On the fractional parts of the roots of a real number

Date Tuesday, January 24

Time 3:30 pm
Location 317 Mudd
Abstract: For $x>1$, we define the function the arithmetic function $M_{x}(n)=\left[1 / x^{1 / n}\right]$, where $[t]$ denotes the integer part of the real number t. This function $M_{x}(n)$ is eventually increasing, and $\lim _{n \rightarrow \infty} M_{x}(n) / n=$ $1 / \log x$. Moreover, $M_{x}(n)$ is "linearly periodic" if and only if $\log x$ is rational. Other results and problems concerning the function $M_{x}(n)$ are discussed, including some curious relations with continued fractions.

