Erdos-Ko-Rado like theorems for rainbow matchings

Date Tuesday, September 27

Time 4:30 pm
Location 303 Mudd

Abstract:Let $f(n, k, r)$ be the smallest number such that every set of more than $f(n, k, r) r$-sets in $[n]$ contain a matching of size k. The Erdos-Ko-Rado theorem states that $f(n, 2, r)=\binom{n-1}{r-1}$. A natural conjecture is that if $F_{1}, F_{2}, \ldots F_{k} \subseteq\binom{[n]}{r}$ are all of size larger than $f(n, k, r)$ then they possess a rainbow matching, namely a choice of disjoint edges, one from each F_{i}. This is known for $k=2$ (Matsumoto-Tokushige) and $r=2$ (Meshulam).

We consider the analogue version of this conjecture in r-partite hypergraphs, and prove the cases $r=3$ and $k=2$.

Joint work with David Howard

