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Abstract

A graph G is claw-free if no induced subgraph of it is isomorphic to the complete bipartite graph
K1,3, and it is prime if |V (G)| ≥ 4 and there is no X ⊆ V (G) with 1 < |X| < |V (G)| such that every
vertex of V (G) \ X with a neighbour in X is adjacent to every vertex of X. In particular, if G is
prime, then both G and Gc are connected.

This paper has two main results. The first one is that if G is a prime graph that is not a member of
a particular family of exceptions, and H is a prime induced subgraph of G, then (up to isomorphism)
G can be grown from H, adding one vertex at a time, in such a way that all the graphs constructed
along the way are prime induced subgraphs of G.

A simplicial clique in G is a non-empty clique K, such that for every k ∈ K the set of neighbours of
k in V (G)\K is a clique. Our second result is that a prime claw-free graph G has at most |V (G)|+1
simplicial cliques, and we give an algorithm to find them all with running time O(|V (G)|4). In
particular, this answers a question of Prasad Tetali [6],who asked if there is an efficient algorithm to
test if a claw-free graph has a simplicial clique.

Finally, we apply our results to claw-free graphs that are not prime. Such a graph may have
exponentially many simplicial cliques, so we cannot list them all in polynomial time, but we can in
a sense describe them.



1 Introduction

All graphs in this paper are finite and simple. Let G be a graph. For X ⊆ V (G), we denote by G|X
the subgraph of G induced on X, and by G \X the subgraph G|(V (G) \X). We say that G|X is
proper if X 6= V (G). If X = {x}, we write G \ x for G \ X. A clique in G is a set of vertices all
pairwise adjacent. Let A and B be two disjoint subsets of V (G). We say that A is complete to B if
every vertex in A is adjacent to every vertex in B, and that A is anticomplete to B if every vertex
in A is non-adjacent to every vertex in B. We say that a ∈ V (G) \ B is complete (anticomplete)
to B if {a} is complete (anticomplete) to B. For v ∈ V (G), we denote by NG(v) (or N(v) when
there is no danger of confusion) the set of all neighbours of v in G. Two vertices u and v in G are
twins if N(u)∪ {u} = N(v)∪ {v} (in particular, u and v are adjacent). A homogeneous set in G is a
subset X of V (G) such that every vertex of V (G) \X with a neighbour in X is complete to X. A
homogeneous set X is non-trivial if 1 < |X| < |V (G)|. Thus if u, v ∈ V (G) are twins and |V (G)| > 2,
then {u, v} is a non-trivial homogeneous set in G. We say that G is prime if |V (G)| ≥ 4 and G has
no non-trivial homogeneous set.

For a graph G, X ⊆ V (G) is a claw (in G) if G|X is the complete bipartite graph K1,3. A graph
is said to be claw-free if no subset of its vertex set is a claw. A simplicial clique in G is a non-empty
clique K, such that for every k ∈ K, the set N(k) \K is a clique.

There are two main results in this paper. Our first goal is to answer a question of Prasad Tetali
[6], who asked if there is an efficient algorithm to test if a claw-free graph has a simplicial clique. The
idea is to enumerate them all. However, this is impossible in polynomial-time since the complete
graph on n vertices is a claw-free graph with 2n − 1 simplicial cliques. More generally, starting
with a claw-free graph, one can replace a vertex by many copies of itself, all pairwise adjacent (thus
introducing a large set of twins), and drive the number of simplicial cliques to be exponential in the
size of the graph. But what about prime claw-free? Our first main result is:

1.1 A prime claw-free graph G has at most |V (G)|+ 1 distinct simplicial cliques.

This result is tight, since a k-edge path has k + 1 vertices and k + 2 simplicial cliques (namely, all
the edges, and the two end vertices). We later use 1.1 to design a polynomial-time algorithm that
finds a simplicial clique in a prime claw-free graph if one exists (in fact, the algorithm finds all such
cliques), answering Tetali’s question.

In order to prove 1.1, we prove a lemma about general graphs (not just claw-free), which we
consider to be the second main result of the paper, and which gives the paper its title. The lemma
is about “growing” prime graphs, starting from a prime induced subgraph, and adding vertices one
at a time, in such a way that all the intermediate subgraphs are prime. Before we can state the
lemma precisely, we need to define the class of obstinate graphs. Let Ok be the bipartite graph on
2k vertices, with bipartition ({a1, . . . , ak}, {b1, . . . , bk}) in which, for i, j ∈ {1, . . . , k}, ai is adjacent
to bj if and only if j ≤ i. A graph G is said to be obstinate if there exists a natural number k > 1,
such that one of G,Gc is isomorphic to Ok. We observe that all obstinate graphs are prime. We can
now state the lemma:

1.2 Let G be a graph, and let H be a proper induced subgraph of G. Assume that both G and H are
prime, and that G is not obstinate. Then there exists an induced subgraph H ′ of G, isomorphic to
H, and a vertex v ∈ V (G) \ V (H ′), such that G|(V (H ′) ∪ {v}) is prime.
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This is closely related to a result of Y. Boudabbous and P. Ille [1], but the proof we include here is
independent of [1]. We remark that the theorem would not be true if we did not allow moving to
an isomorphic copy H ′ for H. To see this, take H to be a three-edge path with vertices a, b, c, d in
order, and let V (G) \ V (H) = {e, f}, where e is adjacent to a and c, and f is adjacent to b and d.

Repeatedly applying 1.2, we obtain the following corollary:

1.3 Let G be a graph, and let H be a proper induced subgraph of G. Assume that both G and H
are prime, and that G is not obstinate. Then there exists a sequence of prime induced subgraphs
G0, . . . , G|V (G)|−|V (H)| of G, such that

• G0 is isomorphic to H,

• G|V (G)|−|V (H)| = G, and

• for every i ∈ {1, . . . , |V (G)| − |V (H)|}, there exists vi ∈ V (Gi) such that Gi−1 = Gi \ vi.

This paper is organized as follows. In Section 2 we strengthen a theorem from [2] to obtain a
structural result 2.3 that we need for the proof of 1.1. In Section 3 we apply 2.3 to prove 1.1 assuming
1.2. The proof of 1.2 occupies Section 4. In Section 5, we use 1.1 to give a polynomial time algorithm
that finds all simplicial cliques of a prime claw-free graph. In the final section we apply our results
to non-prime claw-free graphs; we find that it is possible to “describe” all their simplicial cliques in
polynomial time, although there may be too many to list them all separately.

2 Linear interval graphs revisited

Theorem 5.2 of [2] deals with the structure of claw-free graphs that admit certain types of clique
cutsets (we will define them precisely later). However, it turns out that that theorem can be easily
strengthened, with almost no changes to the proof. This strengthening is likely to be useful in future
applications, and we also need it in the rest of this paper. Thus modifying Theorem 5.2 of [2] is our
first goal here.

To study the structure of graphs with certain forbidden induced subgraphs, it is often helpful to
deal with objects slightly more general than graphs, that we call “trigraphs”. This concept is also
used in [2], and so we start by explaining it. In a graph, every pair of vertices is either adjacent or
nonadjacent, but in a trigraph, some pairs may be “undecided”. For our purposes, we may assume
that this set of undecided pairs is a matching. Thus, let us say a trigraph G consists of a finite set
V (G) of vertices, and a map θG : V (G)2 → {1, 0,−1}, satisfying:

• for all v ∈ V (G), θG(v, v) = 0

• for all distinct u, v ∈ V (G), θG(u, v) = θG(v, u)

• for all distinct u, v, w ∈ V (G), at most one of θG(u, v), θG(u,w) is 0.

We call θG the adjacency function of G. For distinct u, v in V (G), we say that u, v are strongly
adjacent if θG(u, v) = 1, strongly antiadjacent if θG(u, v) = −1, and semi-adjacent if θG(u, v) = 0.
We say that u, v are adjacent if they are either strongly adjacent or semi-adjacent, and antiadjacent
if they are either strongly antiadjacent or semi-adjacent. Also, we say that u is a (strong) neighbour
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of v if u, v are (strongly) adjacent; and u is an (strong) antineighbour of v if u, v are (strongly)
antiadjacent. For a vertex v ∈ V (G) we denote by N(x) the set of neighbours of x in G, and N∗(v)
denotes the set of strong neighbours of v. We denote by F (G) the set of all pairs {u, v} such that
u, v ∈ V (G) are distinct and semi-adjacent. Please note that a trigraph G is a graph if F (G) = ∅.
We remark that the last condition of the definition of θG means that F (G) is a matching.

Let G be a trigraph, and let A and B be two disjoint subsets of V (G). We say that A is (strongly)
complete to B if every vertex in A is (strongly) adjacent to every vertex in B, and that A is (strongly)
anticomplete to B if every vertex in A is (strongly) antiadjacent to every vertex in B. As in the
graph case, if A = {a}, we will say that a is (strongly) complete or (strongly) anticomplete to B
if {a} is (strongly) complete or (strongly) anticomplete to B, respectively. If a is neither strongly
complete nor strongly anticomplete to B, then a is mixed on B. Since every graph is a trigraph with
no semi-adjacent vertex pairs, the notion of being mixed makes sense for graphs as well as trigraphs.
A (strong) clique in G is a set of vertices all pairwise (strongly) adjacent, and a (strongly) stable set
is a set of vertices all pairwise (strongly) antiadjacent. If X ⊆ V (G), we define the trigraph G|X
induced on X as follows. Its vertex set is X, and its adjacency function is the restriction of θG to
X2. We define G \ X = G|(V (G) \ X). A homogeneous set in G is a set of vertices X such that
every vertex of V (G) \X is either strongly complete or strongly anticomplete to X. A trigraph G is
claw-free if there do not exist four vertices a, b, c, d ∈ V (G), such that a is complete to {b, c, d} and
{b, c, d} is a stable set.

Next we repeat a few definitions from [2]. We say that G admits a 0-join (X,Y ) if X and Y are
two disjoint non-empty sets with union V (G), such that X is strongly anticomplete to Y ; and that
G admits a 1-join (A,B,C,D) if A,B,C,D are four non-empty pairwise disjoint subsets of V (G),
such that A∪B ∪C ∪D = V (G), B ∪C is a strong clique, A is strongly anticomplete to C ∪D, and
D is strongly anticomplete to B.

Let A,B ⊆ V (G). We call (A,B) a proper W-join if

• A,B are disjoint non-empty strong cliques of G, and at least one of A,B has at least two
members

• A is a homogeneous set in G \B, and B is a homogeneous set in G \A

• no member of A is strongly complete or strongly anticomplete to B, and no member of B is
strongly complete or strongly anticomplete to A.

A proper W-join (A,B) is coherent if the set of the vertices in V (G) \ (A ∪B) that are complete to
A ∪B is a clique.

We say that G is a linear interval trigraph if the vertices of G can be numbered v1, . . . , vn such that
for all i, j with 1 ≤ i < j ≤ n, if vi is adjacent to vj then {vi, vi+1, . . . , vj−1} and {vi+1, vi+2, . . . , vj}
are strong cliques.

A clique cutset in G is a strong clique C such that G \C is not connected, that is, V (G) \C can
be partitioned into two nonempty sets V1, V2 such that V1 is strongly anticomplete to V2. Let us say
the clique cutset C is internal if the sets V1, V2 can be chosen so that for i = 1, 2 either |Vi| > 1,
or the unique vertex of Vi is semi-adjacent to some vertex of C. Please note that this definition is
different from the one in [2], for here we allow the sets Vi to have size one.

An antinet is a trigraph with six vertices a1, a2, a3, b1, b2, b3, such that {a1, a2, a3} is a stable set,
ai, bi are antiadjacent for i = 1, 2, 3, and all other pairs are adjacent. A strong antinet is a trigraph
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with six vertices a1, a2, a3, b1, b2, b3, such that {a1, a2, a3} is a strongly stable set, ai, bi are strongly
antiadjacent for i = 1, 2, 3, and all other pairs are strongly adjacent.

The following is a definition from [3] that plays an important role in the structure theory of
claw-free graphs. We say that a trigraph H is a thickening of a trigraph G if for every v ∈ V (G)
there is a nonempty subset Xv ⊆ V (H), all pairwise disjoint and with union V (H), satisfying the
following:

• for each v ∈ V (G), Xv is a strong clique of H

• if u, v ∈ V (G) are strongly adjacent in G then Xu is strongly complete to Xv in H

• if u, v ∈ V (G) are strongly antiadjacent in G then Xu is strongly anticomplete to Xv in H

• if u, v ∈ V (G) are semi-adjacent in G then Xu is neither strongly complete nor strongly
anticomplete to Xv in H.

Let us say that H is a proper thickening of G if in addition:

• if u, v ∈ V (G) are semi-adjacent in G then every vertex in Xu has both a neighbour and an
antineighbour in Xv in H.

This is a slight variant of a useful lemma from [2]:

2.1 Let G be a claw-free trigraph and let C be a clique cutset in G. Let V1, V2 be a partition of
V (G) \ C such that V1, V2 6= ∅ and V1 is anticomplete to V2. Then

• if a vertex u ∈ C has both a neighbour in V1 and a neighbour in V2, then N(u) ∩ V1 and
N(u) ∩ V2 are strong cliques, and

• for all u, v ∈ C, either N(u) ∩ V1 ⊆ N∗(v) ∩ V1 or N(u) ∩ V2 ⊆ N∗(v) ∩ V2.

Proof. Suppose that for some vertex u ∈ C with both a neighbour in V1 and a neighbour in V2,
there exist two antiadjacent vertices x, y in N(u) ∩ V1. Let z ∈ N(u) ∩ V2. But now {u, x, y, z} is a
claw in G, a contradiction. This proves the first assertion of the theorem.

For the second, assume that there exist v1 ∈ (N(u) \N∗(v)) ∩ V1 and v2 ∈ (N(u) \N∗(v)) ∩ V2.
Since C is a clique, u is adjacent to v. But then {u, v, v1, v2} is a claw, a contradiction. This proves
the second assertion of the theorem and completes the proof of 2.1.

Next we prove the main result of this section, which is a strengthening of Theorem 5.2 of [2]. The
proof is very similar to that in [2], and we apologize to the reader for repeating it. For an integer
k ≥ 4, a hole of length k in a trigraph T is a subtrigraph of T with vertices v1, . . . , vk, such that for
1 ≤ i < j ≤ k the pair vivj is adjacent if j − i = 1, the pair v1vk is adjacent, and all other pairs are
antiadjacent.

2.2 Let G be a claw-free trigraph with an internal clique cutset, such that G does not admit twins,
a 0-join, or a 1-join. Then every hole in G has length four; if there is a 4-hole then G admits a
coherent proper W-join, and otherwise G is a linear interval trigraph or a strong antinet.
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Proof. Let G be a claw-free trigraph admitting an internal clique cutset, such that G does not
admit twins, a 0-join, or a 1-join. Suppose first that G has no hole. We may assume that G is not
a linear interval trigraph. It follows from Theorem 4.1 in [2] that G is an antinet. We claim that G
is a strong antinet. Let a1, a2, a3, b1, b2, b3 be as in the definition of an antinet. Since {b3, a1, a2, b2}
is not a claw in G, it follows that a1 is strongly adjacent to b2, and similarly ai is strongly adjacent
to bj for all i 6= j ∈ {1, 2, 3}. Since a1-b2-b1-b3-a1 is not a hole in G, it follows that b2 is strongly
adjacent to b3, and from the symmetry {b1, b2, b3} is a strong clique. Since {b1, a1, a2, a3} is not a
claw in G, we deduce that a1 is strongly antiadjacent to b1, and similarly ai is strongly antiadjacent
to bi for i = 2, 3. Finally, since a1-a2-b1-b2-a1 is not a hole, it follows that a1 is strongly antiadjacent
to a2, and, from the symmetry, {a1, a2, a3} is a strongly stable set. This proves that G is a strong
antinet. Hence we may assume that there is a hole H in G. Choose H with length at least five if
possible.

Let us say a clique-separation in G is a triple (C, V1, V2), such that

• C is a strong clique of G, and (V1, V2) is a partition of V (G) \ C,

• V1 is strongly anticomplete to V2, and

• V (H) ∩ V2 = ∅.

(1) There is a clique-separation (C, V1, V2) in G with the following properties

• either |V2| > 1, or |V2| = 1 and the unique vertex of V2 is semi-adjacent to some vertex of C,
and

• subject to that |V2| is maximum, and

• C 6= ∅, and every vertex in C has a neighbour in V1 and a neighbour in V2.

For since G admits an internal clique cutset, there is a triple (C, V1, V2) satisfying the first and
second conditions in the definition of a clique-separation, and such that for i = 1, 2 either |Vi| > 1 or
the unique vertex of Vi is semi-adjacent to some vertex of C. Since C is a strong clique, it follows that
V (H) has empty intersection with one of V1, V2. Hence (possibly after exchanging V1, V2), it follows
that G contains a clique-separation (C, V1, V2) where either |V2| > 1 or the unique vertex of V2 is
semi-adjacent to some vertex of C. Choose such a clique-separation (C, V1, V2) with |V2| maximum,
and subject to that, with C minimal. Since G does not admit a 0-join, it follows that C 6= ∅. Let
c ∈ C. If c has no neighbour in V2, then (C \ {c}, V1 ∪ {c}, V2) is also a clique-separation with
|V2| maximum, contradicting the minimality of C; and if c has no neighbour in V1, then c /∈ V (H)
(since every vertex in V (H) ∩ C has a neighbour in V (H) \ C ⊆ V1, because C is a strong clique),
and therefore (C \ {c}, V1, V2 ∪ {c}) is a clique-separation contradicting the maximality of |V2|. This
proves (1).

For a vertex c ∈ C and for i = 1, 2, let Ni(c) be the set of neighbours of c in Vi, and let N∗i (c)
be the set of strong neighbours of c in Vi. Let J be the digraph with V (J) = C and edge set all
pairs (u, v) with u, v ∈ C (possibly equal), such that N1(v) 6⊆ N∗1 (u). Since C is nonempty, there is
a strong component of J that is a “sink component”; that is, there exists X ⊆ C such that

• X is nonempty and J |X is strongly connected
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• there is no edge (u, v) ∈ E(J) with u ∈ X and v /∈ X.

(2) For all distinct u, v ∈ X, N2(u) = N∗2 (u) = N2(v) = N∗2 (v).

For since X is strongly connected, there is a directed path of J from u to v, say u = v1- · · · -vk = v. For
1 ≤ i < k, since (vi, vi+1) ∈ E(J), it follows that N1(vi+1) 6⊆ N∗1 (vi), and therefore N2(vi+1) ⊆ N∗2 (vi)
by the second statement of 2.1. Consequently N2(v) ⊆ N∗2 (u). Similarly N2(u) ⊆ N∗2 (v). This proves
(2).

Let Z =
⋂

x∈X N∗1 (x).

(3) X 6= C.

For suppose that X = C. Choose c ∈ C, and let Y = N2(c). By (1) and 2.1, Y is a strong
clique. There are two cases, depending whether N2(c′) = N∗2 (c′) = Y for all c′ ∈ C or not. Suppose
first that N2(c′) = N∗2 (c′) = Y for all c′ ∈ C. Then C ∪ Y is a strong clique. If V2 = Y , then,
since G admits no twins, it follows that |V2| = |Y | = 1, and yet the unique vertex of Y is not
semi-adjacent to any vertex of C, a contradiction. Thus V2 6= Y . But now (V1, C, Y, V2 \ Y ) is a
1-join, a contradiction. Thus we may assume that there exists c′ ∈ C with one of N2(c′), N∗2 (c′)
different from Y . By (2), |C| = 1, and so c′ = c and N2(c) 6= N∗2 (c). Hence N1(c) = N∗1 (c) = Z
(since c is semi-adjacent to a member of V2 and F (G) is a matching); and by (1) and 2.1, Z is a
strong clique, and therefore so is Z ∪C. But Z 6= V1, because G|(V1 ∪C) contains a hole and there-
fore V1∪C is not a strong clique; and so (V1 \Z,Z,C, V2) is a 1-join, a contradiction. This proves (3).

(4) X ∪ Z is a strong clique, and N1(c) ⊆ Z for every vertex c ∈ C \ X, and H is a 4-hole,
and V (H) consists of two vertices of C \X and two vertices of Z.

For (1) and the first statement of 2.1 implies that Z is a strong clique, and therefore X ∪ Z is
a strong clique. Let c ∈ C \ X, and x ∈ X. Since (x, c) /∈ E(J), it follows that N1(c) ⊆ N∗1 (x).
Since this holds for all x ∈ X, we deduce that N1(c) ⊆ Z. From (3) and the maximality of |V2|,
(X ∪Z, V1 \Z, V2 ∪ (C \X)) is not a clique-separation of G, and so V (H)∩ (C \X) 6= ∅. Let H have
vertices h1- · · · -hn-h1 in order, where h1 ∈ C \X. Then h2, hn ∈ C ∪N1(h1) ⊆ C ∪Z, and since C,Z
are both strong cliques and h2, hn are antiadjacent, we may assume that h2 ∈ C and hn ∈ Z. Since
h2, hn are antiadjacent, and X ∪ Z is a strong clique, it follows that h2 /∈ X, and so h2 ∈ C \ X.
Thus by the same argument h3 ∈ Z. Since h3, hn ∈ Z and Z is a strong clique, it follows that n = 4,
and so H is a 4-hole. This proves (4).

Let us say a step is a 4-hole consisting of two vertices of C \X and two vertices of Z. We have
seen that H is a step. We say a pair (A,B) is a step-connected strip if A ⊆ Z and B ⊆ C \X, and
for every partition (P,Q) of A or of B with P,Q nonempty, there is a step S with V (S) ⊆ A ∪ B,
and with P ∩ V (S) 6= ∅ and Q ∩ V (S) 6= ∅. Certainly the pair (V (H) ∩ Z, V (H) ∩ (C \ X)) is a
step-connected strip; so we may choose a step-connected strip (A,B) with V (H) ⊆ A ∪B and with
A ∪B maximal.

(5) Every vertex in V (G) \ (A ∪ B) is either strongly complete or strongly anticomplete to A, and
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either strongly complete or strongly anticomplete to B. Moreover, the set of vertices V (G) \ (A∪B)
that are complete to A ∪B is a strong clique.

The proof of (5) is identical to that in Theorem 5.2 of [2], and we omit it.

From (4), H has length four, and so no hole of G has length more than four; and from (5), G
admits a coherent proper W-join. This proves 2.2.

Now we strengthen 2.2 further.

2.3 Let G be a claw-free trigraph with an internal clique cutset, such that G does not admit twins,
a 0-join, or a 1-join. Then either G is a thickening of a linear interval trigraph, or G is a strong
antinet.

Proof. Suppose not, and let G be a counterexample to 2.3 with |V (G)| minimal. By 2.2, G admits
a coherent proper W-join (A,B). Let C be the set of vertices of V (G) \ (A ∪ B) that are strongly
complete to A and strongly anticomplete to B, D the set of vertices of V (G) \ (A ∪ B) that are
strongly complete to B and strongly anticomplete to A, E the set of vertices of V (G) \ (A ∪ B)
that are strongly complete to A ∪ B, and F the set of vertices of V (G) \ (A ∪ B) that are strongly
anticomplete to A∪B. Then V (G) = A∪B∪C ∪D∪E∪F . Let G′ be obtained from G\ (A∪B) by
adding two new vertices a and b, such that a is strongly complete to C∪E and strongly anticomplete
to D∪F , b is strongly complete to D∪E and strongly anticomplete to C ∪F , and a is semi-adjacent
to b. Then |V (G′)| < |V (G)|.

(1) G′ admits an internal clique cutset.

Let P be an internal clique cutset in G, and let V1, V2 be a partition of V (G) \ P such that for
i = 1, 2 either |Vi| > 1 or the unique vertex of Vi is semi-adjacent to some vertex of P . If possible,
choose P disjoint from one of A,B. We may assume that every vertex of P has both a neighbour
in V1 and a neighbour in V2. Suppose first that A ⊆ P . Since no vertex of B is strongly complete
to A, it follows that P ∩ B = ∅, and since B is a clique, we may assume from the symmetry that
B ⊆ V1. But then P ′ = (P \A)∪ {a} is a clique cutset in G′, (V ′1 , V2) (where V ′1 = (V1 \B)∪ {b}) is
a partition of V (G′) \ P ′, b ∈ V ′1 is semi-adjacent to a ∈ P , and either |V2| > 1 or the unique vertex
of V2 is semi-adjacent to some vertex of P \ {a}; and therefore G′ admits an internal clique cutset.
Thus we may assume that A \ P 6= ∅ and B \ P 6= ∅.

Next suppose that (A ∪ B) ∩ P = ∅. Since A is a strong clique, we may assume that A ⊆ V1.
Since every vertex of A has a neighbour in B, and since B is a strong clique, it follows that B ⊆ V1.
But now, letting V ′1 = (V1 \ (A ∪B)) ∪ {a, b}, we observe that V ′1 , V2 is a partition of V (G′) \ P into
two nonempty sets, |V ′1 | > 1, and either |V2| > 1 or the unique vertex of V2 is semi-adjacent to some
vertex of P . Consequently G′ admits an internal clique cutset. Thus we may assume that A∩P 6= ∅.

Since A \P 6= ∅, and since A is a strong clique, we may assume that A∩ V1 6= ∅, and A∩ V2 = ∅.
Since A ∩ V1 is strongly anticomplete to V2 \ B, it follows that A ∩ P is strongly anticomplete to
V2\B; and therefore, since every vertex of P has a neighbour in V2, we deduce that B∩V2 6= ∅. Then
B ∩ V1 = ∅. Since every vertex of A has a neighbour in B, and A ∩ V1 is strongly anticomplete to
B ∩V2, it follows that B ∩P 6= ∅. Now from the symmetry, B ∩P is strongly anticomplete to V1 \A.
Also, since A is a homogeneous set in V (G) \B, it follows that P \ (A ∪B) is strongly complete to
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A. Similarly, P \ (A ∪ B) is strongly complete to B. We observe that X = (A ∪ P ) \ B is a strong
clique, and (V1 \ A, V2 ∪ B) is a partition of V (G) \ X. It follows from the choice of P that X is
not an internal clique cutset in G. Since V2 ∪ B is strongly anticomplete to V1 \ A, it follows that
|V1 \A| ≤ 1 and no vertex of V1 \A is semi-adjacent to a vertex of X.

We claim that V1 \ A is strongly complete to A. Suppose not. Then V1 \ A 6= ∅; let u1 be the
unique vertex of V1 \A. Since (A,B) is a proper W-join, u1 is strongly anticomplete to A, and since
G is connected, it follows that u1 has a neighbour in (A ∪ P ) \ B. But this contradicts the first
statement of 2.1, since p ∈ P \ (A∪B) is strongly complete to A. This proves that V1 \A is strongly
complete to A. Similarly, |V2 \ B| ≤ 1, no vertex of V2 \ B is semi-adjacent to a vertex of X, and
V2 \B is strongly complete to B. Let T ′1 be the set of vertices of P \ (A∪B) that have a neighbour in
V1 \A and T ′2 the set of vertices of P \ (A∪B) that have a neighbour in V2 \B. Define T1 = T ′1 \ T ′2,
T2 = T ′2 \ T ′1, Y = T ′1 ∩ T ′2 and Z = P \ (A ∪ B ∪ T ′1 ∪ T ′2). By the second assertion of 2.1, at least
one of the sets Y,Z is empty.

Let S be the trigraph with vertex set {v1, v2, v3, v4, v5, v6, v7}, where the following pairs are
strongly adjacent

v1v2, v1v3, v2v3, v2v4, v3v4, v3v5, v4v5, v4v6, v5v6, v5v7, v6v7

and if Y 6= ∅, also the pairs
v1v4, v4v7

are strongly adjacent; the pairs
v2v5, v3v6

are semi-adjacent, and all other pairs are strongly antiadjacent. Let Xv1 = V1\A,Xv2 = A∩V1, Xv3 =
T1 ∪ (A ∩ P ), Xv4 = Y ∪ Z,Xv5 = T2 ∪ (B ∩ P ), Xv6 = B ∩ V2, Xv7 = V2 \ B. Then S is a linear
interval trigraph. The sets Xv2 , Xv3 , Xv5 and Xv6 are non-empty, and either Xv4 = Y or Xv4 = Z.
Moreover, if Xv4 = Y , then Xv4 is strongly complete to Xv1 ∪ Xv7 , and if Xv4 = Z, then Xv4 is
strongly anticomplete to Xv1 ∪Xv7 . Now let T ⊆ {v1, v7, v4} be the set of all vi such that Xvi = ∅.
Then Xvi is a non-empty strong clique for every vi ∈ S \ T . Moreover, for i, j ∈ {1, . . . , 7}, if vi is
strongly complete to vj , then Xvi is strongly complete to Xvj , and if vi is strongly anticomplete to
vj , then Xvi is strongly anticomplete to Xvj . Next we claim that the pairs Xv2Xv5 and Xv3Xv6 are
neither strongly complete nor strongly anticomplete. From the symmetry, it is enough to show that
Xv2 is not strongly complete and not strongly anticomplete to Xv5 . Since (A,B) is a proper W -join
in G, it follows that no vertex in B∩P is strongly complete to A, and no vertex of A∩V1 is strongly
anticomplete to B. This implies that B ∩ P is not strongly complete to A ∩ V1, and A ∩ V1 is not
strongly anticomplete out B ∩ P , which proves the claim. Consequently, G is a thickening of S \ T ,
contrary to the fact that G is a counterexample to 2.3. This proves (1).

For X ⊆ V (G′) let

L(X) =


X if a, b 6∈ X

(X \ {a}) ∪A if a ∈ X and b 6∈ X
(X \ {b}) ∪B if b ∈ X and a 6∈ X

(X \ {a, b}) ∪A ∪B if a, b ∈ X
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(2) G′ does not admit a 0-join, or a 1-join, or twins.

If G′ admits a 0-join (X,Y ), then L(X), L(Y ) is a partition of V (G) with L(X) strongly anti-
complete to L(Y ). Consequently, G admits a 0-join, a contradiction. This proves that G′ does not
admit a 0-join. If G′ admits a 1-join (P,Q,R, S), then L(P ), L(Q), L(R), L(S) is a 1-join in G, and
therefore G′ does not admit a 1-join. Finally, if u, v are twins in G′, then {u, v}∩{a, b} = ∅, since a is
semi-adjacent to b; and therefore u, v are twins in G. Thus G′ does not admits twins. This proves (2).

By the minimality of |V (G)|, one of the outcomes of 2.3 holds for G′. Since no two vertices of
a strong antinet are semi-adjacent, we deduce that G′ is a thickening of a linear interval trigraph,
say S. Let {Xv}v∈V (S) be the subsets of V (G′) as in the definition of a thickening. Since a is semi-
adjacent to b, it follows that there exist two vertices u, v ∈ V (S), such that a ∈ Xu, b ∈ Xv and u
is semi-adjacent to v. But now G is a thickening of S with subsets {L(Xv)}v∈V (S). This proves 2.3.

We finish this section with a lemma that refines 2.3 further.

2.4 Let G be a thickening of a linear interval trigraph F . Then there exists a linear interval trigraph
F ′ such that G is a proper thickening of F ′.

Proof. Let F ′ be a linear interval trigraph such that G is a thickening of F ′, and subject to that
with |V (F ′)| maximum. Let the vertices of F ′ be numbered v1, . . . , vn as in the definition of a linear
interval trigraph. For i ∈ {1, . . . , n} let Xi = Xvi be a subset of V (G) as in the definition of a
thickening. We may assume that for some 1 ≤ i < j ≤ n, vi is semi-adjacent to vj , but some x ∈ Xi

is either strongly complete or strongly anticomplete to Xj . This in particular implies that |Xi| ≥ 2.
Suppose first that x is strongly complete to Xj . Let F ′′ be the trigraph obtained from F ′ by adding
a new vertex v′i, and making v′i be strongly adjacent to N∗(vi) ∪ {vi, vj}, and strongly antiadjacent
to all the remaining vertices of V (F ′). Then F ′′ is a linear interval trigraph, ordering the vertices

v1, . . . , vi, v
′
i, vi+1, . . . , vn

and G is a thickening of F ′′, where we replace Xi with Xi \ {x}, and define Xv′i
= {x}, contrary to

the choice of F ′. This proves that x is strongly anticomplete to Xj . Let F ′′ be the trigraph obtained
from F ′ by adding a new vertex v′i, and making v′i be strongly adjacent to N∗(vi)∪{vi}, and strongly
antiadjacent to all the remaining vertices of V (F ′). Then F ′′ is a linear interval trigraph, ordering
the vertices

v1, . . . , vi−1, v
′
i, vi, . . . , vn

and G is a thickening of F ′′, where we replace Xi with Xi \{x}, and define Xv′i
= {x}, again contrary

to the choice of F ′. This proves 2.4.

3 The proof of 1.1.

The results in this section are about graphs only, though we do use trigraphs in some of the proofs.
Our current goal is to prove 1.1 assuming 1.2. We start with some definitions. Let G be a graph.
A connected component of G is a maximal non-null connected subgraph of G. A vertex v ∈ V (G) is
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simplicial if N(v) is a clique. Let s(G) denote the number of simplicial cliques in G. We start with
an easy lemma.

3.1 Let G be a claw-free graph, and let X be a non-trivial homogeneous set in G. Let C be the
set of vertices of V (G) \X that are complete to X, and A the set of vertices of V (G) \X that are
anticomplete to X. If X is not a clique, then A is anticomplete to X ∪ C, and one of G,Gc is not
connected.

Proof. Let x1, x2 ∈ X be non-adjacent. Since {c, x1, x2, a} is not a claw for any c ∈ C and a ∈ A, it
follows that C is anticomplete to A. This proves the first assertion of the theorem. We may assume
that A = ∅, for otherwise G is not connected. But then V (G) \ X = C 6= ∅, and thus Gc is not
connected. This proves 3.1.

Next we deal with obstinate graphs.

3.2 Let G be claw-free and obstinate. Then one of the following holds.

• G is isomorphic to O2. Let V (G) = {a1, a2, b1, b2} as in the definition of O2. Then the
simplicial cliques of G are

{{a1}, {a1, b1}, {a2, b1}, {a2, b2}, {b2}},

and, in particular s(G) = |V (G)|+ 1.

• Gc is isomorphic to Ok, with k ≥ 3. Let V (G) = {a1, . . . , ak, b1, . . . , bk} as in the definition of
Ok. Let Ai = {ai, . . . , ak}, Bi = {b1, . . . , bi}. Then the simplicial cliques of G are

A1, . . . , Ak, B1, . . . , Bk,

and in particular s(G) = |V (G)|.

Proof. Since G is obstinate, G or Gc is isomorphic to Ok for some natural number k ≥ 2. Suppose
first that G = Ok for some natural number k ≥ 2. Let a1, . . . , ak, b1, . . . , bk be as in the definition of
Ok. Since G is claw-free and ak is complete to {b1, . . . , bk}, it follows that k = 2. But now G is a
three-edge path a1-b1-a2-b2, and the first outcome of the theorem holds.

Next assume that Gc = Ok for some k ≥ 2. If k = 2, then G is a 3-edge path, and so G is
isomorphic to O2, and the theorem holds. So we may assume that k ≥ 3. Let a1, . . . , ak, b1, . . . , bk
be as in the definition of Ok. Let A = {a1, . . . , ak} and B = {b1, . . . , bk}. First we will enumerate all
simplicial cliques in G that meet A. Let K be a simplicial clique in G with K ∩A 6= ∅. Then b1 6∈ K.

First we claim that ak ∈ K. Suppose not. Choose j so that aj ∈ K. Since aj is complete
to {ak, bj+1, . . . , bk}, and ak is anticomplete to B, the fact that N(aj) \ K is a clique implies that
{bj+1, . . . , bk} ⊆ K. Since aj is anticomplete to {b1, . . . , bj}, it follows that b1, . . . , bj 6∈ K. This
implies that K ∩ {a1, . . . , ak} = {aj}. Let p ∈ {1, 2} \ {j}. Then ap, b1 6∈ K, and bk is adjacent to
both ap, b1, contrary to the fact that K is a simplicial clique. This proves that ak ∈ K.

Since K is a clique, and ak is anticomplete to B, it follows that K ⊆ A. If there exist 1 ≤ i <
j < k, such that ai ∈ K, and aj 6∈ K, then aj , bj ∈ N(ai) \K, which is a contradiction since aj is
non-adjacent to bj . Therefore, K = At for some t ∈ {1, . . . , k}. Moreover, we observe that At is a
simplicial clique in G for every t ∈ {1, . . . , k}. Consequently,

A1, . . . , Ak
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is the complete list of simplicial cliques in G, meeting A (and none of them meet B). From the
symmetry,

B1, . . . , Bk

is the complete list of simplicial cliques in G meeting B (and none of them meet A). Therefore,
s(G) = |V (G)| = 2k, and 3.2 holds.

Proof of 1.1. The proof is by induction on |V (G)|. Let |V (G)| = n.

(1) We may assume that n ≥ 4 and both G and Gc are connected.

Since G is prime, it follows that n ≥ 4. Consequently, again using the fact that G is prime, we
deduce that both G and Gc are connected. This proves (1).

From now on, we assume in view of (1) that n ≥ 3 and both G and Gc are connected.

(2) If G has a simplicial vertex v such that G \ v is prime, then the theorem holds.

Let v be a simplicial vertex of G. Let N = N(v), M = V (G) \ (N ∪ {v}). Let G′ = G \ v.
Then N is a clique. Inductively, s(G′) ≤ n. Let T be the set of all cliques K of G with v ∈ K, such
that both K and K \ v are simplicial cliques in G. Now, if K 6= {v} is a simplicial clique of G, then
K \ v is a simplicial clique of G′, and so

s(G) ≤ s(G′) + 1 + |T | ≤ n+ 1 + |T |.

We observe that if some u ∈ N is anticomplete to M , then {u, v} is a non-trivial homogeneous set in
G, contrary to the fact that G is prime. This implies that every vertex of N has a neighbour in M ,
and therefore, since v is anticomplete to M , no subset of N is a simplicial clique of G. Consequently,
T = ∅. This proves (2).

(3) If G admits a 1-join, then the theorem holds.

Let (A,B,C,D) be a 1-join. Assume first that some vertex v ∈ B∪C is anticomplete to A∪D. Then
N(v) = (B ∪C) \ {v}, and therefore v is simplicial. Since G is connected, both B \ {v} and C \ {v}
are non-empty. We claim that G \ v is prime. Suppose not, and let X be a non-trivial homogeneous
set in G \ v. Write N = B ∪ C, and M = A ∪D. Since X is not a non-trivial homogeneous set in
G, it follows that both X ∩M and X ∩ N are non-empty. Let M1 be the set of vertices of M \X
that are complete to X, and M2 the set of vertices of M \ X that are anticomplete to X. Then
M \X = M1∪M2. Since N is a clique, N \X is complete to X. Since X ∪{v} is not a homogeneous
set in G, it follows that M1 6= ∅. If M2 = ∅, then M = (M ∩X) ∪M1, and therefore, since M1 is
complete to X, we deduce that M is connected, contrary to the fact that M = A ∪D. This proves
that M2 6= ∅. Now, since G is prime, it follows that M2 is not anticomplete to V (G) \M2, and thus
3.1 applied in G \ v implies that X is a clique. Consequently, X ∩M is complete to N , contrary to
the fact that A is anticomplete to C, and D to B. This proves that G \ v is prime. Now (3) follows
from (2). Thus we may assume that every vertex of B has a neighbour in A, and every vertex of C
has a neighbour in D.
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Let b ∈ B and c ∈ C. Chose a ∈ A adjacent to b, and d ∈ D adjacent to c. Define G1 =
G|(A∪B ∪ {c, d}) and G2 = G|(C ∪D ∪ {a, b}). Then both G1 and G2 are claw-free. We claim that
both G1 and G2 are prime. Suppose not; then from the symmetry we may assume that there is a
non-trivial homogeneous set X in G1. If {c, d} ∩X = ∅, then X is a non-trivial homogeneous set in
G, contrary to the fact that G is prime. So we may assume that at least one of c, d belongs to X.
Suppose first that c 6∈ X. Then d ∈ X. Since c is adjacent to d and anticomplete to A, it follows
that X ∩A = ∅, and therefore there is a vertex b′ ∈ B ∩X. But b′ has a neighbour a′ ∈ A, which is
non-adjacent to d, contrary to the fact that X is a homogeneous set. Thus c ∈ X, and since c is the
unique neighbour of d in G1, it follows that d ∈ X. Since B is complete to c, and anticomplete to
d, it follows that B ⊆ X. Since d is anticomplete to A, we deduce that V (G1) \X is anticomplete
to X. But V (G1) \X = A \X, and therefore A \X is anticomplete to B ∪ C ∪D ∪ (A ∩X) in G,
contrary to the fact that G is prime. This proves that both G1 and G2 are prime.

Let |V (Gi)| = ni. By the inductive hypothesis, s(Gi) ≤ ni + 1 for i = 1, 2. Since B is a clique
cutset in G, and every vertex of B is complete to C and has a neighbour in A, it follows from 2.1 that
NG1(v)∩A is a clique for every v ∈ B. Consequently, B∪{c} is a simplicial clique in G1. We observe
that {d} and {c, d} are also simplicial cliques of G1. This implies that the number of simplicial
cliques of G1 that are also cliques of G|(A ∪B) is at most s(G1)− 3 ≤ ni − 2 = |A|+ |B|. From the
symmetry, the number of simplicial cliques of G2 that are also simplicial cliques of G|(C ∪D) is at
most |C| + |D|. Let t be the number of simplicial cliques of G that meet both A ∪ B and C ∪ D.
We observe that if K ⊆ A ∪B is a simplicial clique of G, then K is a simplicial clique of G1, and if
K ⊆ C ∪D is a simplicial clique of G, then K is a simplicial clique of G2. Consequently,

s(G) ≤ |A|+ |B|+ |C|+ |D|+ t.

It is therefore enough to show that t ≤ 1. Indeed, let K be a clique of G such that K 6⊆ A ∪ B
and K 6⊆ C ∪D. Since K is a clique, it follows that K ⊆ B ∪ C, and both K ∩ B and K ∩ C are
non-empty. Suppose B\K 6= ∅, and choose b′ ∈ B\K. Let c′ ∈ K∩C, and let d′ ∈ D be a neighbour
of c′. But now b′, d′ ∈ N(c′) \K, contrary to the fact that K is a simplicial clique. Thus B ⊆ K,
and from the symmetry C ⊆ K. Consequently K = B ∪C and t ≤ 1 (in fact, 2.1 implies that B ∪C
is a simplicial clique of G, and so t = 1.) This proves (3).

In view of (3) and 3.2 we may assume that G does not admit a 1-join, and that G is not obsti-
nate. Since both G and Gc are connected, it follows that there exists an induced subgraph of G,
isomorphic to the 3-edge path. Let H be such a subgraph. We observe that H is prime. By 1.3,
there exists v ∈ V (G), such that G \ v is prime. By (2), we may assume that v is not simplicial. Let
N = N(v), M = V (G) \ (N ∪ {v}), and G′ = G \ v. Inductively, s(G′) ≤ n. Let T be the set of all
cliques K of G with v ∈ K, such that both K and K \ v are simplicial cliques in G. Since if K is a
simplicial clique of G, then K \ v is a simplicial clique of G′ (since {v} is not a simplicial clique in G
because v is not a simplicial vertex) it follows that

s(G) ≤ s(G′) + |T |.

It is therefore enough to prove that |T | ≤ 1. We may assume that T 6= ∅, for otherwise the theorem
holds.

(4) G is an antinet or a thickening of a linear interval trigraph.

12



Let K ∈ T . Then K \ {v} ⊆ N . Since v is complete to K \ {v} and anticomplete to M , and
since K \ {v} is a simplicial clique of G, it follows that K \ {v} (and therefore K) is anticomplete to
M . Since K is a simplicial clique of G, it follows that N \K is a clique. Since Gc is connected, we de-
duce that M 6= ∅, and consequently N\K is a clique cutset in G. If |M | > 1, then since G is connected
and does not admit a 1-join, it follows from 2.3 (regarding G as a trigraph with no semi-adjacent
pairs of vertices) that G is an antinet or a thickening of a linear interval trigraph. So we may assume
that |M | = 1. Let m be the unique vertex of M . Let N1 = N(m) ∩N , N2 = N \ (K ∪N1). Let K1

be the set of vertices of K \ {v} with a neighbour in N1, and let K2 = K \ (K1∪{v}). By the second
assertion of 2.1, K1 is complete to N2. Let F be the trigraph with vertex set {v1, v2, v3, v4, v5, v6}
such that the pairs

v1v2, v2v3, v2v4, v3v4, v3v5, v4v5, v4v6, v5v6

are strongly adjacent, the pair
v2v5

is strongly adjacent if K1 is complete to N1, and semi-adjacent otherwise, the pair

v3v6

is strongly adjacent if K2 is complete to N2, and semi-adjacent otherwise, and all other pairs are
strongly anti-adjacent. Then F is a linear interval trigraph. Now setting

Xv1 = M,Xv2 = N1, Xv3 = N2, Xv4 = {v}, Xv5 = K1, Xv6 = K2

we observe that G is a thickening of an induced subgraph of F . This proves (4).

We observe that if G is an antinet, then |V (G)| = s(G) = 6, and so, in view of (4) and by 2.4,
we may assume from now on that G is a proper thickening of a linear interval trigraph. Let F be
a linear interval trigraph of which G is a proper thickening. Since G is connected, it follows that F
is connected. Let the vertices of F be v1, . . . , vn numbered as in the definition of a linear interval
trigraph, and let Xi = Xvi be subsets of V (G) as in the definition of a proper thickening. Let
i ∈ {1, . . . , n} be such that v ∈ Xi. Let j ∈ {1, . . . , n} be minimum such that v has a neighbour in
Xj , and let k ∈ {1, . . . , n} be maximum such that v has a neighbour in Xk. Since v is not a simplicial
vertex, there exist xj ∈ Xj ∩N(v) and xk ∈ Xk ∩N(v) non-adjacent, and therefore j ≤ i ≤ k, j 6= k,
and vj is not strongly adjacent to vk in F . Moreover, either i = j or vi is adjacent to vj in F , and
either i = k or vi is adjacent to vk in F .

(5) Either

• j = 1, v is complete to X1 \ {v}, and xj ∈ K and K ∩Xk = ∅ for every K ∈ T , or

• k = n, v is complete to Xn \ {v}, and xk ∈ K and K ∩Xj = ∅ for every K ∈ T .

Let K ∈ T . Since v ∈ K, and xj and xk are both adjacent to v and non-adjacent to each other,
it follows that at least one of xj , xk is in K. From the symmetry we may assume xj ∈ K. Since K
is a clique, xk 6∈ K.
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Since K \ {v} is a simplicial clique of G, xj is adjacent to v, and v is anticomplete to
⋃j−1

p=1Xp,
it follows that xj is anticomplete to

⋃j−1
p=1Xp. But by the definition of a proper thickening, xj has

a neighbour in every set Xu such that u is adjacent to vj , and so it follows from the fact that F
is connected that

⋃j−1
p=1Xp = ∅ and so j = 1. Since xj is complete to X1 \ {xj} and K \ {v} is a

simplicial clique, it follows that every vertex of X1 is either adjacent to v or in K, and therefore v is
complete to X1 \ {v}.

Now suppose there exists L ∈ T (possibly L = K) such that L∩Xk 6= ∅. Let x′k ∈ L∩Xk. Since
v1 is not strongly adjacent to vk in F , it follows that some x′1 ∈ X1 is non-adjacent to x′k. By the
argument above applied to L, x′k and x′1, we deduce that k = n and v is complete to Xk. Thus v is
complete to V (G) \ {v}, contrary to the fact that Gc is connected. This proves (5).

From the symmetry we may assume that the first outcome of (5) holds. Let K ∈ T . Then xj ∈ K,
K ∩ Xk = ∅ (and, in particular, k > i), j = 1, and v is complete to X1 \ {v}. It follows from
the definition of a proper thickening that either i = 1 or v1 is strongly adjacent to vi in F . Conse-
quently,

⋃i
p=1Xp is a clique. Since v is anticomplete to

⋃n
p=k+1Xp, it follows that K∩(

⋃n
p=k Xp) = ∅.

(6)
⋃i−1

p=1Xp ⊆ K.

In this proof we work with both F and G, and whenever we discuss adjacency, we will explic-
itly mention which graph or trigraph is in question. Suppose there exists u ∈

⋃i−1
p=1Xp \K. Then

i > 1. Since K is a simplicial clique in G, it follows that u is adjacent to xk in G. Let t ∈ {1, . . . , i−1}
be such that u ∈ Xt. Then vt is adjacent to vk in F . It follows from the definition of a linear interval
trigraph that vi is strongly adjacent to vk in F , and therefore v is complete to Xk in G. Since v is
anticomplete to

⋃n
p=k+1Xp in G, it follows that vi is strongly anticomplete to {vk+1, . . . , vn} in F ,

and therefore vt is strongly anticomplete to {vk+1, . . . , vn} in F . This implies that u is anticomplete
to

⋃n
p=k+1Xp in G. The fact that {u, v} is not a homogeneous set in G implies that u is not complete

to Xk in G. But now, since v is adjacent to u and complete to Xk in G, and K is a simplicial clique
of G, we deduce that K ∩Xk 6= ∅, a contradiction. This proves (6).

(7) K ∩ (
⋃k−1

p=i+1Xp) = ∅.

Suppose there exists u ∈ K ∩ (
⋃k−1

p=i+1)Xp. Since K \ {v} is a simplicial clique of G, it follows
that u is anticomplete to

⋃n
p=k+1Xp. Since K is a clique, u is complete to X1, and therefore u

is complete to
⋃i

p=1Xi. Since v has a neighbour in Xk, it follows from the definition of a proper
thickening that vi is adjacent to vk in F , and therefore

⋃k−1
p=i Xp is a clique. Let t ∈ {1, . . . , n} be

such that u ∈ Xt. Since i < t < k we deduce that vt is strongly adjacent to vk, and so u is complete
to Xk. Now since {u, v} is not a homogeneous set in G, it follows that v is not complete to Xk, and
so some vertex w ∈ Xk is adjacent to u and non-adjacent to v. But K \ {v} is a simplicial clique in
G, and v, w ∈ N(u) \ (K \ {v}) are non-adjacent, a contradiction. This proves (7).

Let X ′k = N(v) ∩ Xk. Let Y be the set of vertices in Xi \ {v} that are complete to X ′k, and let
Z = Xi \ (Y ∪ {v}).

(8) Y ∩K = ∅.
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Suppose there exists u ∈ Y ∩ K. It follows from the maximality of k that vi is strongly anti-
complete to {vk+1, . . . , vt}, and therefore u is strongly anticomplete to

⋃n
p=k+1Xp. Since

⋃i
p=1Xp

and
⋃k−1

p=i Xp are cliques, and since {u, v} is not a homogeneous set in G, it follows that some vertex
w of Xk is adjacent to u and not to v. But then v, w ∈ N(u) \ (K \ {v}), contrary to the fact that
K \ {v} is a simplicial clique in G. This proves (8).

(9) Z ⊆ K.

Suppose there exists u ∈ Z \ K. Let w ∈ X ′k be a non-neighbour of u. Then u,w ∈ N(v) \ K,
contrary to the fact that K is a simplicial clique in G. This proves (9).

Now it follows from (6)—(9) that K = (
⋃i−1

p=1Xp)∪ {v} ∪Z for every K ∈ T , and therefore |T | = 1,
as required. This proves 1.1.

4 Growing prime graphs

In this section we prove a lemma that we hope is of independent interest. It is similar in spirit to
Seymour’s splitter theorem for 3-connected graphs [5]; the idea is that a prime graph (that is not
obstinate) can be grown by adding one vertex at a time, starting from any of its prime induced
subgraphs, and in such a way that all the graphs that are constructed along the way are prime.
More precisely, we prove the following (this is a restatement of 1.2):

4.1 Let G be a graph, and let H be a proper induced subgraph of G. Assume that both G and H are
prime, and that G is not obstinate. Then there exists an induced subgraph H ′ of G, isomorphic to
H, and a vertex v ∈ V (G) \ V (H ′), such that G|(V (H ′) ∪ {v}) is prime.

Here is the outline of the proof. First in 4.2 we deal with the easy case when H is not “controlling”
(the definition is below). Our next step is to show that H can be grown to a prime graph by adding
two vertices (this is theorem 4.3, and we do not need to assume that G is not obstinate). Then we
use this result to prove 4.1 in the case when H is not obstinate or H is a maximal obstinate induced
subgraph of G (this is done in 4.5). Finally, we bridge the remaining gap using 4.6.

Next we need some definitions. Let H be an induced subgraph of G. Let us say that v ∈
V (G) \ V (H) is an H-clone of x ∈ V (H) if for every y ∈ V (H) \ {x}, v is adjacent to y if and
only if xy ∈ E(H). For x ∈ V (H), let V H

x be the set of H-clones of x. Let AH be the set of
vertices of V (G) \V (H) that are complete to V (H), and BH the set of vertices of V (G) \V (H) that
are anticomplete to V (H). We observe that if H is prime then the sets AH , BH and V H

x (where
x ∈ V (H)) are all pairwise disjoint. We say that H is controlling (in G) if every vertex of V (G)\V (H)
is either an H-clone, or belongs to AH ∪BH . We start with the following.

4.2 Let G be a graph, and let H be a proper induced subgraph of G. Assume that H is prime and
not controlling. Then there exists a vertex v ∈ V (G) \ V (H), such that G|(V (H) ∪ {v}) is prime.

Proof. Let v ∈ V (G) \ (V (H) ∪ AH ∪ BH) be a vertex that is not an H-clone. Suppose that
F = G|(V (H) ∪ {v}) is not prime. Then there is a non-trivial homogeneous set X in F . Since X is

15



not a non-trivial homogeneous set in H, and v 6∈ AH ∪ BH , it follows that v ∈ X. Since X \ {v} is
not a non-trivial homogeneous set in H, it follows that |X \ {v}| = 1. Let x be the unique vertex of
X \ {v}. Now v is an H-clone of x, a contradiction. This proves that F is prime and completes the
proof of 4.2.

LetH be an induced subgraph ofG, and let u, v ∈ V (G)\V (H). We call the pair uv H-conforming
if either

• u ∈ V H
x and v ∈ V H

y for distinct x, y ∈ V (H), and uv ∈ E(G) if and only if xy ∈ E(H), or

• u ∈ AH and v ∈ V H
x for some x ∈ V (H), and u is adjacent to v, or

• u ∈ BH and v ∈ V H
x for some x ∈ V (H), and u is non-adjacent to v.

We start with a lemma.

4.3 Let G be a graph, and let H be a proper induced subgraph of G. Assume that both G and H are
prime, and that H is controlling. Then there exist u, v ∈ V (G) \ V (H) such that G|(V (H) ∪ {u, v})
is prime and the pair uv is not H-conforming.

Please note, that while in 4.1 we may need to move to an isomorphic copy of H in G (that we
denoted by H ′), 4.3 states that we can add two vertices to a fixed subgraph H of G, keeping it prime.

Proof of 4.3. Let k = |V (H)| and let the vertices of H be v1, . . . , vk. For i ∈ {1, . . . , k}, let
Vi = V H

vi
, A = AH and B = BH . Since H is prime, the sets V1, . . . , Vk, A

H , BH are all pairwise
disjoint, and since H is controlling, V (G) = V (H) ∪

⋃k
i=1 Vi ∪ AH ∪ BH . We observe that since H

is prime, every vertex of H has both a neighbour and a non-neighbour in H, and therefore every
vertex of

⋃k
i=1 Vi is mixed on V (H).

Assume first that A ∪ B 6= ∅. If A is complete to V (H) ∪
⋃k

i=1 Vi and B is anticomplete to
V (H) ∪

⋃k
i=1 Vi, then V (H) ∪

⋃k
i=1 Vi is an non-trivial homogeneous set in G, contrary to the fact

that G is prime. Therefore (by passing to the complement and renumbering the vertices of H if
necessary) we may assume that there exist u ∈ V1 and v ∈ B such that uv ∈ E(G). We claim
that G|(V (H) ∪ {u, v}) is prime. Suppose not, and let X be a non-trivial homogeneous set in
G|(V (H)∪{u, v}). If X ⊆ V (H), then, since X is not a non-trivial homogeneous set in H, it follows
that X = V (H), contrary to the fact that u is mixed on V (H). This proves that at least one of
u, v ∈ X. Since v is adjacent to u and anticomplete to V (H), it follows that if u ∈ X then v ∈ X.
Thus we may assume that v ∈ X. Moreover, since X ∩ V (H) is not a non-trivial homogeneous set
in H, it follows that either |X ∩ V (H)| ≤ 1 or V (H) ⊆ X. If X ∩ V (H) = ∅, then X = {u, v},
which is a contradiction since every neighbour of v1 in H is adjacent to u and non-adjacent to v;
and if V (H) ⊆ X, then X = V (H) ∪ {v}, which is a contradiction since u is mixed on V (H). Thus
|X ∩ V (H)| = 1; let x be the unique vertex of X ∩ V (H). But now, since v ∈ X, it follows that
every vertex of V (H) \ {x} is anticomplete to X, and in particular x has no neighbour in H, a
contradiction. This proves that G|(V (H) ∪ {u, v}) is prime, and the theorem holds.

Therefore we may assume that A ∪ B = ∅. If for every i, j ∈ {1, . . . , k} and every u ∈ Vi

and v ∈ Vj the pair {u, v} is H-conforming, then each Vi ∪ {vi} is a homogeneous set in G; since
V (H) 6= V (G), we deduce that at least one of these homogeneous sets is non-trivial, contrary to
the fact that G is prime. This implies that there is at least one pair that is not H-conforming. By
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passing to the complement and renumbering the vertices of H if necessary, we may assume that
v1v2 ∈ E(H), and there exist u1 ∈ V1 and u2 ∈ V2 such that u1 is non-adjacent to u2. We claim
that G|(V (H) ∪ {u1, u2}) is prime. Suppose not, and let X be a non-trivial homogeneous set in
G|(V (H) ∪ {u1, u2}). Let

X ′ =


X if u1, u2 6∈ X

(X \ {u1}) ∪ {v1} if u1 ∈ X and u2 6∈ X
(X \ {u2}) ∪ {v2} if u2 ∈ X and u1 6∈ X

(X \ {u1, u2}) ∪ {v1, v2} if u1, u2 ∈ X

Then X ′ is a homogeneous set in H, and since X ′ is not a non-trivial homogeneous set in H, it
follows that either |X ′| ≤ 1 or X ′ = V (H). Since u1u2 is not a conforming pair, it follows that
{u1, v1} and {u2, v2} are not homogeneous sets of G|(V (H) ∪ {u1, u2}), and therefore |X ′| > 1.
Consequently, X ′ = V (H). This implies that V (H) \ {v1, v2} ⊆ X, and that |X ∩ {u1, v1}| ≥ 1 and
|X ∩ {u2, v2}| ≥ 1. We observe that V (H) 6⊆ X, since both u1 and u2 are mixed on V (H), and so
we may assume that v1 6∈ X and u1 ∈ X. But v1 is complete to {u2, v2}, and therefore, since X is a
homogeneous set, v1 is complete to V (H) \ {v1, v2}. Consequently, u2 has no non-neighbour in H, a
contradiction. This proves that G|(V (H) ∪ {u1, u2}) is prime, and completes the proof of 4.3.

Let P,Q be two graphs. Let us call a pair of disjoint sets (A,B) in V (Q) useful (relative to P,Q)
if

• |A|, |B| ≥ 2,

• A is a homogeneous set in Q \B and B is a homogeneous set in Q \A,

• each of A,B is either a clique or a stable set,

• there exists p such that each of A,B has size p or p − 1, the vertices of A can be numbered
a1, . . . , ap or a1, . . . , ap−1, the vertices of B can be numbered b1, . . . , bp or b2, . . . , bp, and ai is
adjacent to bj if and only if j ≤ i, and

• Q1 = Q \ {a1, b2} is isomorphic to P .

We call p the order of the pair (A,B). We observe that p is determined by the pair (A,B). It is
not difficult to check that

• If (A,B) is a useful pair of order p relative to P,Q, then (B,A) is a useful pair of order p
relative to P,Q,

• If (A,B) is a useful pair of order p relative to P,Q, then (A,B) is a useful pair of order
|A|+ |B|+ 1− p relative to P c, Qc.

• Qi = Q \ {ai, bi+1} is isomorphic to P for all i ∈ {1, . . . , p− 1}, and

• – Qi = Q \ {ai, bi} is isomorphic to P for all i ∈ {2, . . . , p− 1} , and

– if |A| = p then Qp = Q \ {ap, bp} is isomorphic to P , and

– if |B| = p then Q1 = Q \ {a1, b1} is isomorphic to P .
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We prove the following easy technical lemma:

4.4 Let P,Q be graphs, and let (A,B) be a useful pair relative to P,Q. Then, with notation as in
the definition of a useful pair,

• – ai ∈ V Qi
ai+1 (that is ai is a Qi-clone of ai+1) for i ∈ {1, . . . , p− 2}, and

– if |A| = p, then ap−1 ∈ V
Qp−1
ap , and

– bi+1 ∈ V Qi

bi
(that is bi+1 is a Qi-clone of bi) for i ∈ {2, . . . , p− 1}, and

– if |B| = p then b2 ∈ V Q1

b1
.

• – ai ∈ V Qi

ai−1 and bi ∈ V Qi

bi+1
for all i ∈ {2, . . . , p− 1}, and

– if |A| = p then ap ∈ V Qp

ap−1, and

– if |B| = p then b1 ∈ V Q1

b2
.

Proof. 4.4 follows from the fact that if ai and ai+1 both exist, then bi+1 is the only vertex of Q
that is mixed on {ai, ai+1}, and a similar statement with the roles of A and B exchanged.

Our next step is the following:

4.5 Let G be a graph, and let H be a proper induced subgraph of G. Assume that both G and H are
prime, and that no obstinate induced subgraph of G has a proper induced subgraph isomorphic to H.
Then there exists an induced subgraph H ′ of G, isomorphic to H, and a vertex v ∈ V (G) \ V (H ′),
such that G|(V (H ′) ∪ {v}) is prime.

Proof. By 4.2, we may assume that every induced subgraph of G isomorphic to H is controlling.
Let u, v ∈ V (G) \ V (H) be as in 4.3. Let k = |V (H)| and let the vertices of H be v1, . . . , vk. For
i ∈ {1, . . . , k}, let Vi = V H

vi
, A = AH and B = BH . We observe that both the hypotheses and the

conclusion of 4.5 are invariant under taking complements, and we will make use of the symmetry
between G and Gc in the course of the proof.

(1) We may assume that there exists an induced subgraph H ′ of G, isomorphic to H, and a pair
u′v′ such that u′ ∈ V H′

x and v′ ∈ V H′
y for some x, y ∈ V (H ′), and u′v′ is not H ′-conforming.

By renumbering the vertices of H and passing to the complement if necessary, and since the pair
uv is not H-conforming, we may assume that u ∈ V1, v ∈ B and u is adjacent to v. Then
H ′ = G|((V (H) \ {v1}) ∪ {u}) is isomorphic to H. Let F = G|(V (H ′) ∪ {v}). Since H ′ is con-
trolling (because every induced subgraph of G isomorphic to H is) and v is mixed on V (H ′), we may
assume (renumbering {v2, . . . , vk} if necessary) that v ∈ V H′

v2
and v1 ∈ V H′

u . Now since vv1 6∈ E(G)
and uv2 ∈ E(H ′), it follows that the pair vv1 is not H ′-conforming, as required. This proves (1).

Let H ′, u′, v′ be as in (1). Since in 4.5 we are allowed to pass to an isomorphic copy of H, we
may assume that H ′ = H, u′ = u and v′ = v. By renumbering the vertices of H if necessary, we
may assume that u ∈ V1, v ∈ V2. Let F = G|(V (H) ∪ {u, v}). We remark that 4.3 implies that F is
prime.
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We observe that if v1v2 ∈ E(H) then ({u, v1}, {v2, v}) is a useful pair of order two relative to
H,F , and if v1v2 6∈ E(H) then ({u, v1}, {v2, v}) is a useful pair of order three relative to H,F . Let
(A,B) be a useful pair relative to H,F such that {u, v1} ⊆ A, {v2, v} ⊆ B and with |A ∪ B| max-
imum. By passing to the complement and exchanging A and B if necessary, we may assume that
(A,B) has order |A|, and let p = |A|. Let the vertices of A and B be numbered as in the definition
of a useful pair, and let Fi and F i also be as in that definition. Then Fp−1 is isomorphic to H, and
ap−1 ∈ V

Fp−1
ap and bp ∈ V

Fp−1

bp−1
; and F p is isomorphic to H and ap ∈ V F p

ap−1
. Let K = F \ ap. Let X be

the set of vertices of F \ (A∪B) that are complete to A and anticomplete to B, Y the set of vertices
of F \ (A ∪ B) that are complete to B and anticomplete to A, Z the set of vertices of F \ (A ∪ B)
that are complete to A∪B and W the set of vertices of F \ (A∪B) that are anticomplete to A∪B.
Then V (F ) = A ∪B ∪X ∪ Y ∪ Z ∪W .

(2) Either

• there exist x ∈ V (K)\{bp} such that ap is non-adjacent to x, and NK(x)\{bp} = NK(bp)\{x},
or

• NF (bp) = {ap}.

Since K \bp = F p, and is therefore isomorphic to H, it follows that K \bp is controlling, and therefore
either

• bp is complete to V (K) \ {bp}, or

• bp is anticomplete to V (K) \ {bp}, or

• bp is a K \ bp-clone of some vertex x ∈ V (K) \ {bp}.

Since a1 is non-adjacent to bp, it follows that bp is not complete to V (K) \ {bp}. Since F is prime,
and since ap is adjacent to bp, we deduce that either

• bp is anticomplete to V (K)\{bp} (and therefore NF (bp) = {ap}, and the second outcome of (2)
holds), or

• bp is a K \ bp-clone of some vertex x ∈ V (K) \ {bp}, and ap is non-adjacent to x, and the first
outcome of (2) holds.

This proves (2).

Suppose first that the first outcome of (2) holds, and let x ∈ V (K) \ {bp} such that ap is non-
adjacent to x, and NK(x) \ {bp} = NK(bp) \ {x}. Since x is non-adjacent to ap, it follows that
x 6∈ {b1, . . . , bp−1} ∪ X ∪ Z, and therefore x ∈ {a1, . . . , ap−1} ∪ Y ∪ W . Assume first that x ∈
{a1, . . . , ap−1}. Then, since NK(x) \ {bp} = NK(bp) \ {x}, it follows that X ∪Y = ∅, and since A∪B
is not a non-trivial homogeneous set in F , it follows that Z ∪W = ∅. Now if A is a clique then ap is
complete to V (F ) \ {ap}, contrary to the fact that F is prime, and therefore A is a stable set. If B is
a clique, then either |B| = p and b1 is complete to V (F ) \ {b1}, or |B| = p− 1 and a1 is anticomplete
to V (G) \ {a1}, in both cases contrary to the fact that F is prime. Consequently, both A and B are
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stable sets. But now F is obstinate, and F p is a proper induced subgraph of F , again a contradiction
since F p is isomorphic to H. This proves that x 6∈ {a1, . . . , ap−1}, and so x ∈ Y ∪W .

Let B′ = B ∪ {x}. We claim that (A,B′) is a useful pair relative to H,F . The first condition
is obvious. Since NK(x) \ {bp} = NK(bp) \ {x}, it follows that B′ is a homogeneous set in F \ A.
It also follows that x ∈ Y if and only if B is a clique (and x ∈ W if and only if B is a stable set),
and therefore B ∪ {x} is either a clique or a stable set, thus the third condition holds. Let bp+1 = x;
since x is anticomplete to A, the fourth condition is satisfied. The fifth condition is satisfied because
(A,B) is a useful pair relative to H,F . This proves that the pair (A,B′) is useful, contrary to the
maximality of A∪B. Thus our assumption that the first outcome of (2) holds lead to a contradiction.

Therefore the second outcome of (2) holds, namely NF (bp) = {ap}. This implies that Y ∪Z = ∅,
and B is a stable set. Suppose that |B| = p. It follows from the symmetry that X = ∅ and A is a
stable set, and since A ∪ B is not a non-trivial homogeneous set in F , we deduce that W = ∅. But
now F is isomorphic to Op, which is a contradiction since F p is a proper induced subgraph of F ,
and F p is isomorphic to H. This proves that |B| = p − 1, and therefore a1 is anticomplete to B.
But now, passing to the complement (with a1 playing the role of ap, b2 playing the role of bp, and
considering the subgraph K ′ = F c\{a1} instead of K), we deduce that B is a clique, a contradiction.
This proves 4.5.

Since every prime induced subgraph of Oq is isomorphic to Op for some p ≤ q (this is easy to
verify, and we leave the details to the reader), 4.5 implies that 4.1 is true in the case when H is not
an obstinate graph. The last step in the proof of 4.1 is to replace the relevant hypothesis of 4.5 by
the assumption that G is not an obstinate graph. To do that, we start with a lemma.

4.6 Let K be a prime graph, and let v ∈ V (K) such that K \v is obstinate. Then for every obstinate
induced subgraph H of K \ v, there exists a prime induced subgraph J of K, and a vertex v′ ∈ V (J)
such that J \ v′ is isomorphic to H.

Proof. By 4.2 we may assume that every induced subgraph of K isomorphic to H is controlling. Let
F = K \ v. If F = H, the result is trivial, so we may assume that H is a proper induced subgraph of
F . We may also assume, by passing to the complement if necessary, that H is isomorphic to Op and
F is isomorphic to Oq, where p and q are integers and p < q. Then p ≥ 2 and q ≥ 3. If |q − p| > 1,
the result follows inductively (by induction on |q − p|), so we may assume q = p+ 1.

Let the vertices of F be numbered a1, . . . , ap+1 and b1, . . . , bp+1 as in the definition of Op+1. For
i ∈ {1, . . . , p + 1} let Hi = F \ {ai, bi}. Then Hi is isomorphic to H. Let Ki = K|(V (Hi) ∪ {v}).
Since Hi is controlling, it follows that for every i, either

• v is complete to V (Hi), or

• v is anticomplete to V (Hi), or

• v is an Hi-clone of some vertex of Hi.

We claim that the last bullet holds either for i = 1 or for i = p + 1. Suppose not. Then v is
either complete or anticomplete to each of V (H1), V (Hp+1), and since V (H1) ∩ V (Hp+1) 6= ∅ and
V (H1) ∪ V (Hp+1) = V (F ), it follows that v is either complete or anticomplete to V (F ), contrary to
the fact that K is prime. This proves the claim. From the symmetry we may assume that v is an
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H1-clone of ai for some i ∈ {2, . . . , p+ 1}. Then v is anticomplete to {a2, . . . , ap+1} \ {ai}, complete
to {b2 . . . , bi}, and anticomplete to {bi+1, . . . , bp+1}.

Suppose that v is complete or anticomplete to V (Hp+1). Assume first that p = i = 2. Then
v is adjacent to b2, and therefore v is complete to V (Hp+1). But now the theorem holds setting
J = K|{a1, b1, a3, b2, v} and v′ = v. Thus we may assume that either p > 2, or p = 2 and i 6= 2. Now
for some j ∈ {1, . . . , p+ 1} \ {1, i, p+ 1}, v is non-adjacent to aj , and has a neighbour in {b1, . . . , bp};
therefore v is not complete and not anticomplete to V (Hp+1), a contradiction. Thus we may assume
that v is not complete and not anticomplete to V (Hp+1). Consequently, v is an Hp+1-clone of some
vertex x of Hp+1.

Suppose that x ∈ {b1, . . . , bp}. Since v is complete to {b2, . . . , bi} and B is a stable set, it
follows that i = 2 and x = b2. If p = 2, then NK(v) = {a2, b2} and the theorem holds setting
J = K|{a2, a3, b1, b2, v} and v′ = b2. Thus we may assume that p > 2. Now ap is adjacent to x and
non-adjacent to v, contrary to the fact that v is an Hp+1-clone of x. This proves that x ∈ {a1, . . . , ap}.
In particular, v is adjacent to b1 and non-adjacent to a1. But now {ai, v} is a homogeneous set in
K, a contradiction. This proves 4.6.

We are now ready to prove 4.1.
Proof of 4.1. Let G and H be as in 4.1. If no obstinate induced subgraph of G has a proper

induced subgraph isomorphic to H, then the result follows from 4.5. So we may assume that some
obstinate induced subgraph F of G has a proper induced subgraph isomorphic to H. Choose F with
|V (F )| maximum. Then F 6= G, and no obstinate induced subgraph of G has a proper induced
subgraph isomorphic to F . By 4.5, there exists v ∈ V (G) \ V (F ) such that K = G|(V (F ) ∪ {v})
is prime. But now, since H is isomorphic to an induced subgraph of F , 4.6 implies that there is a
prime induced subgraph J of K, and a vertex v′ ∈ V (J), such that H ′ = J \ v′ is isomorphic to H.
Now G|(V (H ′) ∪ {v′}) is prime, as required. This proves 4.1.

5 Finding simplicial cliques

In this section we use 1.1 and 1.3 to give an algorithm that finds all simplicial cliques of a prime
claw-free graph. First we show the following:

5.1 There is an algorithm with the following specifications:

• Input: A graph G.

• Output: Either:

1. a true determination that G is isomorphic to Ok for some k ≥ 2 and an ordering
a1, . . . , ak, b1, . . . , bk of the vertices of G as in the definition of Ok, or

2. a true determination that Gc is isomorphic to Ok for some k ≥ 3 and an ordering
a1, . . . , ak, b1, . . . , bk of the vertices of Gc as in the definition of Ok, or

3. a true determination that G is not obstinate.

• Running time: O(|V (G)|2).
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Proof. If |V (G)| is odd, output “G is not obstinate” and stop. Let |V (G)| = 2k, and calculate the
degree sequence of G. If the degree sequence of G is not

1, 1, 2, 2, . . . , k, k

or
k − 1, k − 1, k, k, . . . , 2k − 2, 2k − 2,

output “G is not obstinate” and stop. If the degree sequence of G is

1, 1, 2, 2, . . . , k, k,

let H = G, and if k ≥ 3 and the degree sequence of G is

k − 1, k − 1, k, k, . . . , 2k − 2, 2k − 2

let H = Gc. Let ak and b1 be the two vertices of H of degree k. Let A = NH(b1) and B = NH(ak),
let DA = {degH(v)}v∈A and DB = {degH(v)}v∈B. If one of A,B is not stable or A ∩B 6= ∅, output
“G is not obstinate” and stop. If DA 6= {1, . . . , k} or DB 6= {1, . . . , k}, output “G is not obstinate”
and stop. For i ∈ {1, . . . , k}, let ai be the vertex of A with degree i, and let bi be the vertex of B
with degree k + 1− i. Now check whether ai is adjacent to bj if and only if j ≤ i. If not, output “G
is not obstinate” and stop. If G = H, output “G is isomorphic to Ok”; if Gc = H, output “Gc is
isomorphic to Ok”; in both cases output

a1, . . . , ak, b1, . . . , bk.

It is easy to check that the complexity of this algorithm in O(|V (G)|2), and that the algorithm
works correctly. This proves 5.1.

5.2 There is an algorithm with the following specifications:

• Input: A prime claw-free graph G.

• Output: A list L of all simplicial cliques of G.

• Running time: O(|V (G)|4).

Proof. First, run 5.1 on G. This takes time O(|V (G)|2). If G is isomorphic to O2, then output

L = {{a1}, {a1, b1}, {a2, b1}, {a2, b2}, {b2}}

and stop. This takes constant time. If Gc is isomorphic to Ok for k ≥ 3, let Ai = {ai, . . . , ak},
Bi = {b1, . . . , bi}, output

L = {A1, . . . , Ak, B1, . . . , Bk}

and stop. This takes time O(|V (G)|2). Now, for every v ∈ V (G), check if G\v is prime. This can be
done in time O(|V (G)|2) for each v by [4]. Let v0 be such that G′ = G\ v0 is prime. Recursively, run
the algorithm on G′, and let L′ be the list of all simplicial cliques in G′. Now, for every K ∈ L′, check
if K is simplicial in G, and add K to L if the answer is yes. This can be done in time O(|V (G)|2) for
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each K, and so, since by 1.1 |L′| ≤ |V (G)|, the total running time of this step is O(|V (G)|3). Next,
check if v0 is a simplicial vertex, and add {v0} to L if the answer is yes. This takes time O(|V (G)|2).
Finally, for every K ∈ L′, check if K ∪ {v0} is a simplicial clique in G, and add K ∪ {v0} to L if the
answer is yes. This can be done in time O(|V (G)|2) for each K, and again, since |L′| ≤ |V (G)|, the
total running time of this step is O(|V (G)|3). This completes the algorithm.

It is clear the the running time of this algorithm is O(|V (G)|4), so it remains to prove correctness.
If G is obstinate, the correctness of the algorithm follows from 3.2, and so we may assume that G is
not obstinate. Since G is prime, it follows that G and Gc are both connected, and therefore there is
an induced subgraph H of G isomorphic to the three-edge path. Then, by 1.3, applied to H and G,
there exists v0 ∈ V (G) such that G′ = G \ v0 is prime (taking v0 to be the vertex v|V (G)|−4 in the
statement of 1.3), and so the algorithm will find the graph G′ and the list L′. We observe that if
K 6= {v} is a simplicial clique in G and v ∈ K, then K \ {v} is a simplicial clique in G′; and if K is
a simplicial clique in G and v 6∈ K, then K is simplicial in G′. From this observation, it follows that
L is indeed the list of all simplicial cliques of G. This proves 5.2.

6 Simplicial cliques in general claw-free graphs

In this section we consider the problem of finding the simplicial cliques in a general claw-free graph.
We cannot necessarily list them all in polynomial time, because there may be exponentially many;
for instance, if G is an n-vertex clique, then it has 2n − 1 simplicial cliques. On the other hand, if
G is a clique then it is easy to say what its simplicial cliques are – any subset except the empty set.
We might hope for a similar description in general, and indeed it exists, as we shall see. We omit
the proofs, because they are all easy.

Thus, let G be a claw-free graph, with |V (G)| > 1. Suppose first that both G and Gc are
connected. Then there is a prime graph H, such that G is a thickening of H; let V (H) = {v1, . . . , vk},
and let Vvi = Vi be as in the definition of thickening. ThenH is prime, and therefore we can enumerate
all simplicial cliques of H in polynomial time. For each simplicial clique X of H, and for 1 ≤ i ≤ k
with vi ∈ X, choose Yi ⊆ Vi, where

• if vi is adjacent to every vertex in V (H) \ X with a neighbour in X, then Yi is an arbitrary
nonempty subset of Vi (there is at most one such vi in X because H is prime and therefore no
two members of X are twins)

• otherwise, Yi = Vi.

Let Y be the union of the sets Yi (vi ∈ X); then Y is a simplicial clique of G, and every simplicial
clique of G arises in this way.

Now suppose that Gc is not connected, and let G1, . . . , Gk be the connected components of Gc.
Certainly if (X,V (G) \X) is a bipartition of Gc (that is, a partition into two stable sets) then X is
a simplicial clique of G; we need to describe the other simplicial cliques. We may assume that for
some t ∈ {1, . . . , k}, each of the components G1, . . . , Gt has at least two vertices, and each of the
components Gt+1, . . . , Gk has exactly one vertex. Then every simplicial clique of G meets each of
G1, . . . , Gt. Moreover, if K is not contained in V (Gi), where i ∈ {1, . . . , t}, then V (Gi) \K is also
a clique of G. Thus if t ≥ 2 then all simplicial cliques of G arise from bipartitions of Gc, and so we
may assume that t = 1. But now the simplicial cliques of G are those that arise from bipartitions,
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together with the simplicial cliques of G|V (G1). (G|V (G1) might not be connected, but in that case
it has exactly two components, both cliques, so in all cases we can describe the simplicial cliques of
G|V (G1).)

Finally, if G is not connected, its simplicial cliques are just those of its components.
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