
Mitchell Faulk
June 22, 2014
Equivalence of Categories for Affine Varieties

1 Introduction

Recall from last time that every affine algebraic variety V ⊂ An determines a
unique finitely generated, reduced C-algebra, namely, its coordinate ring C[V].
Let us first recall how this coordinate ring was defined.

For a polynomial f in the polynomial ring C[x1, . . . , xn], we view f as a
function from Cn into C in the natural way. We define an equivalence relation
on the ring C[x1, . . . , xn] by declaring two polynomials to be equivalent if they
restrict to the same function on the affine variety V . We then let C[V] denote
the set of equivalence classes of polynomials under this equivalence relation.
Because the zero element of the ring consists precisely of those polynomials
which vanish everywhere on V , it is not too hard to believe that we have an
isomorphism

C[V] ' C[x1, . . . , xn]/I(V)

where I(V) denotes the ideal determined by the variety V , namely, the set of
polynomials given by

I(V) = {f ∈ C[x1, . . . , xn] | f(x) = 0 for each x ∈ V }.

This means that we have a mapping

{affine varieties} −→ {finitely-generated, reduced C-algebras}
V 7−→ C[V].

One can hope that this mapping is a bijective mapping, meaning that every
finitely-generated, reduced C-algebra arises as the coordinate ring for a unique
(up to isomorphism) variety. The amazing fact of algebraic geometry is that
this is indeed the case. Furthermore, this correspondence extends beyond a set-
theoretic bijection to a category-theoretic equivalence. That is, one can show
that there is an equivalence of categories between the category of affine algebraic
varieties and the category of finitely-generated, reduced C-algebras.

Let us pause here to make a brief digression on categories so that we can later
state the extended category-theoretic version of the correspondence mentioned
in the previous paragraph.

2 Categories

The notion of a category makes precise the notion of a class of mathematical
objects together with maps between these objects. That is, to specify a category
C, we need to specify

1

(i) A collection of mathematical objects which make up the objects of C and

(ii) For each pair of objects x and y of C, a collection C(x, y) of structure-
preserving maps called morphisms between these objects.

Furthermore, we will demand some extra structure on this data, such as the
existence of identity morphisms and the existence of an associative composition
function for these morphisms. More precisely, we have the following definition.

Definition 2.1. A category C consists of the following data, equipped with the
following structure, subject to the following axioms.

Data:

(i) A collection Obj(C) of objects (written x, y, . . .).

(ii) For each pair of objects x, y in C, a collection C(x, y) of morphisms from
x into y (written f, g, . . .).

Structure:

(i) For each object x in C, a distinguish morphism 1x in C(x, x) called the
identity morphism for x.

(ii) For each triple of objects x, y, z in C, a function

◦ : C(y, z)× C(x, y) −→ C(x, z)

(g, f) 7−→ g ◦ f

called composition.

Axioms:

(i) The identity morphism is a unit for composition in the sense that for
each pair of objects x, y in C and each morphism f ∈ C(x, y), we have
1y ◦ f = f = f ◦ 1x.

(ii) Composition is associative in the sense that for each quadruple of objects
w, x, y, z in C and each triple of morphisms f ∈ C(w, x), g ∈ C(x, y),
h ∈ C(y, z), we have (h ◦ g) ◦ f = h ◦ (g ◦ f).

Example 2.2. The category Set of sets is formed in the following way.

(i) The objects of Set are sets.

(ii) For two sets S, S′, the collection of morphisms Set(S, S′) is just the col-
lection of set-theoretic functions S → S′.

(iii) For each set S, the identity morphisms is the identity function on S.

2

(iv) Composition of morphisms is given by composition of functions in the
usual way.

It is readily checked that the identity morphisms are identities for composition
and that composition is associative.

Example 2.3. The category Vectk of vector spaces over the field k is formed
in the following way.

(i) The objects of Vectk are vector spaces over the field k.

(ii) For two vector spaces V, V ′, the collection of morphisms Vectk(V, V ′) is
given by the collection of all linear maps V → V ′.

(iii) For each vector space V , the identity morphisms is the identity function
on V (which is a linear map).

(iv) Composition of morphisms is given by composition of functions in the
usual way.

Again, it is easy to see that the axioms for a category are satisfied.

Example 2.4. Many mathematical constructions give rise to categories, and
we list a few below. We leave it to the interested reader to expand and formulate
the precise notions of each of the following categories.

(i) The category Top of topological spaces and continuous maps.

(ii) The category Grp of groups and homomorphisms.

(iii) The category Ab of abelian groups and homomorphisms.

(iv) The category Rng of rings and ring homomorphisms.

(v) The category Alg of C-algebras and morphisms of C-algebras.

(vi) The category RedAlg of finitely-generated reduced C-algebras and mor-
phisms of C-algebras.

(vii) The category Aff of affine algebraic varieties and morphisms of affine al-
gebraic varieties.

Because a category is a type of mathematical object itself, one might ask:
Can we form a category Cat of categories? The answer to this question is
yes. However, it is not quite clear at this moment what we should take as the
structure preserving maps, or morphisms, in this category. The next definition
makes precise what we mean by a morphism in the category Cat of categories.

Definition 2.5. Let C and C′ be categories. A functor from C into C′ consists
of the following data subject to the following axioms.

Data:

3

(i) A function F : Obj(C)→ Obj(C′) from objects of C to objects of C′.

(ii) For each pair of objects x, y in C, a function F : C(x, y)→ C′(Fx, Fy).

Axioms:

(i) Composition is preserved in the sense that for each triple of objects x, y, z
in C and for each pair of morphisms f ∈ C(x, y), g ∈ C(y, z), we have

F (g ◦ f) = F (g) ◦′ F (f).

(ii) Identity morphisms are preserved in the sense that for each object x in C,
we have F (1x) = 1F (x).

We now offer a trivial example of a functor, namely, a “forgetful functor.”
Although this example is somewhat trivial, we don’t offer too many more ex-
amples now, since we will see more examples of functors later.

Example 2.6. Construct a functor Forget : Grp→ Set in the following manner.

(i) An object (G, ∗, e) of Grp is mapped to the underlying set Forget(G, ∗, e); =
G in Set.

(ii) If f : G→ H is a group homomorphism, we let Forget(f) : G→ H denote
the underlying set-theoretic function.

It is routine to check that this construction indeed defines a functor from Grp→
Set. This functor is called a forgetful functor, because it “forgets” the extra
information carried around in the category Grp. Analogously, one may define
forgetful functors Rng→ Set and Vect→ Set.

With an appropriate type of morphism between categories, we may form the
category Cat of categories and functors. The data of this category are categories
as objects and functors as morphisms between these objects. It is routine to
construct the additional structure (of composition and identities) and check that
the axioms of a category are satisfied.

3 Equivalence of categories

We are now almost poised to formulate the equivalence of algebra and geometry
that was mentioned in the first section. What we would like to say is the
following: The categories Aff of affine algebraic varieties and RedAlg of finitely-
generated reduced C-algebras are equivalent. But first we must ask ourselves:
What do we mean by equivalent? The first part of this section will be devoted
to answering this question, and upon answering this question, we will be able
to state the equivalence we have in mind.

So let us begin by asking our question again.

4

Question. What do we mean by an equivalence of categories?

A naive guess would be the following. It is surely not the case that the
categories Aff and RedAlg are equal “on the nose” because they are comprised
of completely different objects and morphisms. So the notion of equivalence
should not mean outright equality.

Nevertheless, in mathematics, we are often concerned with classifying objects
“up to isomorphism,” since the isomorphism class of an object is what really
distinguishes it from others in its category. For example, in the category of
vector spaces, we know that any two n-dimensional vector spaces are isomorphic,
which means that we may regard any two such spaces as having the same essence
in the category Vect. However, objects of different dimension should be regarded
as different in this category.

Perhaps an analogy is in order. The words “two” and “zwei” seem different
at first glance, each is composed of different letters and has a different length.
However, they both have the same essence, in the sense that they convey the
same concept: both mean the integer 1 + 1 in different languages (English
and German respectively). Because of this, we should regard the words as
being essentially the same, because they convey the same concept, although
in different languages. In a similar fashion, any two-dimensional vector space
conveys the same concept as any other two-dimensional vector space in Vect,
despite perhaps being expressed in a different mathematical language.

We can extend the notion of isomorphism class of an object very easily to
the category Cat. Indeed, morphisms in this category are just functors, so we
may define a functor F : C → D to be an isomorphism if there is a functor
G : D→ C such that G ◦ F = 1C and F ◦G = 1D.

Therefore, a guess would at an answer to our question would be to say that
an “equivalence of categories” is just an isomorphism of categories. However,
it turns out that this guess is wrong, and we need to be more lax in what we
mean by an equivalence of categories.

To see why the notion of isomorphism is perhaps too strong, let us consider
an example. Let Set denote the category of all finite sets. In this category,
the isomorphism class of a set S is completely determined by its cardinality |S|,
which is a natural number. This suggests that we should be able to construct an
equivalent category N of natural numbers, which contains all of the isomorphism
class data of the category Set. Indeed, we can let N denote the category whose
objects are sets of the form [n] = {1, . . . , n} for natural numbers n and whose
morphisms are just set-theoretic maps [n]→ [n′]. Then the category N contains
all the desired data of the category Set in the sense that every object of Set is
isomorphic to some object of N.

However, we claim that there is no isomorphism F : Set→ N in the category
Cat (where we view Set and N as objects in this category). The reason there
can be no isomorphism is because the category Set is much bigger than the
category N. Indeed, if we were to try to construct an inverse G : N → Set, the
image of the corresponding map G : Obj(N)→ Obj(Set) on objects would have
a countable image, but there are uncountably many objects in Set! (In fact, for

5

each n, there are uncountably many sets with cardinality n.) This means that
we could never find an inverse G for F .

Thus, we see that the notion of isomorphism of categories is too strong in
the sense that it fails to explain the behavior we want even in the most basic
of examples. Hence, we must rethink what we mean by an “equivalence of
categories,” since isomorphism is not correct.

To see how we should introduce the correct notion of equivalence of cate-
gories, let us try to “correct” what went wrong in our example above. The
problem arose in trying to construct a map G : Obj(N) → Obj(Set) that was
surjective. But surjective is perhaps too strong of a condition anyway. What we
would really like to say is that G is “essentially surjective,” in the sense that for
each finite set S, there is an object [n] ∈ N such that G([n]) is isomorphic to S.
Indeed, we can do this easily. We just send each object [n] to itself (viewed as an
object in Set). We could also get an “essentially surjective” functor F : Set→ N
going the other way as well, by declaring F (S) = [|S|], where |S| denotes the
cardinality of S. In this way, we obtain a pair of functors F and G which are
almost inverses to each other.

Let us explain that last sentence a little further. Note that on the one hand,
we certainly have that the composition F ◦ G is the identity functor 1N on N.
On the other hand, what can we say about the composition G ◦ F : Set→ Set?
Well, for a finite set S with cardinality n, we see that (G ◦ F)(S) = [n]. Thus
(G◦F) is not quite the identity morphism 1Set on objects. However, it is close to
being the identity morphism in the sense that the resulting object is isomorphic
to the one that we started with, that is, S ' [n]. More precisely, note that
for each object S in Set, we have an isomorphism ηS : S → (G ◦ F)(S). This
observation hints at a more general behavior and motivates for us the notion of
a natural transformation of functors.

Definition 3.1. Let C and D be categories and let F andG be two functors from
C into D. A natural transformation from F into G consists of an assignment
x 7→ ηx of a morphism ηx ∈ D(F (x), G(x)) to each object x in C such that the
following property holds: for each pair of objects x, y in C and each morphism
f ∈ C(x, y), we have G(f) ◦ ηx = ηy ◦ F (f), that is, the following diagram
commutes

F (x)
F (f) //

ηx

��

F (y)

ηy

��
G(x)

G(f) // G(y)

.

In such a case, we write that η : F → G is a natural transformation from F
into G. The natural transformation η is called a natural isomorphism if for each
object x in C, the morphism ηx is an isomorphism.

Continuing the previous example, we can see that the functor G ◦F : Set→
Set is naturally isomorphic to the identity. Indeed, before we noted that for each
object S in Set, we have an isomorphism ηS : S → (G ◦ F)(S). The assignment

6

S 7→ ηS defines the natural isomorphism from 1Set to G ◦ F . We leave it to the
reader to check that the necessary diagrams commute.

Exercise 3.2. Show that for F : Set → N and G : N → Set as above, the
assignment S 7→ ηS where ηS is an isomorphism from S onto [n] defines a
natural isomorphism from 1Set to G ◦ F .

Because this example motivates what our notion of equivalence of categories
should be, we are led to introduce the following definition.

Definition 3.3. Let C and D be categories. An equivalence of C and D consists
of the following data.

(i) A functor F : C→ D,

(ii) A functor G : D→ C,

(iii) A natural isomorphism η : 1C → GF , and

(iv) A natural isomorphism ε : FG→ 1D.

If such an equivalence exists, we say that the categories C and D are equivalent.

Exercise 3.4. The notion of equivalence defines an equivalence relation on the
set of objects in Cat.

4 Equivalence between algebra and geometry

Now that we have an appropriate notion of equivalence for categories, we can
formulate the equivalence of algebra and geometry mentioned in the first sec-
tion. What we would like to say is that the categories Aff of affine algebraic
varieties and RedAlg are equivalent. To formulate this equivalence, we would
need to construct, in particular, a functor F : Aff → RedAlg. We already have
a candidate for one such functor in mind, namely, the functor which assigns to
each variety V its coordinate ring C[V]. Moreover, I discussed in a previous
meeting how a morphism f : V → W of affine varieties induces a morphism
f∗ : C[W] → C[V] of coordinate rings, called the pullback. However—and here
is where the subtlety lies—note that this does not define a functor in the strict
sense: the pullback morphism f∗ : C[W]→ C[V] is going the wrong way! Never-
theless, we would still like to say that the above assignments define a functor. To
do so, we simply introduce the opposite category Affop, which simply amounts
to reversing all of the morphisms in the category Aff.

Definition 4.1. Let C be a category. The opposite category Cop is the category
which has the same objects of C, but whose morphisms are given in the following
way: whenever f : x → y is a morphism in C, then we get a morphism fop :
y → x in Cop.

Exercise 4.2. Check that the opposite category Cop indeed defines a category.

7

Using this notion, we can state the main result.

Theorem 4.3. The categories Affop and RedAlg are equivalent.

To prove this theorem, there are many things to show. In particular, we
must construct two functors F : Affop → RedAlg and G : RedAlg → Affop and
natural isomorphisms η : 1Affop → GF and ε : FG → 1RedAlg. We outline all of
these constructions below, and we leave some of the details to the reader.

Lemma 4.4. The assignments given below describe a functor F : Affop →
RedAlg.

(i) To each affine variety V ⊂ An, we assign its coordinate ring

F (V) := C[V] ' C[x1, . . . , xn]/I(V).

(ii) To each morphism f : V → W of affine varieties, we assign its pullback
f∗ : C[W] → C[V]. The pullback f∗ : C[W] → C[V] is defined in the
following manner. Say that V is a subset of Am and W is a subset of An.
For a polynomial g ∈ C[x1, . . . , xm], let [g] denote its equivalence class in
C[W]. Then the pullback f∗ : C[W]→ C[V] is the map defined by

f∗([g]) = [g ◦ f] for g ∈ C[x1, . . . , xm].

To prove this lemma, we would need to show many things. In particular, we
would need to show

(i) the pullback f∗ is a well-defined map,

(ii) the pullback f∗ is a morphism in the category RedAlg,

(iii) composition is preserved, and

(iv) identity morphisms are preserved.

We leave it to the reader to check these things.

Exercise 4.5. Check that F : Aff → RedAlg indeed defines a functor.

Lemma 4.6. The assignments given below describe a functor G : RedAlg →
Affop.

(i) To each finitely-generated reduced C-algebra R, we associate an affine
variety G(R) formed in the following way. We choose a generating set
r1, . . . , rn for R as an algebra, and this induces a surjective C-algebra ho-
momorphism φ : C[x1, . . . , xn] → R. We then set G(R) to be the variety
determined by the kernel of this homomorphism G(R) = V(kerφ).

8

(ii) To each morphism f : R→ S of finitely-generated reduced C-algebras, we
associate a morphism G(f) : G(S) → G(R) of affine varieties formed in
the following way. Choose presentations for R and S of the form

C[x1, . . . , xn]/I
f−→ C[y1, . . . , ym]/J

where I and J are radical ideals. For each j satisfying 1 ≤ j ≤ n, let
f#j denote any polynomial in C[y1, . . . , ym] representing the image f(xj).
Define a polynomial map

f̃ : Am −→ An

a = (a1, . . . , am) 7−→ (f#1 (a), . . . , f#n (a)).

Then let G(f) = f# denote the restriction of f̃ to G(S).

Proof. We check first that G(f) is a map from G(S) to G(R). Let V = G(S) =
V(J) and let W = G(R) = V(I). Let a be an element of V . We want to show
that f#(a) is an element of W . To show this, it suffices to show that f#(a)
belongs to the zero set of any polynomial g in the ideal I. Using the definition
of f#, we see that for each g ∈ I, we have

g(f#(a)) = g(f#1 (a), . . . , f#n (a))

= g((f(x1))(a), . . . , (f(xn))(a))

= (f(g))(a).

Since g belongs to the ideal I, it represents the zero class in C[x1, . . . , xn]/I and
because f is a ring homomorphism, the image f(g) must represent the zero class
in C[y1, . . . , ym]/J . This means that f(g) lies in the ideal J , and thus vanishes
for any point a ∈ V = V(J). Hence, we have shown that f#(a) belongs to W
for any point a ∈ V .

To complete the proof, it remains to show that composition of morphisms is
preserved and that identities are preserved. We leave it to the reader to show
this.

Corollary 4.7. Let R be a finitely-generated reduced C-algebra. Suppose that
we may present R in two different forms:

R ' C[x1, . . . , xm]/J ' C[y1, . . . , ym]/I.

Then the varieties V(J) and V(I) are isomorphic.

Proof. This follows from the fact that G : RedAlg→ Aff is a functor, and hence
preserves isomorphisms.

Remark 4.8. Note that the functor G depends on many choices, and as such,
is somewhat of a bad functor. In particular, we had to choose for each object
R in RedAlg, a corresponding generating set r1, . . . , rn. Moreover, to define

9

the morphism G(f) in the proof, we had to choose representatives f#j of the
image f(xj) in the quotient ring C[y1, . . . , ym]/J . Choosing any of these things
differently might result in a different functor G! However, one can show that
any of these resulting functors would be naturally isomorphic to each other, and
so up to natural isomorphism, just considering the functor G will suffice.

Exercise 4.9. Show that if G′ is another functor resulting from a different
choice of generating set for objects of RedAlg, then G′ is naturally isomorphic
to G. On the other hand, show that if G′′ is another functor defined the same
way as G on objects, but the morphisms G′′(f) are determined by choosing
different representatives for the images f(xj) in C[y1, . . . , ym]/J , then G′′ is
equal to G.

Exercise 4.10. Let V and W be affine algebraic varieties. Show that we have
a one-to-one correspondence

{morphisms V →W} ←→ {C-algebra homomorphisms C[W]→ C[V]}

described by f 7→ f∗.

Proof. To prove this claim, it suffices to construct an inverse for the mapping
f 7→ f∗. The inverse is precisely the assignment of the previous lemma. More
precisely, suppose that

C[x1, . . . , xn]/I(W)
g−→ C[y1, . . . , ym]/I(V)

is a morphism of coordinate rings. For each j satisfying 1 ≤ j ≤ n, choose a
representative g#j of the image g(xj) in C[y1, . . . , ym]/I(V). Define a polynomial
map

g̃ : Am −→ An

a 7−→ (g#1 (a), . . . , g#n (a))

and let g# denote the restriction of g̃ to V . Then we claim that the assignment
g 7→ g# defines an inverse to f 7→ f∗.

Let g : C[W] → C[V] be a morphism of coordinate rings. Consider the
pullback (g#)∗ of g# : W → V . For any h ∈ C[x1, . . . , xn], by the definition of
the pullback, we have

(g#)∗([h]) = [h ◦ g#]

where [h◦g#] denotes the restriction of the map h◦g# : Am → An to the variety
V . This restriction is precisely h ◦ g# itself. So we conclude that (g#)∗([h]) =
h ◦ g#. Evaluating this on a point a ∈ V , we find that

(g#)∗([h])(a) = (h ◦ g#)(a)

= h(g#1 (a), . . . , gn)

= h((g(x1))(a), . . . , (g(xn))(a))

= (g([h]))(a).

10

This means that the functions (g#)∗([h]) and g([h]) agree everywhere on V and
hence define the element in C[V]. This shows that the morphisms (g#)∗ and
g are equal. Hence the assignment f 7→ f∗ is a left inverse to the assignment
g 7→ g#.

To conclude the proof, we also need to show that the assignment f 7→ f∗ is
also a right inverse to the assignment g 7→ g#. We leave this as an exercise.

Theorem 4.11. The categories Affop and RedAlg are equivalent.

Proof. We are required to find natural isomorphisms η : 1Affop → GF and
ε : FG→ 1RedAlg.

Let us first consider how to construct η : 1Affop → GF . Note that if V is
an affine variety, then F (V) it is coordinate ring. Now, to form G(F (V)), we
choose a presentation of F (V) of the form

F (V) ' C[x1, . . . , xn]/I

and we let G(F (V)) = V(I). Note that the presentation of F (V) may not be
the same as the presentation of the coordinate ring, that is, we may not have
I ' I(V). However, the presentation of F (V) is isomorphic to the coordinate
ring C[V], and so Corollary 4.7 asserts that G(F (V)) is isomorphic to V . We
let ηV : V → G(F (V)) denote such an isomorphism.

To see how to construct ε : FG→ 1RedAlg, note that for a finitely-generated
reduced C-algebra R, we form the variety G(R) by choosing a presentation for
R of the form

R ' C[y1, . . . , ym]/J

and setting G(R) = V(J). Because the ideal J is radical, Hilbert’s Nullstel-
lensatz guarantees that I(V(J)) = J , which implies that F (G(R)) is isomor-
phic to C[y1, . . . , ym]/J and consequently R. Thus we get an isomorphism
εR : F (G(R))→ R for each object R in RedAlg.

Let us conclude our discussion by noting that the previous theorem is less
than ideal. Indeed, there are two concerns with this theorem. First, the choice of
functor G : RedAlg → Aff relied upon far too many choices in its construction.
Although different choices result in functors which are naturally isomorphic
to each other, it is somewhat bad practice to use constructions that depend
on choices in mathematics, because such constructions are not very formulaic.
Secondly, the domain the functor G was very specific: we were only concerned
with those C-algebras that are finitely-generated and reduced. One could hope
to eliminate the “reduced” clause and find a more general categories of varieties
which are equivalent to generalizations of the category RedAlg. This motivates
us to introduce the notion of the spectrum of a ring and the notion of a scheme.

11

