q(n) = sup{Q(t) :
t ∈ I(n, h)}, n ≥ 0, and q(n) = inf{Q(t) : t ∈ I(n, h)}, n ≥ 0. The upper Riemann sum
is given by

U(h) =
∑
n≥0

hq(n),

and the lower Riemann sum is given by

U(h) =
∑
n≥0

hq(n).

Q is said to be DRI if U(h) is finite for some (hence all) h > 0 and U(h)− U(h) → 0 as
h → 0. Then

∫∞
0 Q(t)dt def= limh→0 U(h) = limh→0 U(h). In the general case when Q is

not non-negative, Q is said to be DRI if both Q+ and Q− are, in which case
∫∞
0 Q(t)dt def=∫∞

0 Q+(t)dt+
∫∞
0 Q−(t)dt.

In the next section we will offer the formal limiting result, known as the key renewal theorem.

3.1 The key renewal theorem and weak convergence

Theorem 3.1 (Key renewal theorem) Suppose that a renewal equation (9) holds for a given
non-lattice F with mean 1/λ, and a given function Q that is DRI. Then the solution (18) for
H(t) holds and

lim
t→∞

H(t) = λ

∫ ∞
0

Q(t)dt. (19)

We will not prove this theorem, it is very technical and beyond the scope of these Lecture
Notes.

But we will discuss here what is its main consequence and use. Let us return to our original
renewal equation (8) for determining P (A(t) > x). Assuming that F is non-lattice with finite
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mean, 1/λ, and assuming that the function Q(t) = F (x+ t), t ≥ 0, is DRI for any x (it is), we
conclude from (19) that for all x ≥ 0,

lim
t→∞

P (A(t) > x) = λ

∫ ∞
x

F (t)dt = F e(x).

Thus all we have gained is that our already existing “time-average” convergence to the
limiting distribution

lim
t→∞

1
t

∫ t

0
P (A(s) > x)ds = F e(x),

has been strengthened to weak convergence (see definition below). The point is that we al-
ready had the limiting distribution for A(t) from the renewal reward theorem, and no special
conditions were ever needed beyond requiring that F have finite first moment.

There is nothing special about P (A(t) > x); more generally it can be proved that any pos-
itive recurrent regenerative process {X(t) : t ≥ 0} converges weakly to its limiting distribution
(which already exists anyhow as a time average) as long as the cycle-length distribution is
non-lattice. A regenerative process is one for which there exists a sequence of random times
τ0 = 0 < τ1 < τ2 < · · · forming a renewal process with iid cycle lengths Xn = τn− τn−1, n ≥ 1,
such that at any such time the stochastic process “starts over distributionally” and is inde-
pendent of the past: {X(τn + t), t ≥ 0} has the same distribution as {X(t) : t ≥ 0} and is
independent of {X(s) : 0 ≤ s < τn, {τ1, . . . , τn}}. (That it be independent of τn is required;
X(τn) is independent of τn). The τn are called regeneration times, the stochastic process
is said to regenerate at those times, and the process can thus be broken up into iid cycles,
Cn = {X(τn + t) : 0 ≤ t < Xn, Xn}, describing what the process does during its nth cycle
length Xn (and what the length Xn is). The process is called positive recurrent if E(X) < ∞
and null recurrent if E(X) =∞.

An easy example is any recurrent continuous-tme Markov chain. Fix any state i, and start
off with X(0) = i. Then define τn as the nth return time to this fixed state i. By the (strong)
Markov property, every time the chain revisits state i, the future is independent of the past
and proceeds distributionally just as it did at time t = 0. Another example is the forward
recurrence time process {A(t) : t ≥ 0} for a renewal process. It starts over again at each arrival
time.

Suppose for a positive recurrent regenerative process we wish to find the limiting distribu-
tion,

lim
t→∞

1
t

∫ t

0
P (X(s) ≤ x)ds, x ∈ R. (20)

We can use the renewal reward theorem with reward rate function r(s) = I{X(s) ≤ x}, s ≥ 0,
and conclude that the limit exists and is given by E(R)/E(X) where for X = X1, R =∫ X
0 I{X(s) ≤ x}. We will study regenerative processes in more detail later; suffice to say:

Every positive recurrent regenerative process has a limiting distribution defined as
in (20), and given by

E

{∫ X
0 I{X(s) ≤ x}

}
E(X)

.
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If in addition, the cycle length distribution F (x) = P (X ≤ x) is non-lattice, then
the process also converges weakly to the limiting distribution.

Definition of weak convergence

Definition 3.1 Given a sequence of rvs {Xn} and a rv X (all on R), we say that the distri-
bution of Xn converges weakly to the distribution of X, as n → ∞, denoted by Xn =⇒ X, if
it holds for all continuous bounded functions f = f(x), that E(f(Xn)) → E(f(X)). (Equiv-
alently, if it holds for all continuous functions f which are bounded by 1, that is, for which
maxx |f(x)| ≤ 1.)

It can be shown that if the limiting rv X is continuous, then weak convergence is equivalent to
P (Xn ≤ x)→ P (X ≤ x) for all x ∈ R; that is, the cdfs converge pointwise.

If X is a discrete rv taking values in Z, then every function f mapping Z to Z is continuous,
and weak convergence is equivalent to P (Xn = k)→ P (X = k) for all k ∈ Z; the pmfs converge
pointwise.

Remark 4 The key renewal theorem remains valid for delayed renewal processes. To see how
this works out, let F0 = F and then let H0, Q0,m0 denote the non-delayed quantities for a
derived renewal equation, that is, we re-write (9) as

H0 = Q0+H0?F0, so as to emphasize the non-delayed situation; the solution is then written
as H0 = Q0 +Q0 ∗m0.

Letting F1 denote the delay distribution, the renewal equation for the delayed version would
change to the form

H1 = Q1 +H0 ? F1. (21)

For example (8) becomes

P (A1(t) > x) = F 1(x+ t) +
∫ t

0
P (A0(t− s) > x)dF1(s).

The solution to (21) is similarly derived to be

H1 = Q1 +Q0 ? m1, (22)

where m1(t) = E(N1(t)) is for the delayed version.
The key renewal theorem then becomes:

Theorem 3.2 If F0 is non-lattice and Q0 is DRI, then

lim
t→∞

Q0 ? m1(t) = lim
t→∞

Q0 ? m0(t) = λ

∫ ∞
0

Q0(t)dt. (23)

So if in (21), we have Q1(t) → 0, then H1(t) → λ
∫∞
0 Q0(t)dt yielding the same limit as if

the renewal process was nondelayed from the start. For example, even in the delayed case we
get (when F is non-lattice) that A(t) converges weakly to Fe. The delay has no effect on the
limiting distribution, nor on the weak convergence to it.
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