Colouring graphs with no odd holes

Date Tuesday, September 16

Time 3 pm
Location 303 Mudd

Abstract:
The chromatic number $k(G)$ of a graph G is always at least the size of its largest clique (denoted by $\mathrm{w}(\mathrm{G})$), and there are graphs with $\mathrm{w}(\mathrm{G})=2$ and $\mathrm{k}(\mathrm{G})$ arbitrarily large.

On the other hand, the perfect graph theorem asserts that if neither G nor its complement has an odd hole, then $\mathrm{k}(\mathrm{G})=\mathrm{w}(\mathrm{G})$. (An "odd hole" is an induced cycle of odd length at least five.) What happens in between? With Alex Scott, we have just proved the following, a 1985 conjecture of Gyarfas:

For graphs G with no odd hole, $k(G)$ is bounded by a function of $w(G)$.

