A Lower Bound for the Size of a Sum of Dilates

Date Tuesday, April 5

Time 4 pm

Location 317 Mudd

Abstract: Let A be a subset of integers and let $2 \cdot A+k \cdot A=\left\{2 a_{1}+k a_{2}\right.$: $\left.a_{1}, a_{2} \in A\right\}$. Y. O. Hamidoune and J. Rué proved that if k is an odd prime and A a finite set of integers such that $|A|>8 k^{k}$, then $|2 \cdot A+k \cdot A| \geq$ $(k+2)|A|-k^{2}-k+2$. In this talk, I will give the outline of the method used and show how we can extend it for the case when k is a power of an odd prime and the case when k is a product of two odd primes.

