The Number of 3-SAT Functions

Date Tuesday, December 1

Time 3 pm

Location 303 Mudd

Abstract: A k-SAT function of (Boolean) variables x_{1}, \ldots, x_{n} is one that can be expressed as

$$
C_{1} \vee \ldots \vee C_{t}
$$

with each C_{i} a k-clause (that is, an expression $y_{1} \wedge \ldots \wedge y_{k}$, with y_{1}, \ldots, y_{k} literals corresponding to different variables x_{i}). Writing $G_{3}(n)$ for the number of 3 -SAT functions of x_{1}, \ldots, x_{n}, we prove

Theorem

$$
G_{3}(n) \sim 2^{n+\binom{n}{3}} .
$$

This is a strong form of a conjecture of Bollobás, Brightwell and Leader stating that $\log _{2} G_{3}(n) \sim\binom{n}{3}$.
(This is joint work with Jeff Kahn.)

