
Machine Learning for OR & FE
Hidden Markov Models

Martin Haugh
Department of Industrial Engineering and Operations Research

Columbia University
Email: martin.b.haugh@gmail.com

Additional References: David Barber’s Bayesian Reasoning and Machine Learning

mailto:martin.b.haugh@gmail.com

Outline
Hidden Markov Models

Filtering
The Smoothing Problem
Prediction and the Likelihood
Computing the Pairwise Marginal P (ht, ht+1|v1:T)
Sampling from the Posterior
Computing the Most Likely Hidden Path

Applications of HMMs
Application #1: Localization and Target Tracking
Application #2: Stubby Fingers and NLP
Application #3: Self-Localization

Learning Hidden Markov Models
Learning HMMs Given Labeled Sequences
The Baum-Welch (EM) Algorithm

Appendix: Beyond Hidden Markov Models
Extensions of HMMs
Linear-Gaussian Dynamical Systems
Particle Filters and Sequential Monte-Carlo

2 (Section 0)

Hidden Markov Models
Hidden Markov Models (HMMs) are a rich class of models that have many
applications including:

1. Target tracking and localization
2. Time-series analysis
3. Natural language processing and part-of-speech recognition
4. Speech recognition
5. Handwriting recognition
6. Stochastic control
7. Gene prediction
8. Protein folding
9. And many more . . .

HMMs are also the most important and commonly used class of graphical models
- and many of the algorithms that are used for HMMs can be adapted for

more general use with graphical models.

HMMs are closely related to (non-linear) filtering problems and signal processing.
3 (Section 1)

Hidden Markov Models
A HMM defines a Markov chain on data, h1, h2, . . ., that is hidden. The goal is
to to categorize this hidden data based on noisy or visible observations,
v1, v2,

Individual observations may be difficult to categorize by themselves:

But the task becomes much easier when the observations are taken in the
context of the entire visible sequence:

(This example is taken from Ben Taskar’s website at
https://alliance.seas.upenn.edu/~cis520/wiki/index.php?n=Lectures.HMMs#toc7)

4 (Section 1)

https://alliance.seas.upenn.edu/~cis520/wiki/index.php?n=Lectures.HMMs#toc7

Graphical Representation of HMMs
We often represent HMMs using the graphical model representation

Figure 23.4 from Barber: A first order hidden Markov model with ‘hidden’ variables
dom(ht) = {1, . . . , H}, t = 1 : T . The ‘visible’ variables vt can be either discrete or continuous.

A HMM is defined by:
1. The initial distribution, P(h1).
2. The transition distribution, P(ht |ht−1), of the underlying Markov chain.
3. The emission distribution, P(vt |ht).

The HMM model is therefore very simple
- but it has been very successful in many application domains.

5 (Section 1)

Inference for Hidden Markov Models
The main inference problems are:

1. The filtering problem solves for P (ht | v1:t)
- inferring the present.

2. The smoothing problem computes P (ht | v1:T) for t < T
- inferring the past.

3. The prediction problem solves for P (ht | v1:s), for t > s
- inferring the future.

4. The likelihood problem solves for P (v1:T).
5. The most likely hidden path(s) problem solves for

argmax
h1:T

P (h1:T | v1:T) ≡ argmax
h1:T

P (h1:T , v1:T) .

These problems can be solved efficiently using dynamic programming
techniques.

Note also that in addressing these inference problems, the particular form of
P(vt |ht) is not important.

6 (Section 1)

The Filtering Problem
We first compute α(ht) := P(ht, v1:t)

- gives the un-normalized filtered posterior distribution
- can easily normalize to compute P (ht | v1:t) ∝ α(ht).

We begin with α(h1) := P(v1|h1)P(h1). Now note that

α(ht) =
∑
ht−1

P (ht, ht−1, v1:t−1, vt)

=
∑
ht−1

P (vt|ht, ht−1, v1:t−1) P (ht|ht−1, v1:t−1) P (ht−1, v1:t−1)

=
∑
ht−1

P (vt|ht) P (ht|ht−1) P (ht−1, v1:t−1)

= P (vt|ht)︸ ︷︷ ︸
corrector

∑
ht−1

P (ht|ht−1) α(ht−1)

︸ ︷︷ ︸
predictor

. (1)

Can therefore solve the filtering problem in O(T) time.
7 (Section 1)

The Smoothing Problem
Now compute β(ht) := P(vt+1:T |ht) with the understanding that β(hT) = 1:

β(ht) =
∑
ht+1

P(vt+1, vt+2:T , ht+1|ht)

=
∑
ht+1

P(vt+1|vt+2:T , ht+1, ht) P(vt+2:T , ht+1|ht)

=
∑
ht+1

P(vt+1|vt+2:T , ht+1, ht) P(vt+2:T |ht+1, ht) P(ht+1|ht)

=
∑
ht+1

P(vt+1|ht+1) P(ht+1|ht)β(ht+1). (2)

8 (Section 1)

The Smoothing Problem
Now note that

P (ht, v1:T) = P (ht, v1:t) P (vt+1:T |ht, v1:t)
= P (ht, v1:t) P (vt+1:T |ht)
= α(ht)β(ht).

We therefore obtain (why?)

P (ht|v1:T) = α(ht)β(ht)∑
ht
α(ht)β(ht)

(3)

which solves the smoothing problem.

The α-β recursions are often called the forward-backward recursion.

9 (Section 1)

Prediction and the Likelihood
The one-step ahead predictive distribution is given by

P(vt+1|v1:t) =
∑

ht,ht+1

P (ht, ht+1, vt+1|v1:t)

=
∑

ht,ht+1

P (vt+1|ht, ht+1, v1:t) P (ht+1|ht, v1:t) P (ht|v1:t)

=
∑

ht,ht+1

P (vt+1|ht+1) P(ht+1|ht) P(ht|v1:t)

which is easy to calculate given the filtering distribution, P(ht|v1:t).

The likelihood P(v1:T) can be calculated in many ways including

P(v1:T) =
∑
hT

P(hT , v1:T)

=
∑
hT

α(hT).

10 (Section 1)

Computing the Pairwise Marginal P (ht, ht+1|v1:T)
Can compute P (ht, ht+1|v1:T) by noting that

P (ht, ht+1|v1:T) ∝ P (v1:t, vt+1, vt+2:T , ht+1, ht)
= P (vt+2:T |v1:t, vt+1, ht+1, ht) P (v1:t, vt+1, ht+1, ht)
= P (vt+2:T |ht+1) P (vt+1|v1:t, ht+1, ht) P (v1:t, ht+1, ht)
= P (vt+2:T |ht+1) P (vt+1|ht+1) P (ht+1|v1:t, ht) P (v1:t, ht)
= P (vt+2:T |ht+1) P (vt+1|ht+1) P (ht+1|ht) P (v1:t, ht) . (4)

Can rearrange (4) to obtain

P (ht, ht+1|v1:T) ∝ α(ht)P (vt+1|ht+1) P (ht+1|ht)β(ht+1) (5)

So P (ht, ht+1|v1:T) easy to compute once forward-backward recursions have
been completed

- pairwise marginals are used by the EM algorithm for learning the HMM
- in this context the EM algorithm is called the Baum-Welch algorithm.

11 (Section 1)

Sampling from the Posterior
Sometimes we would like to sample from the posterior P (h1:T |v1:T).
One straightforward way to do is by first noting that

P (h1:T |v1:T) = P (h1|h2:T , v1:T) . . . P (hT−1|hT , v1:T) P (hT |v1:T)
= P (h1|h2, v1:T) . . . P (hT−1|hT , v1:T) P (hT |v1:T) (6)

So can sample sequentially by:

First drawing hT from P (hT |v1:T)
And then noting that for any t < T we have

P (ht|ht+1, v1:T) ∝ P (ht, ht+1|v1:T)
∝ α(ht)P (ht+1|ht) by (5)

from which it is easy to sample.

This sequential sampling process is known as forward-filtering-backward sampling.

12 (Section 1)

Computing the Most Likely Hidden Path
The most likely hidden path problem is found by solving
max
h1:T

P (h1:T | v1:T) ≡ max
h1:T

P (h1:T , v1:T)

= max
h1:T

T∏
t=1

P (vt|ht) P (ht|ht−1)

= max
h1:T−1

{
T−1∏
t=1

P (vt|ht) P (ht|ht−1)

}
max
hT

P (vT |hT) P (hT |hT−1)︸ ︷︷ ︸
µ(hT−1)

= max
h1:T−2

{
T−2∏
t=1

P (vt|ht) P (ht|ht−1)

}
× max
hT−1

P (vT−1|hT−1) P (hT−1|hT−2)µ(hT−1)︸ ︷︷ ︸
µ(hT−2)

= . . .

13 (Section 1)

The Viterbi Algorithm
We can therefore find the most likely hidden path by using the recursion

µ(ht−1) := max
ht

P (vt|ht) P (ht|ht−1)µ(ht) (7)

to obtain µ(h1), . . . , µ(hT−1).

Once we’ve solve for µ(h1) we can backtrack to obtain the most likely hidden
path. We get

h∗1 = argmax
h1

P (v1|h1) P (h1)µ(h1)

and for t = 2, . . . , T we find

h∗t = argmax
ht

P (vt|ht) P
(
ht|h∗t−1

)
µ(ht)

where we have defined µ(hT) ≡ 1.

This algorithm is called the Viterbi algorithm
- can be easily generalized (at the cost of some tedious ‘book-keeping’) to find

the N most likely paths.

Very similar algorithms are used more generally in graphical models.
14 (Section 1)

Application #1: Localization and Target Tracking
Example 23.3 from Barber:

1. You are asleep upstairs and are suddenly woken by a burglar downstairs. You
want to figure out where he is by listening to his movements.

2. So you partition the ground floor into a 5× 5 grid.
3. For each grid position you know the probability of: (i) bumping into

something and (ii) the floorboard at that position creaking
– these probabilities are assumed to be independent.

4. You also assume that the burglar will only move 1 grid-square (forwards,
backwards, left or right) at a time and that these transition probabilities are
known.

5. The burglar leaves at time T = 10 and in order to help the police, you wish
to construct the smoothed distribution P(ht | v1:T) where:
(a) ht was the position of the burglar at time t and
(b) vt = vcreak

t ⊗ vbump
t ∈ {1, 2} ⊗ {1, 2} is the time t observation with 1 ≡ creak

/ bump and 2 ≡ no creak / no bump.

By assumption P(h1), P(ht |ht−1) and P(vt |ht) = P(vcreak
t |ht)P(vbump

t |ht) are
known for all t.

15 (Section 2)

Figure 23.6 from Barber: Localising the burglar. The latent variable
ht ∈ {1, . . . , 25} denotes the positions, defined over the 5× 5 grid of the ground
floor of the house. (a): A representation of the probability that the ‘floor will
creak’ at each of the 25 positions, p(vcreak |h). Light squares represent probability
0.9 and dark square 0.1. (b): A representation of the probability p(vbump |h) that
the burglar will bump into something in each of the 25 positions.

Figure 23.7 from Barber: Localising the burglar through time for 10 time steps. (a): Each panel represents
the visible information vt =

(
vcreak

t , vbump
t

)
, where vcreak = 1 means that there was a ‘creak in the

floorboard’ (vcreak = 2 otherwise) and vbump = 1 meaning ‘bumped into something’ (and is in state 2
otherwise). There are 10 panels, one for each time t = 1, . . . , 10. The left half of the panel represents vcreak

t

and the right half vbump
t . The yellow shade represents the occurrence of a creak or bump, the red shade the

absence. (b): The filtered distribution p(ht | v1:t) representing where we think the burglar is. (c): The
smoothed distribution p(ht | v1:10) that represents the distribution of the burglar’s position given that we
know both the past and future observations. (d): The most likely (Viterbi) burglar path
argmaxh1:10 p(h1:10 | v1:10). (e): The actual path of the burglar.

Application #2: Stubby Fingers and NLP
Example 23.5 from Barber:

1. A “stubby fingers” typist hits either the correct key or a neighboring key
every times he / she types.

2. Assume there are 27 keys: lower case ‘a’ to lower case ‘z’, and the space bar.
3. We don’t know what key, ht, the typist intended to hit at time t and only

observe vt, the actual key that was typed.
4. The emission distribution, Bij := P(v = i |h = j), is easily estimated

- and is depicted in Figure 23.10(b) from Barber.

5. Transition matrix, Aij := P(h′ = i |h = j), easily estimated from a database
of letter-to-next-letter frequencies in English

- and is depicted in Figure 23.10(a) from Barber.

6. Can simply assume that the initial distribution P(h1) is uniform.

Question: Given a typed sequence “kezrninh” what is the most likely word /
phrase that this corresponds to?

18 (Section 2)

Figure 23.10 from Barber: (a): The letter-to-letter transition matrix for English p(h′ = i |h = j). (b): The
letter emission matrix for a typist with ‘stubby fingers’ in which the key or a neighbour on the keyboard is
likely to be hit.

Can answer this using a generalization of the Viterbi algorithm – the
N-max-product algorithm – which finds the N most likely hidden paths

- and then compares these N most likely phrases, i.e. paths, with words or
phrases from a standard English dictionary.

Application #3: Self-Localization
Consider a robot with an internal grid-based map of its environment.

For each location h ∈ {1, . . . ,H} the robot “knows” the likely sensor readings it
would obtain in that location.

The robot’s goal is to move about and take sensor readings, and by comparing
these readings to its internal map, allow it to estimate its location.

More specifically, the robot makes intended movements m1:t

- but due to floor slippage etc, these movements aren’t always successful
- one can view the intended movements as additional observed information.

Robot also gathers sensor information, v1:t, from the unobserved locations, h1:t.

20 (Section 2)

Application #3: Self-Localization
We can model this problem according to

P(v1:T ,m1:T , h1:T) =
T∏
t=1

P(vt |ht)P(ht |ht−1,mt−1)P(mt) (8)

- where we have allowed for the possibility that the robot makes intended
movements randomly.

Since m1:t is known to the robot we can rewrite (8) as a time-dependent HMM:

P(v1:T , h1:T) =
T∏
t=1

P(vt |ht)Pt(ht |ht−1). (9)

All our earlier inference algorithms still apply as long as we replace P(ht |ht−1)
with Pt(ht |ht−1) everywhere.

21 (Section 2)

An Example of Self-Localization: Robot Tracking
Example 23.4 from Barber:

1. A robot is moving around a circular corridor and at any time occupies one of
S possible locations.

2. At each time t the robot stays where it is with probability ε and moves one
space counter-clockwise with probability 1− ε

- so no intended movements, m1:t, here.

Can represent this with a matrix Aij = P(ht = j |ht−1 = i). e.g. if S = 3

A = ε

(1 0 0
0 1 0
0 0 1

)
+ (1− ε)

(0 0 1
1 0 0
0 1 0

)

3. At each time t robot sensors measure its position and obtains correct
location with prob. ω or a uniformly random location with prob. 1− ω.
Can represent this with a matrix Bij = P(vt = j |ht = i). e.g. if S = 3 then

B = ω

(1 0 0
0 1 0
0 0 1

)
+ (1− ω)

3

(1 1 1
1 1 1
1 1 1

)

22 (Section 2)

Figure 23.9 from Barber: Filtering and smoothing for robot tracking using a HMM with S = 50 and ε = .5.
(a): A realisation from the HMM example described in the text. The dots indicate the true latent locations of
the robot, whilst the open circles indicate the noisy measured locations. (b): The squares indicate the
filtering distribution at each time-step t, p(ht | v1:t). This probability is proportional to the grey level with
black corresponding to 1 and white to 0. Note that the posterior for the first time-steps is multimodal,
therefore the true position cannot be accurately estimated. (c): The squares indicate the smoothing
distribution at each time-step t, p(ht | v1:T). Note that, for t < T , we estimate the position retrospectively
and the uncertainty is significantly lower when compared to the filtered estimates.

Learning Hidden Markov Models
Training or learning, a HMM requires us to estimate θ which consists of:

1. the initial distribution, P(h1)
2. the transition distribution, P(h′ |h) for all h
3. the emission distribution, P(v |h) for all h

There are two possible situations to consider:

1. We have access to labeled training sequences (vi1:Ti
, hi1:Ti

) for i = 1, . . . , n
- in this case can estimate all probabilities using standard ML estimation

2. We only have access to the sequences (vi1:Ti
) for i = 1, . . . , n

- in this case need to use EM algorithm which in the context of HMMs if often
called Baum-Welch.

Will consider each case separately and assume for ease of exposition that we have
a discrete state space with K hidden states and a discrete observation space with
M possible observations

- but easy to adapt to Gaussian emission distributions etc.

24 (Section 3)

Learning HMMs Given Labeled Sequences
When we are given labeled sequences the log-likelihood, l, satisfies

l =
n∑
i=1

log P
(
vi1:Ti

, hi1:Ti

)
=

n∑
i=1

log
Ti∏
t=1

P
(
vit |hit

)
P
(
hit |hit−1

)
=

n∑
i=1

Ti∑
t=1

(
log P

(
vit |hit

)
+ log P

(
hit|hit−1

))
=

K∑
k=1

M∑
m=1

n∑
i=1

Ti∑
t=1

1{hi
t=k}1{vi

t=m} log P
(
vit = m |hit = k

)
+

K∑
k=1

K∑
k′=1

n∑
i=1

Ti∑
t=1

1{hi
t=k′,hi

t−1=k} log P
(
hit = k′ |hit−1 = k

)
(10)

with the understanding that P
(
hi1 |hi0

)
≡ P(hi1).

25 (Section 3)

Learning HMMs Given Labeled Sequences
Not surprisingly the ML estimation problem therefore decomposes and it is easy
to see that the solution is

P̂(h1 = h) = 1
n

n∑
i=1

1{hi
1=h} (11)

P̂(h′ |h) =
∑n
i=1
∑Ti

t=2 1{hi
t−1=h, hi

t=h′}∑n
i=1
∑Ti

t=2 1{hi
t−1=h}

(12)

P̂(v |h) =
∑n
i=1
∑Ti

t=1 1{hi
t=h} 1{vi

t=v}∑n
i=1
∑Ti

t=1 1{hi
t=h}

(13)

26 (Section 3)

The Baum-Welch (EM) Algorithm
Suppose now we are only given the unlabeled sequences, (vi1:Ti

) for i = 1, . . . , n.
We begin with an initial guess, θ0 say, of the model parameters and iterate the
following E- and M-steps:

E-Step: We need to compute Q(θ,θ0), the expected complete-data
log-likelihood, conditional on (vi1:Ti

) for i = 1, . . . , n
- note that the expectation is computed using θ0.

Using (10) we obtain

Q(θ, θ0) =
K∑
k=1

M∑
m=1

n∑
i=1

Ti∑
t=1

q(hit = k)1{vi
t

=m} log P
(
vit = m |hit = k

)
+

K∑
k=1

K∑
k′=1

n∑
i=1

Ti∑
t=1

q(hit = k′, hit−1 = k) log P
(
hit = k′ |hit−1 = k

)
(14)

where q(·) denotes the marginal (and pairwise marginal) computed using θ0

- and we know how to compute q(·).
27 (Section 3)

The Baum-Welch (EM) Algorithm
M-Step: In the M-step we maximize Q(θ,θ0) with respect to θ.
The solution is analogous to (11), (12) and (13) except that we must replace the
indicator functions with q(·):

P̂(h1 = h) = 1
n

n∑
i=1

q(hi1 = h) (15)

P̂(h′ |h) =
∑n
i=1
∑Ti

t=2 q(hit−1 = h, hit = h′)∑n
i=1
∑Ti

t=2 q(hit−1 = h)
(16)

P̂(v |h) =
∑n
i=1
∑Ti

t=1 q(hit = h) 1{vi
t=v}∑n

i=1
∑Ti

t=1 q(hit = h)
. (17)

We then iterate the E-step and M-step until convergence.

28 (Section 3)

Appendix: Extensions of HMMs
There are many immediate and tractable extensions of HMMs including:

1. Explicit Duration HMMs
2. Input-Output HMMs

- the self-localization application with intended movements m1:T is an example.

3. Dynamic Bayesian Networks.

4. Autoregressive HMMs
– used to capture dependence between the observed variables.

All of these extensions are discussed in Section 23.4 of Barber and / or Section
13.2.6 of Bishop.

More generally, HMMs can be viewed as an example of graphical models
- where the problems of inference and learning reduce to finding efficient ways

to do addition and multiplication of the appropriate probabilities.

29 (Section 4)

Appendix: Linear-Gaussian Dynamical Systems
It is always the case that the hidden variables in a HMM are discrete

- this need not be the case for the emission variables or observations.

Can also consider dynamic models where the hidden variables are continuous
- the most well-known such model is the Linear-Gaussian model:

ht = Atht−1 + ηht , ηht ∼ N
(
h̄t,Σh

t

)
vt = Btht + ηvt , ηvt ∼ N (v̄t,Σv

t)

where the ht’s are hidden and the vt’s are observed.

Great advantage of the linear-Gaussian model is that it is also tractable
- not surprising given the Gaussian and linear assumptions.

Filtering and smoothing algorithms are as shown on next two slides.

30 (Section 4)

Algorithm 24.1 from Barber

The filtering algorithm in this case is the famous Kalman filter
- not much more than completing the square!

The linear-Gaussian model has many applications in engineering, economics and
time series analysis.

Algorithm 24.2 from Barber

Figure 24.7 from Barber shows an application of a linear-Gaussian model:

H = 6-dimensional representing location, velocity and acceleration of object
in (x, y)-coordinates.
V = 2-dimensional representing noisy, i.e. Gaussian, observations of the
(x, y)-coordinates of the object.
ODEs describing Newton’s laws are discretized and result in a linear system.

Figure 24.7 from Barber: Estimate of the trajectory of a Newtonian ballistic object based on noisy
observations (small circles). All time labels are known but omitted in the plot. The ‘x’ points are the true
positions of the object, and the crosses ‘+’ are the estimated smoothed mean positions 〈xt, yt | v1:T 〉 of the
object plotted every several time steps.

Appendix: Particle Filters and Sequential Monte-Carlo

What can be done when the dynamical system is not linear-Gaussian?

Tractability then lost and we need to resort to approximate methods – and
Monte-Carlo methods in particular.

Recall goal (in general) is to infer posterior distribution P(h1:T | v1:T).

Can’t sample directly but could use MCMC since we know P(h1:T , v1:T)

But MCMC can be very slow and need to re-run every time a new observation,
vt, appears.

Instead can use Sequential Monte-Carlo – also known as particle filtering
Sequential Monte-Carlo intended to mimic the Kalman filter.

At each time t we have N particles, h1
t , . . . , h

N
t , that together with the

“weights”, w1
t , . . . , w

N
t , are intended to “represent” P(ht | v1:t).

When a new observation, vt+1, arrives we sample N new particles from this
distribution and then re-weight them appropriately

Can also run some MCMC steps if so desired.
34 (Section 4)

Previous slide: Figure 27.15 from Barber: Tracking an object with a particle
filter containing 50 particles. The small circles are the particles, scaled by their
weights. The correct corner position of the face is given by the ‘x’, the filtered
average by the large circle ‘o’, and the most likely particle by ‘+’. (a): Initial
position of the face without noise and corresponding weights of the particles. (b):
Face with noisy background and the tracked corner position after 20 time-steps.
The Forward-Sampling-Resampling PF method is used to maintain a healthy
proportion of non-zero weights.

Figure 5 from Doucet and Johansen (2008): SIR filtering estimates for the
SV model.

Figure 5 depicts an application to a stochastic volatility model
- the true volatility is not observed but the return data are.

	Hidden Markov Models
	Filtering
	The Smoothing Problem
	Prediction and the Likelihood
	Computing the Pairwise Marginal P(ht,ht+1 | v1:T)
	Sampling from the Posterior
	Computing the Most Likely Hidden Path

	Applications of HMMs
	Application #1: Localization and Target Tracking
	Application #2: Stubby Fingers and NLP
	Application #3: Self-Localization

	Learning Hidden Markov Models
	Learning HMMs Given Labeled Sequences
	The Baum-Welch (EM) Algorithm

	Appendix: Beyond Hidden Markov Models
	Extensions of HMMs
	Linear-Gaussian Dynamical Systems
	Particle Filters and Sequential Monte-Carlo

