The Number of 3-SAT Functions

Date Tuesday, December 1

 $Time \ 3 \ pm$

Location 303 Mudd

Abstract: A k-SAT function of (Boolean) variables x_1, \ldots, x_n is one that can be expressed as

$$C_1 \vee \ldots \vee C_t,$$

with each C_i a k-clause (that is, an expression $y_1 \land \ldots \land y_k$, with y_1, \ldots, y_k literals corresponding to different variables x_i). Writing $G_3(n)$ for the number of 3-SAT functions of x_1, \ldots, x_n , we prove

Theorem

$$G_3(n) \sim 2^{n + \binom{n}{3}}.$$

This is a strong form of a conjecture of Bollobás, Brightwell and Leader stating that $\log_2 G_3(n) \sim \binom{n}{3}$.

(This is joint work with Jeff Kahn.)