The Complexity of Powering in Finite Fields

Date Tuesday, January 31

Time 3:30 pm

Location 317 Mudd

Abstract: I will talk about the complexity of the cubic-residue (and higher-residue) characters over \(GF(2^n) \), in the context of both arithmetic formulas and polynomials.

We show that no subexponential-size, constant-depth arithmetic formula over \(GF(2) \) can correctly compute the cubic-residue character for more than \(\frac{1}{3} + o(1) \) fraction of the elements of \(GF(2^n) \). The key ingredient in the proof is an adaptation of the Razborov-Smolensky method for circuit lower bounds to setting of univariate polynomials over \(GF(2^n) \).

As a corollary, we show that the cubic-residue character over \(GF(2^n) \) is uncorrelated with all degree-\(d \) \(n \)-variate \(GF(2) \) polynomials (viewed as functions over \(GF(2^n) \) in a natural way), provided \(d << n^{0.1} \). Classical approaches show this kind of result for \(d << \log(n) \).