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MCMC and Bayesian Modeling

These lecture notes provide an introduction to Bayesian modeling and MCMC algorithms including the
Metropolis-Hastings and Gibbs Sampling algorithms. We discuss some of the challenges associated with running
MCMC algorithms including the important question of determining when convergence to stationarity has been
achieved. To address this issue we introduce the popular convergence diagnostic approach of Gelman and Rubin.
Many examples and applications of MCMC are provided.

In the appendix we also discuss various other topics including model checking and model selection for Bayesian
models, Hamiltonian Monte-Carlo (an MCMC algorithm that was designed to handle multi-modal distributions
and one that forms the basis for many current state-of-the-art MCMC algorithms), empirical Bayesian methods
and how MCMC methods can also be used in non-Bayesian applications such as graphical models.

1 Bayesian Modeling

Not surprisingly, Bayes’s Theorem is the key result that drives Bayesian modeling and statistics. Let S be a
sample space and let B1, . . . , BK be a partition of S so that (i)

⋃
k Bk = S and (ii) Bi

⋂
Bj = ∅ for all i 6= j.

Theorem 1 (Bayes’s Theorem) Let A be any event. Then for any 1 ≤ k ≤ K we have

P (Bk | A) =
P (A | Bk)P (Bk)

P (A)
=

P (A | Bk)P (Bk)∑K
j=1 P (A | Bj)P (Bj)

.

Of course there is also a continuous version of Bayes’s Theorem with sums replaced by integrals. Bayes’s
Theorem provides us with a simple rule for updating probabilities when new information appears. In Bayesian
modeling and statistics this new information is the observed data and it allows us to update our prior beliefs
about parameters of interest which are themselves assumed to be random variables.

The Prior and Posterior Distributions

Let θ be some unknown parameter vector of interest. We assume θ is random with some distribution, π(θ).
This is our prior distribution which captures our prior uncertainty regarding θ. There is also a random vector, X,
with PDF (or PMF) p(x | θ) – this is the likelihood. The joint distribution of θ and X is then given by

p(θ,x) = π(θ)p(x | θ)

and we can integrate the joint distribution to get the marginal distribution of X, namely

p(x) =

∫
θ

π(θ)p(x | θ) dθ.

We can compute the posterior distribution via Bayes’s Theorem:

π(θ | x) =
π(θ)p(x | θ)

p(x)
=

π(θ)p(x | θ)∫
θ
π(θ)p(x | θ) dθ

(1)

The mode of the posterior is called the maximum a posterior (MAP) estimator while the mean is of course
E [θ | X = x] =

∫
θ π(θ | x) dθ. The posterior predictive distribution is the distribution of a new as yet

unseen data-point, Xnew:

p(xnew) =

∫
θ

π(θ | x)p(xnew | θ) dθ
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Figure 20.1 (Taken from from Ruppert’s Statistics and Data Analysis for FE): Prior and posterior densities
for α = β = 2 and n = x = 5. The dashed vertical lines are at the lower and upper 0.05-quantiles of the
posterior, so they mark off a 90% equal-tailed posterior interval. The dotted vertical line shows the location
of the posterior mode at θ = 6/7 = 0.857.

which is obtained using the posterior distribution of θ given the observed data X, π(θ | x). Much of Bayesian
analysis is concerned with “understanding” the posterior π(θ | x). Note that

π(θ | x) ∝ π(θ)p(x | θ)

which is what we often work with in practice. Sometimes we can recognize the form of the posterior by simply
inspecting π(θ)p(x | θ). But typically we cannot recognize the posterior and cannot compute the denominator
in (1) either. In such cases approximate inference techniques such as MCMC are required. We begin with a
simple example.

Example 1 (A Beta Prior and Binomial Likelihood)
Let θ ∈ (0, 1) represent some unknown probability. We assume a Beta(α, β) prior so that

π(θ) =
θα−1(1− θ)β−1

B(α, β)
, 0 < θ < 1.

We also assume that X | θ ∼ Bin(n, θ) so that p(x | θ) =
(
n
x

)
θx(1− θ)n−x, x = 0, . . . , n. The posterior then

satisfies

p(θ | x) ∝ π(θ)p(x | θ)

=
θα−1(1− θ)β−1

B(α, β)

(
n

x

)
θx(1− θ)n−x

∝ θα+x−1(1− θ)n−x+β−1

which we recognize as the Beta(α+ x, β + n− x) distribution! See Figure 20.1 from Statistics and Data
Analysis for Financial Engineering by David Ruppert for a numerical example and a visualization of how the data
and prior interact to produce the posterior distribution.

Exercise 1 How can we interpret the prior distribution in Example 1?
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1.1 Conjugate Priors

Consider the following probabilistic model. The parameter vector θ has prior π( · ;α0) while the data
X = (X1, . . . , XN ) is distributed as p(x | θ). As we saw earlier, the posterior distribution satisfies

p(θ | x) ∝ p(θ,x) = p(x | θ)π(θ;α0).

We say the prior π(θ;α) is a conjugate prior for the likelihood p(x | θ) if the posterior satisfies

p(θ | x) = π(θ;α(x))

so that the observations influence the posterior only via a parameter change α0 → α(x). In particular, the form
or type of the distribution is unchanged. In Example 1, for example, we saw the beta distribution is conjugate
for the binomial likelihood. Here are two further examples.

Example 2 (Conjugate Prior for Mean of a Normal Distribution)
Suppose θ ∼ N(µ0, γ

2
0) and p(Xi | θ) = N(θ, σ2) for i = 1, . . . , N with σ2 is assumed known. In this case we

have α0 = (µ0, γ
2
0). If X = (X1, . . . , XN ) we then have

p(θ | x) ∝ p(x | θ)π(θ;α0)

∝ e
− (θ−µ0)2

2γ20

N∏
i=1

e−
(xi−θ)

2

2σ2

∝ exp

(
− (θ − µ1)2

2γ2
1

)
where

γ−2
1 := γ−2

0 +Nσ−2 and µ1 := γ2
1

(
µ0γ

−2
0 +

n∑
i=1

xiσ
−2
)
.

Of course we recognize p(θ | x) as the N(µ1, γ
2
1) distribution.

Example 3 (Conjugate Prior for Mean and Variance of a Normal Distribution)
Suppose that p(Xi | θ) = N(µ, σ2) for i = 1, . . . , N and let X := (X1, . . . , XN ). We now assume µ and σ2 are
unknown so that θ = (µ, σ2). We assume a joint prior of the form

π(µ, σ2) = π(µ | σ2)π(σ2)

= N
(
µ0, σ

2/κ0

)
× Inv-χ2

(
ν0, σ

2
0

)
∝ σ−1

(
σ2
)−(ν0/2+1)

exp

(
− 1

2σ2

[
ν0σ

2
0 + κ0(µ0 − µ)2

])
which we recognize as the N-Inv-χ2(µ0, σ

2
0/κ0, ν0, σ

2
0) PDF. Note that µ and σ2 are not independent under this

joint prior.

Exercise 2 Show that multiplying this prior by the normal likelihood yields a N-Inv-χ2 distribution.

1.2 The Exponential Family of Distributions

The canonical form of the exponential family distribution is

p(x | θ) = h(x)eθ
>u(x)−ψ(θ) (2)

where θ ∈ Rm is a parameter vector and u(x) = (u1(x), . . . , um(x)) is the vector of sufficient statistics. The
exponential family includes Normal, Gamma, Beta, Poisson, Dirichlet, Wishart and Multinomial distributions as
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special cases. The exponential family is also essentially the only distribution with a non-trivial conjugate prior.
This conjugate prior takes the form

π(θ;α, γ) ∝ eθ
>α−γψ(θ). (3)

Combining (2) and (3) we see the posterior takes the form

p(θ | x,α, γ) ∝ eθ
>u(x)−ψ(θ) eθ

>α−γψ(θ) = eθ
>(α+u(x))−(γ+1)ψ(θ)

= π(θ | α + u(x), γ + 1)

which (as claimed) has the same form as the prior.

1.3 Computational Issues in Bayesian Modeling

Selecting an appropriate prior is a key component of Bayesian modeling. With only a finite amount of data, the
prior can have a very large influence on the posterior. It is important to be aware of this and to understand the
sensitivity of posterior inference to the choice of prior. In practice it is common to use non-informative
priors to limit this influence. When possible conjugate priors are often chosen for tractability reasons.

A common misconception is that the only advantage of the Bayesian approach over the frequentist approach is
that the choice of prior allows us to express our prior beliefs on quantities of interest. In fact there are many
other more important advantages including modeling flexibility via MCMC, exact inference rather than
asymptotic inference, the ability to estimate functions of any parameters without “plugging” in MLE estimates,
more accurate estimates of parameter uncertainty, etc. Of course there are disadvantages to the Bayesian
approach as well. These include the subjectivity induced by choice of prior as well high computational costs.
Despite differences between the Bayesian and frequentist approaches we do have the following important and
satisfying result.

Theorem 2 (Bernstein-von Mises) Under suitable assumptions and for sufficiently large sample sizes,the
posterior distribution of θ is approximately normal with mean equal to the true value of θ and variance equal to
the inverse of the Fisher information matrix.

The Bernstein-von Mises Theorem implies that Bayesian and MLE estimators have the same large sample
properties. This is not really surprising since the influence of the prior should diminish with increasing sample
sizes. But this is a theoretical result and we often don’t have “large” sample sizes so it’s quite possible for the
posterior to be (very) non-normal and even multi-modal. Moreover, the “suitable assumptions” mentioned in
the theorem don’t hold in many interesting models, including those for example where the number of parameters
grows with the number of data-points.

Most of Bayesian inference is concerned with (simulating from) the posterior

π(θ | x) ∝ π(θ)p(x | θ) (4)

without knowing the constant of proportionality in (4). This leads to the general sampling problem:

The Sampling Problem

Suppose we are given a distribution function

p(z) =
1

Zp
p̃(z) (5)

where p̃(z) ≥ 0 is easy to compute but Zp is (too) hard to compute. This very important situation arises in
several contexts:

1. In Bayesian models where p̃(θ) := p(x | θ)π(θ) is easy to compute but Zp := p(x) =
∫
θ
π(θ)p(x | θ)dθ

can be very difficult or impossible to compute.

2. In models from statistical physics, e.g. the Ising model, we only know p̃(z) = e−E(z), where E(z) is an
“energy” function. (The Ising model is an example of a Markov network or an undirected graphical model.)
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3. Dealing with evidence in directed graphical models such as belief networks aka directed acyclic graphs.

The sampling problem is the problem of simulating from p(z) in (5) without knowing the constant Zp. While
the acceptance-rejection algorithm can be used, it is very inefficient in high dimensions and an alternative
approach is required. That alternative approach is Markov Chain Monte-Carlo (MCMC).

2 Markov Chain Monte-Carlo (MCMC)

MCMC algorithms were originally developed in the 1940’s by physicists at Los Alamos. These physicists included
Ulam (inspired by playing solitaire!), Von Neumann (who developed the acceptance-rejection algorithm) and
others. They were interested in modeling the probabilistic behavior of collections of atomic particles. They could
not do this analytically but they wondered if they could use simulation. Simulation was difficult as the
normalization constant Zp was not known. Moreover, simulation (as a computational tool) hadn’t (why?) been
“discovered” yet although simulation ideas had been around for some time – e.g. Buffon’s needle (1700’s), Lord
Kelvin (1901) and Fermi (1930’s). (In fact the term “Monte-Carlo” was coined at Los Alamos.)

Ulam and Metropolis overcame this problem by constructing a Markov chain for which the desired distribution
was the stationary distribution of the Markov chain. They then only needed to simulate the Markov chain until
stationarity was achieved. Towards this end, they introduced the Metropolis algorithm and its impact was
enormous. Afterwards MCMC was introduced to statistics and generalized with the Metropolis-Hastings
algorithm (1970) and the Gibbs sampler of Geman and Geman (1984).

2.1 Markov Chains

Before describing the basic MCMC algorithm we must first recall some ideas from the theory of Markov chains.
We have the following definitions.

Definition 1 A sequence of random variables {X1,X2, . . . ,Xt} on a discrete state space Ω is called a
(first-order) Markov Chain if

p(Xt = xt | Xt−1 = xt−1, . . . ,X1 = x1) = p(Xt = xt | Xt−1 = xt−1).

We will restrict ourselves to time-homogeneous Markov chains so that

p(Xt = xt | Xt−1 = xt−1) = P(xt | xt−1) ∈ RΩ×Ω

Note it’s easy to check that [p(Xt+1 = xt | Xt−1 = xt−1)](xt,xt−1)∈Ω = P2.

Definition 2 A Markov chain is called ergodic if there exists r such that Pr > 0

We note that the ergodicity of a Markov chain is equivalent to the Markov chain being:

1. Irreducible: For all x,y ∈ Ω, there exists r(x,y) s.t. Pr(x,y)(x,y) > 0

2. Aperiodic: For all x ∈ Ω, GCD
{
r : P r(x,x) > 0

}
= 1.

Definition 3 A stationary distribution of a Markov chain is a distribution π on Ω such that

π(y) =
∑
x∈Ω

P (y | x)π(x). (6)

We have the following important result.

Theorem 3 A finite ergodic Markov Chain has a unique stationary distribution.
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Definition 4 The total variation distance, dTV (µ, ν), between two probability measures µ, ν on Ω is defined as

‖µ− ν‖TV := max
S⊂Ω
{µ(S)− ν(S)} =

1

2

∑
z∈Ω

|µ(z)− ν(z)|

The mixing time function, τmix(ε), is defined as the time until the total variation distance to π is below ε. It can
be shown to satisfy1

τmix(ε) := max
x0∈Ω

min
{
t : ‖P t(·,x0)− π(·)‖TV ≤ ε

}
∼ ln

(1

ε

)
.

Definition 5 A Markov chain is said to be reversible if there exists a probability distribution π on Ω such
that

P (x | y)π(y) = P (y | x)π(x) (7)

It’s easy to check that if π satisfies (7) then it is the stationary distribution of the Markov chain since then we
have ∑

x

P (y | x)π(x) =
∑
x

P (x | y)π(y) = π(y)

which is (6). Note that (7) implies the chain moves from x to y at the same rate as it moves from y to x
(when in equilibrium). For this reason (7) is often called the detailed balance equation. Satisfying the
detailed balance equation is a sufficient (but not necessary) condition for π to be a stationary distribution We
will also want to have ergodicity to guarantee that π is the stationary distribution.

Exercise 3 What is the stationary distribution for a reversible symmetric Markov chain?

There are analogous definitions and results for Markov chains on continuous state spaces that we will not state
here.

2.2 The Metropolis-Hastings Algorithm

Returning to our sampling problem, suppose we want to sample from a distribution p(x) := p̃(x)/Zp. To do this
we first construct a (reversible) Markov chain as follows. Let Xt = x be the current state. We then perform the
following two steps repeatedly:

1. Generate Y ∼ Q(· | x) for some Markov transition matrix Q.

Let y be the generated value.

2. Set Xt+1 = y with probability α(y | x) := min
{
p̃(y)
p̃(x) ·

Q(x|y)
Q(y|x) , 1

}
.

Otherwise set Xt+1 = x.

Claim: The resulting Markov chain is reversible with stationary distribution p(x) = p̃(x)/Zp. We can therefore
sample from p(x) by running the algorithm until stationarity is achieved and then using generated points as our
samples. Note that Zp is not required for the algorithm! Note also that if Y = y is rejected then the current
state x becomes the next state so that Xt = Xt+1 = x. (We are assuming that ergodicity is also satisfied —
this is generally straightforward to check in a given application.)

1We would like to have similar properties for continuous sample spaces!
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Proof of Claim: We simply check that p(x) satisfies the detailed balance equations. We have

α(y | x)Q(y | x)︸ ︷︷ ︸
P (y|x)

p(x) = min

{
p(y)

p(x)
· Q(x | y)

Q(y | x)
, 1

}
Q(y | x)p(x)

= min {Q(x | y)p(y), Q(y | x)p(x)}

= min

{
1,
p(x)

p(y)
· Q(y | x)

Q(x | y)

}
Q(x | y)p(y)

= α(x | y)Q(x | y)︸ ︷︷ ︸
P (x|y)

p(y)

as desired. There are still some important questions that need to be addressed:

1. How do we determine when stationarity is achieved?

- In general it is difficult to provide a theoretical answer to this question. Instead, we check for
convergence to stationarity on a case-by-case basis using convergence diagnostics. We will
discuss this further in Section 4.2.

2. There are many possible choices of proposal distribution, Q(· | ·). Which one should we use?

- This is an important question since Q(· | ·) influences how much time is required to reach stationarity.
There appears to be relatively few results on this question although rules of thumb and experience /
experimentation do provide (partial) answers. See also the related discussion in Example 5 below.

Exercise 4 Are the samples produced by the MCMC algorithm independent?

Example 4 (Simulating from a Bivariate Gaussian Distribution)

Figure 11.9 (Taken from Bishop’s Pattern Recognition and Machine Learning): A simple illustration using
Metropolis algorithm to sample from a Gaussian distribution whose one standard-deviation contour is shown
by the ellipse. The proposal distribution is an isotropic Gaussian distribution whose standard deviation is
0.2. Steps that are accepted are shown as green lines, and rejected steps are shown in red. A total of 150
candidate samples are generated, of which 43 are rejected.

Figure 11.9 from Bishop’s Pattern Recognition and Machine Learning displays samples from a Gaussian
distribution that were generated using the Metropolis algorithm with an isotropic Gaussian distribution as the
proposal distribution, Q(· | ·). Specifically Q(· | xt) ∼ N2(xt, 0.2× I2) where In denotes the n-dimensional
identity matrix.
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Exercise 5 Can you explain the pattern of accepted and rejected samples in Figure 11.9? This is a general
phenomenon and is important to understand. See also Example 5 below.

Example 5 (Simulating from a Multi-Modal Distribution)

Figure 27.8 (Taken from Barber’s Bayesian Reasoning and Machine Learning): Metropolis-Hastings sam-
ples from a bi-variate distribution p(x1, x2) using a proposal q̃(x′|x) = N(x′|x, I). We also plot the iso-
probability contours of p. Although p(x) is multi-modal, the dimensionality is low enough and the modes
sufficiently close such that a simple Gaussian proposal distribution is able to bridge the two modes. In higher
dimensions, such multi-modality is more problematic.

Figure 27.8 from Barber’s Bayesian Reasoning and Machine Learning displays samples from a bi-modal density
that were generated using a bivariate normal proposal. In general, simulating from multi-modal distributions
using MCMC can be challenging, particularly in high-dimensional problems.

Exercise 6 Consider carefully the following questions all of which refer to Figure 27.8. (Understanding them is
key to understanding the issues that arise when simulating from multi-modal distributions.)

1. Suppose instead of using a N(x′|x, I) proposal we instead used a N(x′|x, σI) with σ << 1 a constant that
is very small. How do you think the algorithm would perform then? Specifically, do you think convergence
to stationarity would happen “quickly”?

2. What might be a solution to the problem outlined in Q1?

3. If you increased σ what effect will this have on the Metropolis-Hastings algorithm?

3 Gibbs Sampling

Gibbs sampling2 is an MCMC sampler introduced by Geman and Geman in 1984. Let x(t) ∈ Rm denote the
current sample. Then Gibbs sampling proceeds as follows:

1. Pick an index k ∈ {1, . . . ,m} either via round-robin or uniformly at random

2. Set x
(t+1)
j = x

(t)
j , for j 6= k, i.e. x

(t+1)
−k = x

(t)
−k

3. Generate x
(t+1)
k ∼ p(xk | x(t)

−k)

2The algorithm is named after the physicist J. W. Gibbs who died approx. 80 years earlier in 1903.
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In Gibbs only one component of x is updated at a time. It is common to simply order the m components and

update them sequentially. We can then let x
(t+1)
k be the value of the chain after all m updates rather than each

individual update. Gibbs sampling is a very popular method for applications where the conditional distributions,

p(xj | x(t)
−k), are easy to simulate from. This is the case for for conditionally conjugate models and others.

It is easy to see that Gibbs sampling is a special case of Metropolis-Hastings sampling with

Qk(y | x) =

{
p(yk | x−k) y−k = x−k
0 otherwise.

and that each component update will be accepted with probability 1. One must be careful, however, that the
component-wise Markov Chain is ergodic as discussed earlier. See Barber’s Figure 27.5 in Section 3.1 for an
example where the chain is not ergodic in which the Gibbs sampler would fail to converge to the desired
stationary distribution.

Example 6 (A Simple Example)
Consider the distribution

p(x, y) =
n!

(n− x)!x!
y(x+α−1)(1− y)(n−x+β−1), x ∈ {0, . . . , n}, y ∈ [0, 1]. (8)

It is hard to simulate directly from p(x, y) but the conditional distributions are easy to work with. We see that

• p(x | y) ∼ Bin(n, y)

• p(y | x) ∼ Beta(x+ α, n− x+ β)

and since it’s easy to simulate from each conditional, it’s easy to run a Gibbs sampler to simulate from the joint
distribution.

Exercise 7 Can you identify a situation where the distribution of (8) might arise? Hint: Refer to one of our
earlier examples. (Note that the marginal distribution of x has a beta-binomial distribution.)

Example 7 (Hierarchical Models)

Table 11-2 (Taken from Bayesian Data Analysis, 2nd edition by Gelman et al.): Coagulation time in
seconds for blood drawn from 24 animals randomly allocated to four different diets. Different treatments
have different numbers of observations because the randomization was unrestricted. From Box, Hunter, and
Hunter (1978), who adjusted the data so that the averages are integers, a complication we ignore in our
analysis.

Gibbs sampling is particulary suited for hierarchical model, an important class of models throughout statistics
and machine learning. We consider here an example from Bayesian Data Analysis by Gelman et al. and the data
is presented in Table 11-2 above. The data-points yij , for i = 1, . . . , nj and j = 1, . . . , J are assumed to be
independently normally distributed within each of J groups with means θj and common variance σ2. That is,

yij | θj ∼ N(θj , σ
2).
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The total number of observations is n =
∑J
j=1 nj . Group means are assumed to follow a normal distribution

with unknown mean µ and variance τ2

θj ∼ N(µ, τ2).

A uniform prior is assumed3 for (µ, log σ, τ) which is equivalent to assuming (why?) that p(µ, log σ, log τ) ∝ τ
The posterior is then given by

p(θ, µ, log σ, log τ | y) ∝ τ
J∏
j=1

N
(
θj | µ, τ2

) J∏
j=1

nj∏
i=1

N
(
yij | θj , σ2

)
. (9)

We will see from (9) that all conditional distributions required for Gibbs sampler have simple conjugate forms:

1. Conditional Posterior Distribution of Each θj

We simply need to gather the terms (from the posterior in (9)) that only involve θj and then simplify to
obtain

θj | (θ−j , µ, σ, τ,y) ∼ N
(
θ̂j , Vθj

)
(10)

where

θ̂j :=
1
τ2µ+

nj
σ2 ȳ.j

1
τ2 +

nj
σ2

and Vθj :=
1

1
τ2 +

nj
σ2

.

These conditional distributions are independent so generating the θj ’s one at a time is equivalent to
drawing θ all at once.

2. Conditional Posterior Distribution of µ

Again, we simply gather terms from the posterior that only involve µ and then simplify to obtain

µ | (θ, σ, τ,y) ∼ N

(
µ̂,
τ2

J

)
(11)

where µ̂ := 1
J

∑J
j=1 θj .

3. Conditional Posterior Distribution of σ2

Gathering terms from the posterior that only involve σ and then simplifying, we obtain

σ2 | (θ, µ, τ,y) ∼ Inv-χ2
(
n, σ̂2

)
(12)

where σ̂2 := 1
n

∑J
j=1

∑nj
i=1 (yij − θj)2.

4. Conditional Posterior Distribution of τ2

Again, we gather terms from the posterior that only involve τ and then simplify to obtain

τ2 | (θ, µ, σ,y) ∼ Inv-χ2
(
J − 1, τ̂2

)
(13)

where τ̂2 := 1
J−1

∑J
j=1 (θj − µ)

2.

To start the Gibbs sampler we only (why?) need starting points for θ and µ and then we use (10) to (13) to
repeatedly generate samples from the conditional distributions.

3If a uniform prior was assigned to log τ then the posterior would be improper as discussed in Gelman et al. This emphasizes
the importance of understanding the issues associated with choosing priors. We have not discussed these issues in these lecture
notes but they are important.
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Other Variations of Gibbs Sampling

Instead of updating just one component at a time we can also split x into blocks and update one block at a
time. This is known as blocked Gibbs sampling. And if it’s not possible to simulate directly from one or
more of the conditional distributions then we can use rejection-sampling or Metropolis-Hastings sampling for
those updates. This latter approach is sometimes called Metropolis-within-Gibbs.

Finally, suppose for example that we have a posterior defined over three variables p(α, β, γ) ∝ g(α, β, γ). If γ is
not of interest it may be possible to marginalize, i.e. integrate, it out to compute p(α, β) ∝ h(α, β) in which
case we just need to run the Gibbs sampler on α and β. Such an approach is often called a collapsed Gibbs
sampler. A common application of collapsed Gibbs sampling is in the LDA model of Example 12 where the β
and θ vectors can be marginalized so that the resulting Gibbs sampler just samples the zdi ’s.

Exercise 8 Does the collapsed Gibbs sampler remind you of any variance reduction technique? If so, which
one and why?

Remark 1 Sometimes it can be very convenient to de-marginalize by introducing additional random
variables into the problem. See, for example, Example 9.

3.1 Difficulties With Gibbs Sampling

Gibbs sampling is a very popular MCMC technique that is widely used. It does have some potential drawbacks,
however. First, we need to be able to show that the Gibbs sampler Markov chain is ergodic. This will obviously
be the case in many circumstances but it may sometimes be an issue. For example, Figure 27.5 from Barber’s
BRML displays a 2-dimensional example where the chain is not irreducible.

Figure 27.5 (Taken from Barber’s Bayesian Reasoning and Machine Learning): A two dimensional distribu-
tion for which Gibbs sampling fails. The distribution has mass only in the shaded quadrants. Gibbs sampling
proceeds from the lth sample state (xl1, x

l
2) and then sampling from p(x2|xl1), which we write (xl+1

1 , xl+1
2 )

where xl+1
1 = xl1. One then continues with a sample from p(x1|x2 = xl+1

2 ), etc. If we start in the lower left
quadrant and proceed this way, the upper right region is never explored.

A second problem that often arises with Gibbs sampling is that the samples might be strongly correlated
(negatively or positively). In that event it may take too long to reach the stationary distribution. This
phenomenon is discussed in the captions for Figure 27.7 from Barber’s BRML and Figure 11.11 from Bishop’s
PRML, both of which are displayed below.

When the variables are very correlated a common strategy (to overcome this weakness) is to perform a simple
transformation of variables so that the transformed variables are approximately independent.

Exercise 9 Suppose the random variables x1, . . . , xd are independent. How long do you think it will take the
Gibbs sampler to reach stationarity in that case?
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Figure 11.11 (Taken from Bishop’s Pattern Recognition and Machine Learning): Illustration of Gibbs
sampling by alternate updates of two variables whose distribution is a correlated Gaussian. The step size is
governed by the standard deviation of the conditional distribution (green curve), and is O(l), leading to slow
progress in the direction of elongation of the joint distribution (red ellipse). The number of steps needed to
obtain an independent sample from the distribution is O((L/l)2).

Figure 27.7 (Taken from Barber’s Bayesian Reasoning and Machine Learning): Two hundred Gibbs samples
for a two dimensional Gaussian. At each stage only a single component is updated. (a): For a Gaussian
with low correlation, Gibbs sampling can move through the likely regions effectively. (b): For a strongly
correlated Gaussian, Gibbs sampling is less effective and does not rapidly explore the likely regions.

The following example provides a cautionary example highlighting the dangers of blindly running a Gibbs
sampler for a given set of conditional distributions.

Example 8 (From Casella and George, 1992)
The fact that Gibbs sampling works tells us that the conditional distributions are sufficient to define the joint
distribution. But there is a subtle issue here as it is not the case that a set of proper well-defined conditional
distributions will determine a proper marginal. Consider for example the following 2-dimensional example with

f(x | y) = ye−yx, 0 < x <∞ (14)

f(y |x) = xe−xy, 0 < y <∞ (15)

so that both conditionals are exponential distributions (and therefore well-defined). If we apply a Gibbs sampler
here, however, we will not obtain a sample from any marginal or joint distribution. This is because (14) and
(15) do not correspond to any joint distribution on (x, y).
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4 MCMC Convergence and Output Analysis

After running an MCMC we need to analyze the output in order to understand what the data is telling us about
the quantities of interest.

4.1 MCMC Output Analysis

We are usually interested in scalar-valued functions of the parameter vector θ. Let ψ(θ) be one such function. If
we have n MCMC samples from the stationary distribution then we have n samples of ψ(θ):

{ψ1 := ψ(θ1), . . . , ψn := ψ(θn)} .

The sample mean is then given by ψ̄ = n−1
∑n
i=1 ψ1. Posterior intervals for ψ(θ) can also be calculated:

1. Let L(α1) := α1 lower sample quantile and U(α2) := α2 upper sample quantile of ψ1, . . . , ψn. Then
(L(α1), U(α2)) is a 1− (α1 + α2) posterior interval.

2. If α1 = α2 = α/2 then we obtain an equi-tailed 1− α posterior interval.

3. For a highest posterior density interval we solve (numerically) for α1 and α2 such that α = α1 + α2 and
U(α2)− L(α1) is minimized. Note that this interval could be a union of intervals if the posterior of ψ(θ)
is not unimodal. (Kernel density estimates of the posterior density can be plotted to help determine the
number of modes.)

4.2 MCMC Convergence Diagnostics

Before performing the output analysis we must: (1) ensure the Markov chains have reached stationarity and (2)
only use those samples that have been generated after stationarity has been reached. But it’s impossible to
ensure when these two conditions are satisfied since the Markov chain does not begin with the stationary
distribution. Instead we can use various methods to assess whether or not stationarity appears to have been
reached. These methods include:

1. Visual inspection where we plot variables (of interest) vs iteration #, plot running means of variables (of
interest) etc. This process can be very informative but it also requires “manual” work.

2. Statistical summaries of MCMC output which are designed to diagnose convergence / non-convergence.
These summaries can be programmed and so “manual” labor not required for this. We will consider the
popular Gelman-Rubin approach here but we will not justify everything. (Further details can be found in
Bayesian Data Analysis by Gelman et. al. and also Chapter 20 of SDFE by Ruppert and Matteson.)

The Gelman-Rubin Approach to Diagnosing Convergence

Let m, n and n0 ∈ N with m even. We run m/2 Markov chains for a total of n0 + 2n iterations each. The
chains are begun from over-dispersed starting points. These starting points are usually obtained by generating
them from some over-dispersed distribution. We discard the first n0 samples from each chain – these samples
constitute the burn-in period where the chains are assumed to be in their transient phase. It is common to take
n0 = 2n so the first half of each chain is discarded. The remaining component of each chain is then split into
two (sub-)chains, each containing n samples. This chain splitting is performed to help us determine if each
chain has reached stationarity. At this point we therefore have m chains each containing n samples. Figure 11.2
from Gelman et al. below displays sample points from this process in an example with m = 10 corresponding to
5 chains.

We hope these m× n samples are from the desired stationarity distribution so we check that this appears to be
the case by comparing the between-chain variance with the within-chain variance for all scalar quantities, ψ,
of interest. Because the method is based on means and variances it is generally a good idea to transform the
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Figure 11.2 (Taken from Gelman et al.’s BDA, 2nd ed.): Five independent sequences of a Markov chain
simulation for the bivariate unit normal distribution, with over-dispersed starting points indicated by solid
squares. (a) After 50 iterations, the sequences are still far from convergence. (b) After 1000 iterations, the
sequences are nearer to convergence. Figure (c) shows the iterates from the second halves of the sequences.
The points in Figure (c) have been jittered so that steps in which the random walk stood still are not hidden.

scalar estimands so they are approximately normal. We can achieve this by, for example, taking logs of strictly
positive quantities and taking logits of quantities that must lie in (0, 1).

Let ψij for i = 1, . . . n and j = 1, . . . ,m be the MCMC samples computed after the burn-in period and after
splitting the non-burn-in component of each chain in two. The between- and within-sequence variances, B
and W , are computed as4

B :=
n

m− 1

m∑
j=1

(
ψ̄.j − ψ̄..

)2
W :=

1

m

m∑
j=1

s2
j where s2

j :=
1

n− 1

n∑
i=1

(
ψij − ψ̄.j

)2
and where ψ̄.j := 1

n

∑n
i=1 ψij and ψ̄.. := 1

m

∑m
j=1 ψ̄.j . We can estimate Var (ψ | X) as a weighted average of

W and B with

V̂ar
+

(ψ | X) =
n− 1

n
W +

1

n
B. (16)

Note that V̂ar
+

(ψ | X) overestimates the marginal posterior variance (of ψ) since the starting distribution is
over-dispersed. But it will be unbiased when sampling from the desired stationary distribution.

We also note that for any finite n, it should be the case that W is an underestimate of Var (ψ | X). This follows
since each individual sequence may not yet have had time to explore all of the target, i.e. stationary, distribution.
But W should approach Var (ψ | X) in the limit as n→∞. We therefore monitor convergence through

R̂ :=

√
V̂ar

+
(ψ | X)

W

Note that by the above argument, we should have R̂ > 1 for any finite n but we also have R̂→ 1 as n→∞.
This leads to the following rule of thumb for diagnosing convergence:

Rule of Thumb: Values of R̂ < 1.1 are acceptable but the closer R̂ is to 1 the better. We then monitor R̂ for
all quantities ψ of interest.

4B contains a factor of n because it is based on the variance of the within-sequence means, ψ̄.j , each of which is an average
of n values.



MCMC and Bayesian Modeling 15

The Effective Sample Size

Note that B/n is the sample variance of the m chain means so that B/mn therefore estimates the Monte-Carlo
variance of ψ̄... Suppose now that we could take an independent sample of size neff . The variance of the mean

of this sample would be estimated as V̂ar
+

(ψ | X) /neff . Equating the two estimates yields the effective
sample size, neff , as

neff := mn
V̂ar

+
(ψ | X)

B
(17)

Generally neff < mn since samples within each sequence will be auto-correlated. We can therefore interpret
neff/mn as a measure of the simulation efficiency. Note that if m is small then B will have high sampling
variability in which case neff will be a crude estimate. In this case we might prefer to report min (neff , mn).

5 Further Examples and Applications

Inference in (complex) Bayesian models is typically done via: (1) sampling from the posterior using MCMC
algorithms such as Metropolis-Hastings, Gibbs sampling or auxiliary variable MCMC methods such as slice
sampling and Hamiltonian Monte-Carlo (HMC) or (2) approximating the posterior with more tractable
distributions – a process known as deterministic inference. These deterministic inference methods include
variational Bayes and expectation propagation.

Over the past couple of decades software such as WinBugs, OpenBugs and JAGS have been made freely
available. These software packages use Gibbs sampling to simulate from the posterior and also perform various
convergence diagnostics. More recently STAN has been developed (mainly by researchers at Columbia University)
and this package largely relies on (a version of) HMC5 to overcome the slow mixing / convergence of Gibbs for
very complex models. Because of the development of such software as well as increased computing power,
Bayesian models are now ubiquitous throughout the sciences. In this section we describe some additional
applications while Section 5.1 shows how Gibbs sampling arises naturally when performing inference in directed
graphical models.

Example 9 (Data Augmentation for Binary Response Regression with a Probit Link6)
We have binary response variables y := (y1, . . . , ym) and corresponding to the ith response we have a covariate
vector xi := (xi1, . . . , xik). The probit regression model is, like logistic regression, a generalized linear model
(GLM) except the probability that yi = 1 satisfies

pi := P (yi = 1) = Φ (xi1β1 + · · ·+ xikβk)

where Φ is the CDF of the standard normal distribution. The goal is to estimate β := (β1, . . . , βk) and this can
be done using standard GLM software using the ‘probit’ link function. We will use a Bayesian approach here,
however. If we assume a prior π(β) on β then the posterior density is given by

g(β |y) ∝ π(β)

n∏
i=1

pyii (1− pi)1−yi

= π(β)

n∏
i=1

Φ
(
x>i β

)yi
(1− Φ

(
x>i β

)
)1−yi . (18)

It is not clear how to generate samples of β from the posterior in (18) in a Gibbs sampling framework. A clever
way to resolve this problem is to define latent, i.e. unobserved, variables

zi := xi1β1 + · · ·+ xikβk + εi

5See Appendix A.3 for a description of HMC.
6This example is taken from Bayesian Analysis of Binary and Polychotomous Response Data by Albert and Chib (1993).
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where the εi’s are IID N(0, 1) for i = 1, . . . , n. Note that (why?) pi = P (zi > 0) = Φ(x>i β). We can now
regard the problem as a missing data problem where instead of observing the zi’s we only observe the indicators
yi := 1{zi>0} and our posterior distribution is now over β and z := (z1, . . . , zn). This posterior is given by

g(β, z |y) ∝ g(β, z, y)

= π(β)

n∏
i=1

[
1{zi>0}1{yi=1} + 1{zi≤0}1{yi=0}

]
φ(zi ; x>i β, 1) (19)

where φ(· ; µ, σ2) denotes the PDF for a normal random variable with mean µ and variance σ2. The posterior in
(19) is in a particularly convenient form for Gibbs sampling if we assume π(β) ≡ 1, i.e. a uniform prior on β. In
that case we can use a block Gibbs sampler where we simulate successively from g(β | z,y) and g(z |β,y).
When π(β) ≡ 1 it is relatively(!) easy to see that

g(β | z,y) ∼ MVNk
(
(X>X)−1X>z, (X>X)−1

)
(20)

where MVNk(µ,Σ) denotes a k-dimensional multivariate normal distribution with mean vector µ and
covariance matrix Σ, and X is the design matrix for the problem.

Exercise 10 Justify (20) and then explain how we can also simulate from g(z |β,y).

As a specific example, we consider the data-set on the Donner party, a group of wagon trail emigrants who
struggled to cross the Sierra Nevada mountains in California in 1846-47 with the result being that a large
number of them starved to death. We are interested in estimating the model

P (yi = 1) = Φ (β0 + β1Malei + β2Agei) (21)

where yi = 1 denotes the death of the ith person in the party and yi = 0 denotes their survival. We have two
covariates, Male (1 for males, 0 for females) and Age (in years). Figure 1 displays estimated percentile survival
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Figure 1: Median, 5th and 95% percentile survival rates as a function of age for men

rates for men of various ages based in the Donner party. These quantities were computed by running the block
Gibbs sampler as described above and using the β samples (after convergence had been diagnosed) together
with (21).

In addition to demonstrating ing the power of data augmentation, it is also worth noting that the survival curves
of Figure 1 would be extremely difficult to construct in a non-Bayesian framework, especially when there are
relatively few data-points so that large n asymptotic results do not apply.
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Remark 2 In non-Bayesian problems with latent / hidden variables it is very common to estimate parameters
via the EM algorithm. In Bayesian versions of these problems it is typically the case that a 2-stage Gibbs
sampler can easily be implemented. The first stage simulates the unknown parameters given the data (observed
and hidden) while the second stage simulates the unobserved data given the parameters and observed data.

Example 10 (Asset Allocation with Views)
In finance one can use sophisticated statistical / time series techniques to construct an objective model of
security returns or risk factors. Assuming such a model has been constructed, we let Xt+1 denote the (random)
change in risk factors between dates t and t+ 1. Then all security returns from period t to t+ 1 depend on
Xt+1 only plus idiosyncratic noise. We let f(·) then denote the (objective) distribution of Xt+1 based on all
information available in the market place at date t. The investor would like to construct an optimal portfolio
based on the distribution f(·) as well as her own subjective views of what will happen in the market between
dates t and t+ 1.

Question: How can she do this?

Solution: Let V = g(Xt+1) + ε be a random vector where g(·) is a function representing how these views
depend on Xt+1 and ε is a noise vector reflecting how certain the investor is in her views. We assume ε is
independent of Xt+1 with distribution MVN(0,Σ) say. Suppose now that the investor believes that g(Xt+1)
will equal v. Then we construct the conditional distribution of Xt+1 given V = v and obtain

f(Xt+1 |V = v) ∝ f(Xt+1, v)

= f(v |Xt+1) f(Xt+1) (22)

where f(v |Xt+1) is easily computed given the (user-specified) distribution of ε and f(Xt+1) is the objective
distribution of the risk-factor returns discussed above. We can use MCMC to simulate many samples from (22)
which can then be used to construct an optimal portfolio.

Note that we obtain the famous Black-Litterman model when Xt+1 is the vector of security returns, g(·) is
linear, and all distributions are multivariate normal. In this case the posterior can be calculated analytically.

Example 11 (Optimization via MCMC and Code Breaking)
One day7 a psychologist from California’s state prison system showed up at the consulting service of Stanford’s
Statistics department. The problem was to decode a collection of coded messages – one such sample is
displayed in the figure below. A student in the consulting service guessed (correctly) that it was a simple
substitution cipher so that each symbol represented a letter, number, punctuation mark or a space.

Figure taken from “The Markov Chain Monte Carlo Revolution”, by Persi Diaconis in the Bulletin of the
American Mathematical Society (2008).

7This example is based on the paper “The Markov Chain Monte Carlo Revolution”, by Persi Diaconis in the Bulletin of the
American Mathematical Society (2008).
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The goal then was to crack this cipher and find the function

f : {code space} → {usual alphabet}. (23)

The following solution approach was adopted:

1. Find a text, e.g. War and Peace, and record the first-order transitions, i.e. the proportion of consecutive
text symbols from x to y. This yields a matrix M(x, y) of transition frequencies.

2. We can then define a plausibility to any function f(·) via

Pl(f) :=
∏
i

M (f(si), f(si+1))

where si runs over all the symbols that appear in the coded message. The idea here is that functions with
high values of Pl(f) are good candidates for the decryption code in (23).

3. We therefore search for maximal f(·)′s by running the following MCMC algorithm:

• Start with an initial guess f .

• Compute Pl(f).

• Change to f∗ by making a random transposition of the values f assigns to two symbols.

• Compute Pl(f∗); if this is larger than Pl(f) accept f∗.

• If not, flip a coin where the probability of heads is Pl(f∗)/Pl(f). If the coin toss comes up heads
accept f∗. Otherwise stay at f .

Exercise 11 What type of MCMC algorithm is described in Step 3? Explain what each step is doing.

By running the algorithm for sufficiently many iterations and possibly from randomly chosen starting points we
hope that the algorithm will identify regions of high probability, i.e plausibility.

Example 12 (Topic Modeling and LDA)
Latent Dirichlet Allocation (LDA) is a hierarchical model used to model collections of text documents. Each
document is modeled as a mixture of topics and each topic is then defined as a distribution over the words in
the vocabulary / dictionary. Specifically, we assume there are a total of K topics, a total of D documents and a
total of M words in the dictionary with words numbered from 1 to M . The LDA topic model is then obtained in
the following generative fashion:

1. A topic mixture θd for each document is drawn independently from a DirK(α1) distribution, where
DirK(φ) is a Dirichlet distribution over the K-dimensional simplex with parameters φ = (φ1, . . . , φK).

2. Each of the K topics {βk}Kk=1 are drawn independently from a DirM (γ1) distribution.

3. Then for each of the i = 1 . . . , Nd words in document d, an assignment variable zdi is drawn from
Mult(θd).

4. Conditional on the assignment variable zdi , word i in document d, denoted as wdi , is drawn independently
from Mult(βzdi )

This is a hierarchical model and it’s straightforward to write out the joint distribution of all the data. Only the
wdi ’s are observed, however, and so we need to use the corresponding conditional distribution to learn the topic
mixtures for each document, the K topic distributions and the latent variables zdi . This is typically done via
Gibbs sampling or variational Bayes. Figure 2 displays some of the main topics found in a sample from the
conditional distribution.
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Figure 2: Taken from Introduction to Probabilistic Topic Models by D.M. Blei (2011).

5.1 An Extremely Brief Detour on Directed Graphical Models

Graphical models are used to describe dependence / independence relationships between random variables and
these models are now very popular in the machine learning community. There are two main types of graphical
models:

1. Undirected graphical models which are also known as Markov networks.

2. Directed graphical models which are also known as Bayesian networks. Belief networks, also
known as directed acyclic graphs (DAG’s), are an important subclass.

A graphical model contains nodes and (directed or undirected) edges. Each node in the graph corresponds to a
random variable with the edge structure of the graph (and edge direction in case of directed graphs) determining
the various conditional independence / dependence relationships between the random variables. These
relationships often enable inference, e.g. computation of conditional distributions, to be performed very
efficiently. We only consider directed graphical models here.

Directed Acyclic Graphs (DAGs)

There are no directed cycles in a DAG. This implies there is a node numbering such that any edge in the graph
is always directed from a node to a higher numbered node. Many efficient algorithms exist for performing
inference in belief networks.
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Figure 8.2 Pattern Recognition and Machine

Learning by C. Bishop

Note the ordering of nodes in the DAG of Figure 8.2 which was taken
from Bishop’s PRML. This ordering can be used to write

p(x1, x2, . . . , x7) = p(x7 | x4, x5) · p(x6 | x4) ·
p(x5 | x1, x3) · p(x4 | x1, x2, x3)

p(x3) · p(x2) · p(x1).

More generally for any DAG we have

p(x) =

K∏
k=1

p(xk | pa(xk)) (24)

where pa(x) denotes the “parents” of node xk.

Note that it is by definition that (24) must hold for any DAG representing p(x). Specifically, the DAG structure
models the fact for all k we have p(xk | x1, . . . , xk−1) = p(xk | pa(xk)). It’s easy (why?) to simulate from a
DAG using (24). Indeed simulating using the representation in (24) is called ancestral sampling. It is not so
easy, however, to simulate from the joint conditional distribution when some nodes are observed but we will see
that Gibbs sampling is easy to implement in that case.

Using Gibbs Sampling to Deal with Evidence in a Belief Network

Suppose now that x3, x5 and x6 have been observed and we want to compute the conditional distribution of the
unobserved variables. Using (24) this conditional distribution satisfies

p(x1, x2, x4, x7 |x3, x5, x6) =
p(x1, x2, x3, x4, x5, x6, x7)

p(x3, x5, x6)

=
p(x1, x2, x3, x4, x5, x6, x7)∑

x1,x2,x4,x7
p(x1, x2, x3, x4, x5, x6, x7)

=

∏7
k=1 p(xk | pa(xk))∑

x1,x2,x4,x7

∏7
k=1 p(xk | pa(xk))

(25)

where x3, x5 and x6 are “clamped” at their observed values in (25). Computing the normalizing factor, i.e. the
denominator, in (25) can be computationally demanding — especially for very large DAGs. Note also that the
ordering of the original DAG (with no observed variables) is now lost. e.g. x1 and x3 are no longer independent
once x5 has been observed.

Exercise 12 Can we use still ancestral sampling to simulate from p(x1, x2, x4, x7 |x3, x5, x6)? If so, is it
efficient?

In fact we can simulate efficiently from p(x1, x2, x4, x7 |x3, x5, x6) using Gibbs sampling. To see this note that
at each step of the Gibbs sampler we need to simulate from p(xi | x−i) where any observed values in x−i are
clamped at these values throughout the simulation. But it’s easy to see (why?) that

p(xi | x−i) =
1

Z
p(xi | pa(xi))

∏
j∈ch(i)

p(xj | pa(xj))

where pa(xi) and ch(i) are the parent and children nodes, respectively, of xi, and Z is the (usually easy to
compute) normalization constant

Z =
∑
xi

p(xi | pa(xi))
∏

j∈ch(i)

p(xj | pa(xj)).
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Figure 3: Taken from “Strategies for Petroleum Exploration Based on Bayesian Networks: a Case Study”,
by Martinelli et al. (2012).

Note that xi ∈ pa(xj) for each j ∈ ch(i) and so the product term in the above expression for Z is required. The
parents of xi, the children of xi and the parents of the children of xi are known collectively as the Markov
blanket of xi.

Exercise 13 When using a Gibbs sampler to simulate from a DAG given some nodes have been observed, is
the sampler guaranteed to succeed? If not, what can go wrong?

Example 13 (Oil Exploration and Inference Using a DAG)
A directed graphical model is used to model the geology of a particular area below the seabed of the North Sea.
This geology is complex and locating oil requires both exploration and inference. A specific example of such an
oil exploration network is displayed in Figure 3. A decision has been made to drill at node A and the figures
display the changes in probabilities of oil being present at every other node conditional on:

(i) Oil being found at A (left-hand heat-map).

(ii) Only partial oil being found at A (right-hand heat-map).

The probabilities, and therefore all of the changes in probabilities, can be estimated using Gibbs sampling as
described above. (It’s worth mentioning that for relatively small networks, there are algorithms, e.g. the
junction tree algorithm, that can compute these (conditional) probabilities exactly.)
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A Appendix

We briefly discuss a few other important topics in Bayesian modeling and MCMC here.

A.1 Bayesian Model Checking

After (successfully) confirming the stationarity of the Markov chains, we can use the samples to estimate various
quantities of interest. But often this is just part of a bigger analysis. In particular we often need to: (1) assess
the model’s performance and (2) choose among competing models. There are many ways to assess model
performance including:

1. Comparing posterior distributions of parameters to domain knowledge.

2. Simulating samples from the posterior predictive distribution and checking them for “reasonableness”. We
can do this by first simulating θ from the posterior distribution (we already have these samples from the
MCMC!) and then simulating Xrep | θ.

3. Posterior predictive checking: in this case we design test statistics of interest and compare their
posterior predictive distributions (using simulated samples) to observed values of these test statistics. This
can be viewed as a form of internal model validation.

Example 14 (From Bayesian Data Analysis by Gelman et al.)
Consider a sequence of coin tosses y = [y1, . . . , yn]. We model them as a specified number of IID Bernoulli
trials with a uniform prior on the probability of heads, θ. If we let s :=

∑
yi then the posterior is given by

p(θ | y) ∝ p(y | θ)p(θ)
= θs(1− θ)n−s

which we recognize as the Beta (
∑
yi + 1, n−

∑
yi + 1) distribution. Suppose now that the data was obtained

in the following order
y = [1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0]

so n = 20 and s = 7.

Questions: Is this a good model? Do the data look IID (given θ) as we have assumed?

We first note that the sequence is strongly autocorrelated with T (y) = 3 where T (·) counts the number of
switches between 0 and 1. So let’s simulate m samples T (yrep1 ), . . . , T (yrepm ) from the posterior predictive
distribution and compare them with T (y). The results are displayed in Figure 4 below where we took m = 10k
and found only 2.8% of the samples were less than or equal to T (y) = 3. This constitutes pretty strong
evidence against the model, in particular against the assumption of IID observations given θ. Posterior predictive
checks are a form of internal model validation and in this case suggests the model is inadequate and should be
improved / expanded.

Bayesian Data Analysis (BDA) by Gelman et al. should be consulted for a far more detailed introduction to
model checking as well as many more examples.

A.2 Bayesian Model Selection

Suppose now that we have several “good” models that have “passed” various posterior predictive checks etc.
How should we pick the “best” model? There are also several approaches to this model selection problem:

1. Information criteria approaches that estimate an in-sample error and penalize the effective number of
parameters, pD. Two common criteria are:
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Figure 4: Posterior predictive checking

(i) The deviance information criterion (DIC). This is only suitable for certain types of Bayesian models.

(ii) The Watanabe-Akaike information criterion (WAIC). This is a recently developed criterion and is
more generally applicable than DIC. It is not suitable, however, for models where the data is
dependent (given θ) like time-series and spatial models.

Note that pD is a random variable that depends on the data and it’s estimated differently for DIC and
WAIC. When comparing models, a smaller DIC or WAIC is “better”. Both DIC and WAIC are easily
estimated from the output of an MCMC which is a useful feature given the computational demands of
Bayesian modeling.

2. Bayesian cross-validation where the data is divided into K folds. The error on each fold is computed
by fitting the model on the remaining K − 1 folds. The error can be computed using either of:

(i) The mean-squared prediction error which requires the predicted values of the hold-out data. We can
use the posterior predictive mean which can often be estimated from MCMC.

(ii) The log posterior predictive distribution evaluated at the hold-out data.

Cross-validation can clearly be computationally very demanding.

3. Bayes factors can also be useful when choosing among competing models. Specifically, given two
models H1 and H2, the Bayes factor, B(H2;H1), is

B(H2;H1) :=
p(X | H2)

p(X | H1)
=

∫
θ2
p(X | θ2, H2)p(θ2 | H2) dθ2∫

θ1
p(X | θ1, H1)p(θ1 | H1) dθ1

(26)

Note that the Bayes factor is not defined if the priors p(θi | Hi) are not proper. In general we need to
estimate the two integrals in (26) in order to estimate B(H2;H1).

Bayesian Model Averaging (BMA) is a related technique that performs inference using a weighted
average of several “good” models with the weights computed via Bayes factors.

It is perhaps worth emphasizing that Bayesian methods and classical frequentist methods differ8 significantly
from each other on the topic of model comparison and selection. In contrast, Bayesian and frequentist
approaches often lead to similar results when evaluating a fixed and given model.

8See, for example, Chapters 28 and 37 of David MacKay’s excellent text Information Theory, Inference, and Learning
Algorithms which is freely available online from Cambridge University Press.
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A.3 Hamiltonian Monte-Carlo

A real concern with MCMC methods is that the Markov chains move through all areas of significant probability.
This is guaranteed in theory but in practice too many iterations may be required. Consider, for example, a
Metropolis-Hastings algorithm with a local proposal distribution, i.e. a proposal that’s unlikely to propose a
candidate point xt+1 that’s far from xt. If the target distribution has many modes or “islands” of high density,
then it will take a long time to move from one island to another. But if we use a global proposal distribution,
i.e. one with very large variance, then the chance of landing on a high-density island is small9. Auxiliary variable

MCMC methods such as Hamiltonian Monte-Carlo (HMC) or the slice sampler have been developed to address
these concerns. These latter methods have become very popular in recent years and (with Gibbs sampling) have
begun to render (basic) Metropolis-Hastings almost obsolete. In this subsection we will discuss the HMC
approach, an MCMC method for continuous variables. It makes non-local jumps possible so that we can more
easily jump from one mode to another. To begin, we write the target distribution as

p(x) =
1

Zx
eHx(x)

where as usual Zx is unknown. We now introduce a new auxiliary variable / vector y with

p(y) =
1

Zy
eHy(y).

We typically choose y to be Gaussian so that Hy(y) = − 1
2y>y. We also assume x and y are independent so

that

p(x,y) = p(x)p(y) =
1

ZxZy
eHx(x)+Hy(y) =

1

Z
eH(x,y)

where Z := ZxZy and H(x,y) := Hx(x) +Hy(y). The goal is to define an MCMC algorithm for generating
samples of (x,y) with the stationary distribution p(x,y). Then once stationarity is reached we can simply
discard the y samples. The “trick” is to define the proposal distribution so that we can easily jump from one
mode (of p(x)) to another.

We can achieve this as follows: given a current sample (x,y) we:

1. Simulate y′ from p(y)

2. And then simulate x′ from p(x | y′) using a Metropolis-Hastings sampler.

We want the new sample (x′,y′) to satisfy

H(x′,y′) ≈ H(x,y)

so that it will be accepted with high probability in the M-H algorithm. We can achieve this by moving
(approximately) along a contour of H from (x,y) to (x′,y′) where (x′,y′) = (x + ∆x, y + ∆y). A first-order
Taylor approximation implies

H(x′,y′) = H(x + ∆x, y + ∆y)

≈ H(x,y) +∇xHx(x)>∆x +∇yHy(y)>∆y (27)

To move (approximately) along a contour of H would like to set sum of last two terms in (27) to 0. This is a
1-dimensional constraint so many solutions are possible. To identify a particular solution it is customary to use
so-called Hamiltonian dynamics whereby

∆x := ε∇yH(y) and ∆y := −ε∇xH(x)

9These observations are the “solution” to the questions we posed in Exercise 6.
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so that H(x′,y′) ≈ H(x,y) as desired. We take L such Hamiltonian steps all with the same value of ε which is
drawn randomly according to

ε =

{
+ε0, with prob. 0.5
−ε0, with prob. 0.5

so that the proposal distribution, Q(· | ·), is symmetric.

The variable x has the interpretation of position and the auxiliary variable y has the interpretation of
momentum. Typically, y has the same dimension as x so there is one momentum variable for each space
variable. The Hamiltonian dynamics, i.e movement along a contour of H, can be implemented in a more
sophisticated way than (27) via so-called leapfrog discretization. See, for example, Bishop’s PRML for
details. In order to implement the algorithm we need to specify the parameters L and ε0. The success10 of the
algorithm is quite sensitive to these choices. A high-level version of the HMC algorithm is given in Algorithm
27.4 below which is taken from Barber’s BRML.

Figure 27.9 (also taken from from Barber’s BRML) displays HMC in action in a one-dimensional example where
the distribution is bimodal. The distribution becomes bivariate with the addition of the auxiliary variable y and
we see in part (c) how the Hamiltonian dynamics enables the sampler to easily cross between the two islands of
high probability, i.e. the two modes.

A.4 Empirical Bayes

We now briefly discuss the empirical Bayes approach to the selection of prior distributions. Note that a full
Bayesian approach first specifies a prior (including hyper-priors as necessary), then specifies the likelihood and
finally combines the two via Bayes Theorem to construct the posterior. What is relevant for our discussion here
is that in a full Bayesian approach the data plays no role in specifying the prior. This is not the case with
empirical Bayes as we shall see in the following11 example.

Example 15 (Robbins’ Formula)
Table 1 displays one year’s worth of claims data for a European insurance company. There were a total of 9461
policy holders of whom 7840 made 0 claims, 1317 made 1 claim, 239 made 2 claims etc. We are concerned with
estimating the number of claims each policy holder will make next year. Towards this end we let Xk denote the
number of claims made in a single year by policy holder k and we assume it follows a Poisson distribution with
parameter θk so that

10Indeed improved versions of Hamiltonian MC choose these parameters adaptively and these versions are implemented in
the new and popular STAN software which was developed mainly by a team at Columbia University!

11Our brief development of empirical Bayes follows Section 6.1 of the recent text Computer Age Statistical Inference: Al-
gorithms, Evidence, and Data Science by Efron and Hastie. The rest of that chapter as well as Chapter 21 and other more
advanced applications elsewhere in the text demonstrate the now widespread applicability of the empirical Bayes approach.
The text is free to download from Cambridge University Press if you’re on the Columbia network.
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Figure 27.9 (Taken from Barber’s BRML): Hybrid Monte Carlo. (a): Multi-modal distribution p(x) for
which we desire samples. (b): HMC forms the joint distribution p(x)p(y) where p(y) is Gaussian. (c): This
is a plot of (b) from above. Starting from the point x, we first draw a y from the Gaussian p(y), giving
a point (x, y), given by the green line. Then we use Hamiltonian dynamics (white line) to traverse the
distribution at roughly constant energy for a fixed number of steps, giving x′, y′. We accept this point if
H(x′, y′) > H(x, y′) and make the new sample x′ (red line). Otherwise this candidate is accepted with
probability exp(H(x′, y′)−H(x, y′)). If rejected the new sample x′ is taken as a copy of x.

Claims x 0 1 2 3 4 5 6 7
Counts yx 7840 1317 239 42 14 4 4 1

Formula (31) .168 .363 .527 1.33 1.43 6.00 1.25 -
Gamma MLE .164 .398 .633 .87 1.10 1.34 1.57 -

Table 1: Counts yx of number of claims x made in a single year by 9461 automobile insurance policy holders.
Robbins’ formula (31) estimates the number of claims expected in a succeeding year, for instance 0.168 for
a customer in the x = 0 category. Parametric maximum likelihood analysis based on a gamma prior gives
less noisy estimates.

P (Xk = x) = pθk(x) :=
e−θkθxk
x!

, x = 0, 1, 2, . . . . (28)

We also assume that the θk’s are random with prior g(θ). Consider now an individual customer with number of
claims x last year. Then we have (why?)

E[θ |x] =

∫∞
0
θpθ(x)g(θ) dθ∫∞

0
pθ(x)g(θ) dθ

. (29)

Note that (29) would also yield the expected number of claims made by the customer next year since (why?)
E[θ |x] = E[X |x]. So formula (29) is what the insurance company needs to answer its question if it already
knows the prior g(·). For example, if the company assumes g is Gamma(ν, σ) with ν and σ known, then there is
no problem calculating (29). But how would we choose “good” values of ν and σ? A typical Bayesian approach
would in fact assume they are unknown and would therefore place a hyper-prior (with known parameters) on
(ν, σ). In that case considerably more work would be required to compute g and calculate (29).

Alternatively we can be a little clever! Using (28) and (29) we have

E[θ |x] =

∫∞
0

[
e−θθx+1/x!

]
g(θ) dθ∫∞

0
[e−θθx/x!] g(θ) dθ

=
(x+ 1)

∫∞
0

[
e−θθx+1/(x+ 1)!

]
g(θ) dθ∫∞

0
[e−θθx/x!] g(θ) dθ

= (x+ 1)
f(x+ 1)

f(x)
(30)
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where f(x) =
∫∞

0
pθ(x)g(θ) dθ is the marginal density of X. From (30) it is clear that to answer the insurance

company’s question we only need f(·) and not g(·). But we have a lot of data and can easily estimate f(·)
directly to obtain Robbins’ approximation

Ê[θ |x] = (x+ 1)
f̂(x+ 1)

f̂(x)

= (x+ 1)
yx+1

yx
(31)

with yx denoting the number of observations with x claims. That is, we estimate f(x) with f̂(x) = yx/N where

N = 9461. We see the values of Ê[θ |x] in the third row of Table 1.

Note that the values at the end of the third row in Table 1 seem to go awry. This is because formula (31) has
become unstable at that point due to the small count numbers in the data for policies that had 5 or more
claims. We can help resolve this issue by using a parametric empirical Bayesian approach in contrast to the
non-parametric approach outlined above.

Example 16 (Parametric Empirical Bayes)
We continue on from Example 15 but now we assume that g is Gamma(ν, σ) with

g(θ) =
θν−1e−θ/σ

σνΓ(ν)
, θ ≥ 0

with (ν, σ) unknown. Instead of placing a (hyper-) prior on (ν, σ) we can estimate them from the data by
explicitly computing (how?) the marginal density f(x) which now has parameters ν and σ. We then simply
compute12 the maximum likelihood estimators ν̂ and σ̂ to obtain

Ê[θ |x] = (x+ 1)
fν̂,σ̂(x+ 1)

fν̂,σ̂(x)
(32)

as our estimator. The fourth row of Table 1 was obtained using (32).

Exercise 14 Explain how you would compute an explicit expression for fν,σ(x) In Example 16.

According to Efron and Hastie, Robbins’ formula came as a surprise to the statistical world since Ê[θk |xk],
unavailable without the prior g, suddenly became available by leveraging the information in data from (a large
number of) similar cases. It’s interesting to note that many eminent statisticians including Robbins, Fisher, Von
Mises and others developed empirical Bayesian estimators but the approach, which was often criticized for being
neither Bayesian nor frequentist, is now quite standard and has grown in popularity in the “big-data” era where
massive parallel data-sets are not quite common.

Section 6.2 of Efron and Hastie describes the first known application of empirical Bayes. It was developed by
Ronald Fisher and he solved a missing-species problem concerned with estimating the number of butterfly
species in Malaysia during World War II. They then go on to describe how the same methods can be (and have
been) used to estimate the total number of words in Shakespeare’s vocabulary.

12We could also use other estimation techniques such as simple moment-matching.


