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1 Time-reversible Markov chains

In these notes we study positive recurrent Markov chains {Xn : n ≥ 0} for which, when in
steady-state (stationarity), yield the same Markov chain (in distribution) if time is reversed.
The fundamental condition required is that for each pair of states i, j the long-run rate at which
the chain makes a transition from state i to state j equals the long-run rate at which the chain
makes a transition from state j to state i; πiPi,j = πjPj,i.

1.1 Two-sided stationary extensions of Markov chains

For a positive recurrent Markov chain {Xn : n ∈ N} with transition matrix P and stationary
distribution π, let {X∗

n : n ∈ N} denote a stationary version of the chain, that is, one in which
X0 ∼ π. It turns out that we can extend this process to have time n take on negative values
as well, that is, extend it to {X∗

n : n ∈ Z}. This is a way of imagining/assuming that the chain
started off initially in the infinite past, and we call this a two-sided extension of our process. To
get such an extension1 we start by shifting the origin to be time k ≥ 1 and extending the process
k time units into the past: Define X∗

n(k) = X∗
n+k, −k ≤ n < ∞. Note how {X∗

n(k) : n ∈ N}
has the same distribution as {X∗

n : n ∈ N} by stationarity, and in fact this extension on
−k ≤ n < ∞ is still stationary too. Now as k → ∞, the process {X∗

n(k) : −k ≤ n < ∞}
converges (in distribution) to a truly two-sided extension and it remains stationary; we get the
desired two-sided stationary extension {X∗

n : n ∈ Z}. And for each time n ∈ Z it holds that
P (X∗

n = j) = πj , j ∈ S.

1.2 Time-reversibility: Time-reversibility equations

Let {X∗
n : n ∈ Z} be a two-sided extension of a positive recurrent Markov chain with transition

matrix P and stationary distribution π. The Markov property is stated as “the future is
independent of the past given the present state”, and thus can be re-stated as “the past is
independent of the future given the present state”. But this means that the process X(r)

n =
X∗
−n, n ∈ N denoting the process in reverse time, is still a (stationary) Markov chain. (By

reversing time, the future and past are swapped.) In fact it has transition probabilities that
can be exactly computed in terms of π and P : letting P (r) = (Pi,j(r)) denote the time reversed
transition probabilities,

Pi,j(r) = P (X(r)
1 = j | X(r)

0 = i) = P (X∗
0 = j | X∗

1 = i)
= P (X∗

1 = i | X∗
0 = j)P (X∗

0 = j)/P (X∗
1 = i)

=
πj

πi
Pj,i.

So the time-reversed Markov chain is a Markov chain with transition probabilities given by

Pi,j(r) =
πj

πi
Pj,i. (1)

1The mathematical justification for extending a stationary stochastic process to be two-sided stationary is
called Kolmogorov’s extension theorem from probability theory.
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Definition 1.1 A positive recurrent Markov chain with transition matrix P and stationary
distribution π is called time reversible if the reverse-time stationary Markov chain {X(r)

n : n ∈
N} has the same distribution as the forward-time stationary Markov chain {X∗

n : n ∈ N}, that
is, if P (r) = P ; Pi,j(r) = Pi,j for all pairs of states i, j. Equivalently this means that it satisfies
the time-reversibility equations

πiPi,j = πjPj,i,

for all pairs of states i, j. In words: for each pair of states i, j, the long-run rate at which
the chain makes a transition from state i to state j equals the long-run rate at
which the chain makes a transition from state j to state i.

An inconvenience with our definition is that it requires us to have at our disposal the
stationary distribution π in advance so as to check if the chain is time-reversible. But the
following can help us avoid having to know π in advance and can even help us find π:

Proposition 1.1 If for an irreducible Markov chain with transition matrix P , there exists a
probability solution π to the “time-reversibility” set of equations

πiPi,j = πjPj,i,

for all pairs of states i, j, then the chain is positive recurrent, time-reversible and the solution
π is the unique stationary distribution.

Proof : It suffices to show that such a solution also satisfies π = πP , for then (via Theorem
2.1 in Lecture Notes 4) it is the unique stationary distribution and since it satisfies the time-
reversibility equations, the chain is also time reversible. To this end, fixing a state j and
summing over all i yields

∑
i

πiPi,j =
∑

i

πjPj,i

= πj

∑
i

Pj,i

= πj × 1
= πj ,

namely, π = πP .
The importance of the above Proposition is that the time-reversibility equations are simpler

to solve/check than are the π = πP equations. So if you suspect (via some intuition) that
your chain is time-reversible, then you should first try to solve the time-reversibility equations.
Similarly, if you think your chain is time-reversible and have a guess for π at hand, then you
should check to see if it satisfies the time-reversibility equations.

Examples

1. Simple random walk on the non-negative integers: Here is an example where intuition
quickly tells us that we have a time-reversible chain. Consider a negative drift simple
random walk, restricted to be non-negative, in which P0,1 = 1 and otherwise Pi,i+1 = p <
0.5, Pi,i−1 = 1− p > 0.5. In this case, since the chain can only make a transition (change
of state) of magnitude ±1, we immediately conclude that for each state i ≥ 0, “the rate
from i to i+ 1 equals the rate from i+ 1 to i”. This is by the same elementary reasoning
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as argued for why “the rate out of state i equals the rate into state i, for each state i”,
for any function/path and has nothing to do with Markov chains: every time there is a
change of state from i to i+ 1 there must be (soon after) a change of state from i+ 1 to
i because that is the only way the process can, yet again, go from i to i + 1; there is a
one-to-one correspondence. But “the rate from i to i+ 1 equals the rate from i+ 1 to i”
is equivalent to (in words) the time-reversibility equations, since here a pair i, j can only
be of the form i, i+ 1 or i, i− 1. Thus the time-reversibility equations are

π0 = (1− p)π1, pπi = (1− p)πi+1, i ≥ 1,

yielding π1 = π0/(1 − p), π2 = pπ0/(1 − p)2, . . . , πn = pn−1π0/(1 − p)n, n ≥ 1. Since∑
n πn = 1 must hold, we get

π0

(
1 + (1− p)−1

∑
n≥0

[ p

1− p

]n)
= 1,

and since p
1−p < 1, the geometric series converges and we can solve explicitly for the

stationary distribution:

π0 = (1 +
1

1− 2p
)−1, πn = (1− p)−1

[ p

1− p

]n−1
π0, n ≥ 1,

which simplifies to

π0 =
1− 2p

2(1− p)

πn = (
1
2
− p)

[ p

1− p

]n−1
, n ≥ 1.

As we will see later, this Markov chain is the embedded discrete-time chain for an M/M/1
queue in which p = λ/(λ+ µ), where λ is the Poisson arrival rate of customers, and µ is
the exponential service time rate.

2. Random walk on a connected graph: Consider a finite connected graph with n ≥ 2 nodes,
labeled 1 − n, and positive weights wi,j = wj,i > 0 for any pair of nodes i, j for which

there is an arc (wi,j
def= 0 if there is no arc). We can define a Markov chain random walk

(with state-dependent transition probabilities) on the nodes of the graph via

Pi,j =
wi,j∑
k wi,k

.

This chain is irreducible (by definition of connected graph). Moreover, because of the
symmetry wi,j = wj,i, and the way in which the Pi,j are defines, we expect that this chain
should be time-reversible too. We can explicitly solve the time-reversibility equations,
which are in this case (since wi,j = wj,i)

πi∑
k wi,k

=
πj∑
k wj,k

,

for each pair i, j, or equivalently that for a constant C

πi∑
k wi,k

= C, for all i,
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or equivalently
πi = C

∑
k

wi,k, for all i.

Since it must hold that
∑

i π = 1, we conclude that

C =
[∑

i

∑
k

wi,k

]−1
,

yielding the solution as

πi =
∑

k wi,k∑
i

∑
k wi,k

.

So the chain is time-reversible and we have solved for the stationary distribution.
Note that when all positive weights are defined to be 1, then the chain always moves to
a next node by choosing it uniformly from among all possible arcs out: if there is an arc
from i to j, then Pi,j = 1/b, where b = b(i, j) denotes the total number of arcs from i to
j.
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