Reference Dependence Lecture 1

Mark Dean

Princeton University - Behavioral Economics

Plan for this Part of Course

- Bounded Rationality (4 lectures)
- Reference dependence (3 lectures)
- Neuroeconomics (2 lectures)
- Temptation and Self control (3 lectures)

Tentative Plan For Reference Dependence

- Introduction to reference dependence
- Prospect theory: the Standard Model
- Alternative models of reference dependence
 - Koszegi and Rabin
 - Masatlioglu and Ok
- Applications
 - Labor Supply
 - Contracting
 - Pricing

Tentative Plan For Reference Dependence

- What do we mean by reference dependent preferences?
- Examples of reference dependent behavior
- Prospect theory

Canoncial Description of Reference Dependence

• Standard model of choice

$$\mathcal{C}:\mathcal{X}\to X$$
,

C(A) is the choice from set A

• Reference dependent model of choice

 $C: \mathcal{X} \times X \to X$,

C(A, x) is the choice from set A when reference point is x

• Changing the reference point can change choices despite choice set not changing

What is a Reference Point?

Good question

- What you currently have? (status quo bias)
- What you get if you do nothing? (omission bias/inertia)
- What you expect to get? (personal equilibrium)
- What other people have? (other regarding preferences not in this section)
- Many models treat status quo as given
- Others (e.g. Koszegi and Rabin) attempt to jointly model choice and determination of reference point

What Causes Reference Dependence?

- It is possible (likely?) that there are many different causes of reference dependence
- Some of these might best be thought of as 'boundedly rational'
 - Transaction costs
 - Thinking cost
 - Optimal Information Processing [e.g. Woodford 2012]
- Others might be best thought of as preference based
 - Habit formation
 - Dislike of losses from ones current position
- In this section we will concentrate on models that have (at least no explicit) boundedly rational justification

Types of Reference Dependent Behavior

- Reflection Effect
- Higher risk aversion for mixed gambles
- Endowment Effect
- Status Quo Bias

Types of Reference Dependent Behavior

- Reflection Effect
- Higher risk aversion for mixed gambles
- Endowment Effect
- Status Quo Bias

Reflection Effect [KT 1986]

- Two groups of subjects
 - Each group offered a different choice
- Set up for each choice the same:

"An outbreak of a disease is expected to cause 600 deaths in the US. Two mutually exclusive programs are expected to yield the following results"

Reflection Effect [KT 1986]

Choice A

- 400 people will die
- With probability 1/3, 0 people will die, while with probability 2/3 600 people will die
- Choice B
 - 200 people will be saved
 - With probability 1/3, all 600 people will be saved, while with probability 2/3 none will be saved
- In choice A, 78% chose 2
- In choice B, 28% chose 2
- Interpretation: people are more risk averse in the gain domain than in the loss domain

Reflection Effect [KT 1979]

• Choice 1

		Option A	Option B
	Desc	50% 1000, 50% 0	100% 500
	Prop	16	84
• Choice 2			
		Option A	Option B

 Option A
 Option B

 Desc
 50% -1000, 50% 0
 100% -500

 Prop
 69
 31

- Note that this *could* be explained if people happen to be at a kink in their indifference curve
- But would be a knife-edge case (and doesn't explain previous example)

Types of Reference Dependent Behavior

- Reflection Effect
- Higher risk aversion for mixed gambles
- Endowment Effect
- Status Quo Bias

Thaler et al. [1997]

- Subjects asked to make portfolio allocation decision for 200 periods
 - Risky stocks
 - Safe Bonds
- Two treatments (of interest to us)
- Monthly
 - Stocks have returns distributed N(1,3.54)
 - Bonds have returns distributed N(0.25,1.77) truncated at 0
- Monthly inflated
 - Returns inflated so stocks never have negative return

Thaler et al. [1997]

		Percent allocation to bond fund			
Feedback group	n	Mean	SD	SE	
	A. Final decision				
Monthly	21	59.1	35.4	7.73	
Yearly	22	30.4 ^b	25.9	5.51	
Five-yearly	22	33.8 ^b	28.5	6.07	
Inflated monthly	21	27.6 ^b	23.2	5.07	
	B. During the last five years				
Monthly	840	55.0	31.8	1.10	
Yearly	110	30.7ª	27.0	2.57	
Five-yearly	22	28.6 ^a	25.1	5.36	
Inflated monthly	840	39.9	33.5	1.16	

TABLE I Allocations to Bond Fund

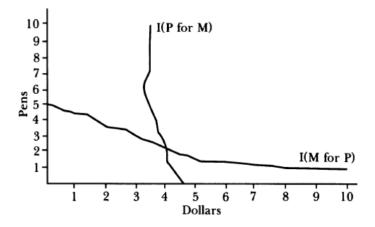
In each column, means with common superscripts do not differ significantly from one another (p > .01).

• Higher appetite for stocks in the 'Monthly Inflated' treatment

Types of Reference Dependent Behavior

- Reflection Effect
- Higher risk aversion for mixed gambles
- Endowment Effect
- Status Quo Bias

Kahnemann, Knetch and Thaler [1990]


- 44 subjects
- 22 Subjects given mugs
- The other 22 subjects given nothing
- Subjects who owned mugs asked to announce the price at which they would be prepared to sell mug
- Subjects who did not own mug announced price at which they are prepared to buy mug
- Experimenter figured out 'market price' at which supply of mugs equals demand
- Trade occurred at that market price

Kahnemann, Knetch and Thaler [1990]

- Prediction: As mugs are distributed randomly, we should expect half the mugs (11) to get traded
 - Consider the group of 'mug lovers' (i.e. those that have valuation above the median), of which there are 22
 - Half of these should have mugs, and half should not
 - The 11 mug haters that have mugs should trade with the 11 mug lovers that do not
- In 4 sessions, the number of trades was 4,1,2 and 2
- Median seller valued mug at \$5.25
- Median buyer valued mug at \$2.75
- Willingness to pay/willingness to accept gap

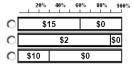
Kahnemann, Knetch and Thaler [1990]

Figure 1 Crossing indifference curves

Types of Reference Dependent Behavior

- Reflection Effect
- Higher risk aversion for mixed gambles
- Endowment Effect
- Status Quo Bias

- A preference for whatever is the current situation
- Already described one example [Madrian and Shea 2000]
- But this could be down to transaction costs
- Here is an example with no transaction costs


Experimental Design: Setting the Status Quo

- Subjects make decisions in two stages
 - First stage: choose between 'target' lottery and two 'dummy' lotteries
 - Second stage: can either
 - Keep lotteries selected in first stage
 - Switch to one of the alternatives presented

Stage 1 Choice

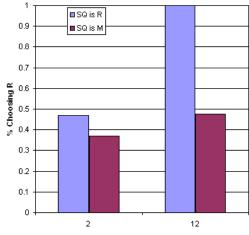
Please choose one of the lotteries below:

Continue

Stage 2 Choice

Keep current selection

You chose the following lottery:


 20%	40%	6	0% I	80	1%	100%	6
\$15				\$	0		

Click the 'Keep current selection' button to keep your selected lottery, or click on one of the lotteries below, then press 'Change to selected lottery' to switch:

Experiment 2: Expansion

Results - Set {M,R,+ 10 inferior}

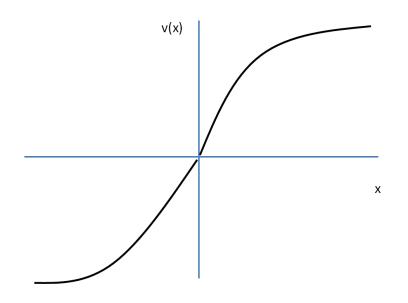
Choice set size

Prospect Theory: The Benchmark Model For Reference Dependent Choice

- Introduced by Kahneman and Tversky
 - For risky choice in 1979 [24,169 citations]
 - For riskless choice in 1991 [2,811 citations]
- Many many subsequent refinements, tests, applcations
- For an up to date guide: "Prospect Theory for Risk and Ambiguity" By Peter Wakker [2010]
 - 518pp (!)

Prospect Theory

- Three key elements
 - Decreasing sensitivity
 - Loss aversion
 - Probability weighting
- We will concentrate on the first two, as these concern reference dependence
- Probability weighting affects attitude towards risk


 Assign utility to monetary gamble p with a reference level of income w

$$U(p, w) = \sum_{x \in X} p(x)v(x - w)$$

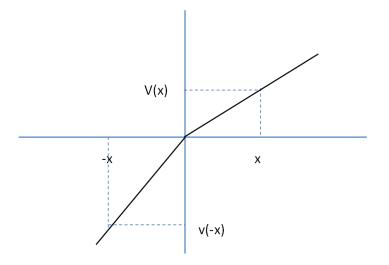
- v is a value function applied to the difference between a prize and the reference level of wealth
- Rather than assessing final wealth levels, assess gains and losses from \boldsymbol{w}
- In full version of prospect theory p(x) is replaced with some suitable probability weighting function

- Assumption: The marginal impact of gains and losses is decreasing as one moves away from the reference point
 - Provide a justification from psychophysics: this is true for light source, weights, etc,
- v'(x) increasing for x < 0, and so v''(x) > 0
- v'(x) decreasing for x > 0, so v''(x) > 0
- Implies that value function is concave in the gain domain and convex in the loss domain

Diminishing Sensitivity

Diminishing Sensitivity

- Automatically gives rise to the reflection effect
- But a very extreme assumption
 - People must be risk seeking in the loss domain
- Perhaps more realistic to insist that the risk aversion implied in the loss domain less than that implied in the gain domain


- One of the central assumptions in behavioral economics
- 'Losses loom larger than gains'
- "The aggrevation of losing \$5 is greater than equivalent joy of gaining \$5"
- Operationalized by assuming that, for any x

$$-v(-x) > v(x)$$

• One specific case

$$-v(-x) = \lambda v(x)$$

Loss Aversion

- What are the behavioral implication of this?
- None if we only see preferences for gambles consisting of all gains and gambles consisting of all losses
 - Expected utility numbers only definied up to a positive affine transformation
- Implication comes from comparing preferences for mixed gambles to those consisting of gains or losses
- In the case where $v(x) = \alpha x$ and $-v(-x) = \lambda v(x)$ risk neutral for gains an losses and risk averse for mixed gambles
- More generally, risk aversion for mixed gambles higher than one would expect having observed preferences in the gain and loss domain

Probability Weighting

- In the 1979 paper, KT introduced probability weighting
- Rather than

$$U(p,w) = \sum_{x \in X} p(x)v(x-w)$$

they use

$$U(p, w) = \sum_{x \in X} \pi(p(x))v(x - w)$$

- where π(.) is a probability weighting function that tends to overweight small probabilities
- Captures Allais-style violations of expected utility

- Problem: models with probability weighting functions violate stochastic dominance
- Solution, replace probability function with rank dependent expected utility a la Quiggin 1982
 - The weight applied to prize x received with probability p(x) dependeds on the rank of x in the support of p
- This is the difference between prospect theory and cumulative prospect theory [Tversky and Kahneman 1992]

- You should be feeling a little uncomfortable about a model that plucks functional forms out of the air
- Means we don't fully understand it's behavioral implications
 - e.g. the problem with 'non-cumulative' prospect theory
- You should want an axiomatic representation of the model
- Beyond the scope of this course, but see Wakker and Tversky [1993]

Estimating Prospect Theory Parameters

- 'Diminishing Sensitivity' can be estimated directly from choice data
- 'Loss aversion' is more tricky
 - Note that many papers measure loss aversion as λ such that

$$\frac{1}{2}x - \frac{1}{2}\frac{1}{\lambda}x \sim 0$$

- i.e. assuming linear utility
- Abdelloui et. al. [2007] provide a non-parametric method, but requires a lot of choices
- Alternatively, make some parametric assumptions
- For example, Abdelloui et. al. [2008]

Abdelloui et al. [2008]

- Let G_i be the certainty equivalence of a lottery that pays off $x_i \ge y_i \ge 0$ with probability 0.5 each
- Assume that v(x) in the gain domain is given by

$$v(x) = x^{\alpha \setminus \alpha}$$

• And p^+ is the probability assigned to x_i (the same for each gamble) then

$$G_i = \left(p^+ x_i^{\alpha} + (1-p^+) y_i^{\alpha}\right)^{\frac{1}{\alpha}}$$

- Estimate lpha and p^+ using gambles in the gain domain
- Similary estimate β and p^- for gambles in the loss domain
- From choices over mixed gambles G_i , L_i , estimate λ from

$$p^+G_i^{\alpha}+(1-p^+)\lambda L_i^{\beta}=0$$

Results

		Losses		
		Concave	Convex	Total
Gains	Concave	19	14	33
	Convex	9	5	14
	Total	28	19	47

Table 6 Estimation results

	Power estimate gains	Power estimate losses	Loss aversion coefficient
Median	0.86	1.06	2.61
IQR	0.66–1.08	0.92–1.49	1.51–5.51