On the fractional parts of the roots of a real number

Date Tuesday, January 24

 $Time \ 3:30 \ \mathrm{pm}$

Location 317 Mudd

Abstract: For x > 1, we define the function the arithmetic function $M_x(n) = [1/x^{1/n}]$, where [t] denotes the integer part of the real number t. This function $M_x(n)$ is eventually increasing, and $\lim_{n\to\infty} M_x(n)/n = 1/\log x$. Moreover, $M_x(n)$ is "linearly periodic" if and only if $\log x$ is rational. Other results and problems concerning the function $M_x(n)$ are discussed, including some curious relations with continued fractions.