Randomly Supported Independence

Date Tuesday, April 6
Time 3 pm
Location 303 Mudd
Abstract: We study questions of the following flavor: given a random subset X of $[q]^{n}$, what is the probability that there exists a k-wise independent distribution supported on X ?

We show that there are constants $c_{q, k}$ such that, with high probability, a uniformly random set of $c_{q, k} \cdot n^{k} \log \left(n^{k}\right)$ points from $[q]^{n}$ can support a k-wise independent distribution, and that this is sharp up to the logarithmic factor and the exact value of $c_{q, k}$. For the case $k=2$, we are able to remove the logarithmic factor and show that, with high probability, a uniformly random set of $c_{q, 2} \cdot n^{k}$ points from $[q]^{n}$ can support a pairwise independent distribution. Finally, we show that there are other constants $c_{q, k}^{\prime}>0$ such that every subset of $[q]^{n}$ with size at least $q^{n}\left(1-c_{q, k}^{\prime}\right)$ can support a k-wise independent distribution.
(Joint work with Johan Håstad)

