
IEOR E4602: Quantitative Risk Management
Introduction to Copulas

Martin Haugh
Department of Industrial Engineering and Operations Research

Columbia University
Email: martin.b.haugh@gmail.com

References: Chapter 7 of 2nd ed. of QRM by McNeil, Frey and Embrechts, Chapter 8 of SDAFA by
Ruppert and Matteson, and the book chapter “Coping With Copulas” by Thorsten Schmidt.

mailto:martin.b.haugh@gmail.com


Outline
Introduction
Main Results

Sklar’s Theorem
Copula Invariance Under Monotonic Transformations
The Fréchet-Hoeffding Bounds

Other Examples of Copulas
Measures of Dependence

Spearman’s Rho
Kendall’s Tau
Tail Dependence

Simulating the Gaussian and t Copulas
Estimating Copulas
A Financial Application: Pricing CDOs

A Single-Period CDO
Multi-period CDO’s
Synthetic CDO’s
Calibrating the Gaussian Copula Model

2 (Section 0)



Why Study Copulas?
Copulas separate the marginal distributions from the dependency structure
in a given multivariate distribution.

Copulas help expose the various fallacies associated with correlation.
Copulas play an important role in pricing securities that depend on many
underlying securities

- e.g. equity basket options, collateralized debt obligations (CDO’s),
nth-to-default options.

They provide a source of examples regarding model risk!
- e.g. the (in)famous Gaussian copula model that was used for pricing CDO’s.

But there are problems with copulas as well!
1. Not always applied properly.
2. Generally static in nature.
3. Not easy to estimate in general.

Nevertheless, an understanding of copulas is important in QRM.
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The Definition of a Copula
Definition: A d-dimensional copula, C : [0, 1]d :→ [0, 1] is a cumulative
distribution function (CDF) with uniform marginals.

We write C (u) = C (u1, . . . , ud) for a generic copula and immediately have
(why?) the following properties:

1. C (u1, . . . , ud) is non-decreasing in each component, ui .
2. The ith marginal distribution is obtained by setting uj = 1 for j 6= i and

since it it is uniformly distributed

C (1, . . . , 1, ui , 1, . . . , 1) = ui .

3. For ai ≤ bi , P(U1 ∈ [a1, b1], . . . ,Ud ∈ [ad , bd ]) must be non-negative. This
implies the rectangle inequality

2∑
i1=1

· · ·
2∑

id=1
(−1)i1+···+id C (u1,i1 , . . . , ud,id ) ≥ 0

where uj,1 = aj and uj,2 = bj .

4 (Section 1)



Properties of a Copula
The reverse is also true: any function that satisfies properties 1 to 3 is a copula.
Easy then to confirm that C (1, u1, . . . , ud−1) is a (d − 1)-dimensional copula

- more generally, all k-dimensional marginals with 2 ≤ k ≤ d are copulas.

Recall the definition of the quantile function or generalized inverse: for a CDF,
F , the generalized inverse, F←, is defined as

F←(x) := inf{v : F(v) ≥ x}.

We now recall the following well-known result:

Proposition: If U ∼ U [0, 1] and FX is a CDF, then

P (F←(U ) ≤ x) = FX(x).

In the opposite direction, if X has a continuous CDF, FX , then

FX(X) ∼ U [0, 1].
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Sklar’s Theorem (1959)
Let X = (X1, . . . ,Xd) be a multivariate random vector with CDF FX and with
continuous marginals.

Then (why?) the joint distribution of FX1(X1), . . . ,FXd (Xd) is a copula, CX .

Can we find an expression for CX? Yes! We have

CX(u1, . . . , ud) = P (FX1(X1) ≤ u1, . . . ,FXd (Xd) ≤ ud)
= P

(
X1 ≤ F−1

X1
(u1), . . . ,Xd ≤ F−1

Xd
(ud)

)
= FX

(
F−1

X1
(u1), . . . ,F−1

Xd
(ud)

)
. (1)

Now let uj := FXj (xj) so that (1) yields

FX (x1, . . . , xd) = CX(FX1(x1), . . . ,FXd (xd))

– this is one side of Sklar’s Theorem!
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Sklar’s Theorem (1959)
Consider a d-dimensional CDF, F , with marginals F1, …, Fd . Then there exists a
copula, C , such that

F(x1, . . . , xd) = C (F1(x1), . . . ,Fd(xd)) (2)

for all xi ∈ [−∞, ∞] and i = 1, . . . , d.

If Fi is continuous for all i = 1, . . . , d, then C is unique; otherwise C is uniquely
determined only on Ran(F1)× · · · × Ran(Fd) where Ran(Fi) denotes the range
of the CDF, Fi .

In the opposite direction, consider a copula, C , and univariate CDF’s, F1, . . . ,Fd .
Then F as defined in (2) is a multivariate CDF with marginals F1, . . . ,Fd .
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An Example
Let Y and Z be two IID random variables each with CDF, F(·).

Let X1 := min(Y ,Z ) and X2 := max(Y ,Z ).

We then have

P(X1 ≤ x1, X2 ≤ x2) = 2 F (min{x1, x2}) F(x2) − F (min{x1, x2})2

- can show this by considering separately the two cases
(i) x2 ≤ x1

and
(ii) x2 > x1.

Would like to compute the copula, C (u1, u2), of (X1,X2)!
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An Example
First note the two marginals satisfy

F1(x) = 2F(x) − F(x)2

F2(x) = F(x)2.

Sklar’s Theorem states that C (·, ·) satisfies

C (F1(x1), F2(x2)) = F(x1, x2).

So just need to connect the pieces(!) to obtain

C (u1, u2) = 2 min{1−
√

1− u1,
√

u2}
√

u2 − min{1−
√

1− u1,
√

u2}2.
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When the Marginals Are Continuous
Suppose the marginal distributions, F1, . . . ,Fn, are continuous. Then can show

Fi (F←i (y)) = y. (3)

Now evaluate (2) at xi = F←i (ui) and use (3) to obtain

C (u) = F (F←1 (u1), . . . ,F←d (ud)) (4)

- a very useful characterization!
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Invariance of the Copula Under Monotonic Transformations

Proposition: Suppose the random variables X1, . . . ,Xd have continuous
marginals and copula, CX . Let Ti : R→ R, for i = 1, . . . , d be strictly
increasing functions.
Then the dependence structure of the random variables

Y1 := T1(X1), . . . , Yd := Td(Xd)

is also given by the copula CX .

Sketch of proof when Tj ’s are continuous and F−1
Xj

’s exist:
First note that

FY (y1, . . . , yd) = P(T1(X1) ≤ y1, . . . ,Td(Xd) ≤ yd)
= P(X1 ≤ T−1

1 (y1), . . . ,Xd ≤ T−1
d (yd))

= FX(T−1
1 (y1), . . . ,T−1

d (yd)) (5)

so that (why?) FYj (yj) = FXj (T−1
j (yj)).

This in turn implies
F−1

Yj
(yj) = Tj(F−1

Xj
(yj)). (6)
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Invariance of the Copula Under Monotonic Transformations

Now to the proof:

CY (u1, . . . , ud) = FY
(
F−1

Y1
(u1), . . . ,F−1

Yd
(ud)

)
by (4)

= FX
(
T−1

1
(
F−1

Y1
(u1)

)
, . . . ,T−1

d
(
F−1

Yd
(ud)

))
by (5)

= FX
(
F−1

X1
(u1), . . . ,F−1

Xd
(ud)

)
by (6)

= CX(u1, . . . , ud)

and so CX = CY .
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The Fréchet-Hoeffding Bounds
Theorem: Consider a copula C (u) = C (u1, . . . , ud). Then

max
{

1− d +
d∑

i=1
ui , 0

}
≤ C (u) ≤ min{u1, . . . , ud}.

Sketch of Proof: The first inequality follows from the observation

C (u) = P

 ⋂
1≤i≤d

{Ui ≤ ui}


= 1 − P

 ⋃
1≤i≤d

{Ui > ui}


≥ 1 −

d∑
i=1

P(Ui > ui) = 1− d +
d∑

i=1
ui .

The second inequality follows since
⋂

1≤i≤d{Ui ≤ ui} ⊆ {Ui ≤ ui} for all i. 2
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Tightness of the Fréchet-Hoeffding Bounds
The upper Fréchet-Hoeffding bound is tight for all d.

The lower Fréchet-Hoeffding bound is tight only when d = 2.

Fréchet and Hoeffding showed independently that copulas always lie between
these bounds

- corresponding to cases of extreme of dependency, i.e. comonotonicity and
countermonotonicity.
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Comonotonicity and The Perfect Dependence Copula

The comonotonic copula is given by

M (u) := min{u1, . . . , ud}

- the Fréchet-Hoeffding upper bound.

It corresponds to the case of extreme positive dependence.

Proposition: Let X1, . . . ,Xd be random variables with continuous marginals and
suppose Xi = Ti(X1) for i = 2, . . . , d where T2, . . . ,Td are strictly increasing
transformations. Then X1, . . . ,Xd have the comonotonic copula.

Proof: Apply the invariance under monotonic transformations proposition and
observe that the copula of (X1,X1, . . . ,X1) is the comonotonic copula.
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Countermonotonic Random Variables
The countermonotonic copula is the 2-dimensional copula that is the
Fréchet-Hoeffding lower bound.

It satisfies
W (u1, u2) = max{u1 + u2 − 1, 0} (7)

and corresponds to the case of perfect negative dependence.

Can check that (7) is the joint distribution of (U , 1−U ) where U ∼ U (0, 1).

Question: Why is the Fréchet-Hoeffding lower bound not a copula for d > 2?
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The Independence Copula
The independence copula satisfies

Π(u) =
d∏

i=1
ui .

And random variables are independent if and only if their copula is the
independence copula

- follows immediately from Sklar’s Theorem.
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The Gaussian Copula
Recall when marginals are continuous we have from (4)

C (u) = F (F←1 (u1), . . . ,F←1 (ud)) .

Now let X ∼ MNd(0,P), where P is the correlation matrix of X.

Then the corresponding Gaussian copula is given by

C Gauss
P (u) := ΦP

(
Φ−1(u1), . . . ,Φ−1(ud)

)
(8)

- where Φ(·) is the standard univariate normal CDF
- and ΦP(·) denotes the joint CDF of X.

If Y ∼ MNd(µ,Σ) with Corr(Y) = P, then Y has (why?) the same copula as X
- hence a Gaussian copula is fully specified by a correlation matrix, P.

For d = 2, obtain countermonotonic, independence and comonotonic copulas
when ρ = −1, 0, and 1, respectively.
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The t Copula
Recall X = (X1, . . . ,Xd) has a multivariate t distribution with ν dof if

X = Z√
ξ/ν

- where Z ∼ MNd(0,Σ)

- and ξ ∼ χ2
ν independently of Z.

The d-dimensional t-copula is defined as

C t
ν,P(u) := tν,P

(
t−1
ν (u1), . . . , t−1

ν (ud)
)

(9)

- where again P is a correlation matrix

- tν,P is the joint CDF of X ∼ td(ν,0,P)

- and tν is the standard univariate CDF of a t-distribution with ν dof.
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The Bivariate Gumbel Copula
The bivariate Gumbel copula is defined as

C Gu
θ (u1, u2) := exp

(
−
(
(− ln u1)θ + (− ln u2)θ

) 1
θ

)
where θ ∈ [1,∞).

When θ = 1 obtain the independence copula.

As θ →∞ the Gumbel copula → the comonotonicity copula
- an example of a copula with tail dependence in just one corner.

e.g. Consider bivariate Normal and meta-Gumbel distributions on next slide:

- 5, 000 points simulated from each distribution
- marginal distributions in each case are standard normal
- correlation is ≈ .7 in both cases
- but meta-Gumbel is much more likely to see large joint moves.
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Figure 8.4 from Ruppert and Matteson: Bivariate random samples of size 200 from various
Gumbel copulas.



The Bivariate Clayton Copula
The bivariate Clayton copula is defined as

C Cl
θ (u1, u2) :=

(
u−θ1 + u−θ2 − 1

)−1/θ

where θ ∈ [−1,∞)\{0}.

As θ → 0 obtain the independence copula.
As θ →∞ the Clayton copula → the comonotonic copula.
For θ = −1 obtain the Fréchet-Hoeffding lower bound

- so Clayton moves from countermonotonic to independence to comonotonic
copulas.

Clayton and Gumbel copulas belong to the Archimedean family of copulas
- they can be be generalized to d dimensions
- but their d-dimensional versions are exchangeable – so C (u1, . . . , ud)

unchanged if we permute u1, . . . , ud

- implies all pairs have same dependence structure – has implications for
modeling with Archimedean copulas!

23 (Section 3)
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Figure 8.3 from Ruppert and Matteson: Bivariate random samples of size 200 from various
Clayton copulas.



Measures of Dependence
There are three principal measures of dependence:

1. The usual Pearson, i.e. linear, correlation coefficient
- invariant under positive linear transformations, but not under general strictly

increasing transformations
- there are many fallacies associated with the Pearson correlation
- not defined unless second moments exist.

2. Rank correlations
- only depend on the unique copula of the joint distribution
- therefore (why?) invariant to strictly increasing transformations
- also very useful for calibrating copulas to data.

3. Coefficients of tail dependence
- a measure of dependence in the extremes of the distributions.

25 (Section 4)



Fallacies of The Correlation Coefficient
Each of the following statements is false!

1. The marginal distributions and correlation matrix are enough to determine
the joint distribution

- how would we find a counterexample?

2. For given univariate distributions, F1 and F2, and any correlation value
ρ ∈ [−1, 1], it is always possible to construct a joint distribution F with
margins F1 and F2 and correlation ρ.

3. The VaR of the sum of two risks is largest when the two risks have maximal
correlation.

Definition: We say two random variables, X1 and X2, are of the same type if
there exist constants a > 0 and b ∈ R such that

X1 ∼ aX2 + b.

26 (Section 4)



On Fallacy #2
Theorem: Let (X1, X2) be a random vector with finite-variance marginal CDF’s
F1 and F2, respectively, and an unspecified joint CDF.
Assuming Var(X1) > 0 and Var(X2) > 0, then the following statements hold:

1. The attainable correlations form a closed interval [ρmin, ρmax] with
ρmin < 0 < ρmax.

2. The minimum correlation ρ = ρmin is attained if and only if X1 and X2 are
countermonotonic. The maximum correlation ρ = ρmax is attained if and
only if X1 and X2 are comonotonic.

3. ρmin = −1 if and only if X1 and −X2 are of the same type. ρmax = 1 if and
only if X1 and X2 are of the same type.

The proof is not very difficult; see Section 7.2 of MFE for details.

27 (Section 4)



Spearman’s Rho
Definition: For random variables X1 and X2, Spearman’s rho is defined as

ρs(X1,X2) := ρ(F1(X1),F2(X2)).

So Spearman’s rho is simply the linear correlation of the probability-transformed
random variables.

The Spearman’s rho matrix is simply the matrix of pairwise Spearman’s rho
correlations, ρ(Fi(Xi),Fj(Xj)) – a positive-definite matrix. Why?

If X1 and X2 have continuous marginals then can show

ρs(X1,X2) = 12
∫ 1

0

∫ 1

0
(C (u1, u2) − u1u2) du1 du2.

Can show that for a bivariate Gaussian copula

ρs(X1,X2) = 6
π

arcsin ρ2 ' ρ

where ρ is the Pearson, i.e., linear, correlation coefficient.
28 (Section 4)



Kendall’s Tau
Definition: For random variables X1 and X2, Kendall’s tau is defined as

ρτ (X1,X2) := E
[
sign

(
(X1 − X̃1) (X2 − X̃2)

)]
where (X̃1, X̃2) is independent of (X1,X2) but has same joint distribution as
(X1,X2).

Note that Kendall’s tau can be written as

ρτ (X1,X2) = P
(
(X1 − X̃1) (X2 − X̃2) > 0

)
− P

(
(X1 − X̃1) (X2 − X̃2) < 0

)
- so if both probabilities are equal then ρτ (X1,X2) = 0.

29 (Section 4)



Kendall’s Tau
If X1 and X2 have continuous marginals then can show

ρτ (X1,X2) = 4
∫ 1

0

∫ 1

0
C (u1, u2) dC (u1, u2) − 1.

Can also show that for a bivariate Gaussian copula, or more generally, if
X ∼ E2(µ,P, ψ) and P(X = µ) = 0

ρτ (X1,X2) = 2
π

arcsin ρ (10)

where ρ = P12 = P21 is the Pearson correlation coefficient.

Note (10) very useful for estimating ρ with fat-tailed elliptical distributions
- generally provides much more robust estimates of ρ than usual Pearson

estimator
- see figure on next slide where each estimate was constructed from a sample

of n = 60 (simulated) data-points.
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Estimating Pearson’s correlation using the usual Pearson estimator versus using Kendall’s τ .
Underlying distribution was bivariate t with ν = 3 degrees-of-freedom and true Pearson
correlation ρ = 0.5.



Properties of Spearman’s Rho and Kendall’s Tau
Spearman’s rho and Kendall’s tau are examples of rank correlations in that, when
the marginals are continuous, they depend only on the bivariate copula and not
on the marginals

- they are invariant (why?) in this case under strictly increasing
transformations.

They both take values in [−1, 1]:
- they equal 0 for independent random variables; but possible for dependent

variables to also have a rank correlation of 0.
- they take the value 1 when X1 and X2 are comonotonic
- they take the value −1 when X1 and X2 are countermonotonic.

They are very useful for calibrating copulas via method-of-moments type
algorithms.

Fallacy #2 is no longer an issue when we work with rank correlations.

32 (Section 4)



Tail Dependence
Definition: Let X1 and X2 denote two random variables with CDF’s F1 and F2,
respectively. Then the coefficient of upper tail dependence, λu, is given by

λu := lim
q↗1

P (X2 > F←2 (q) | X1 > F←1 (q))

provided that the limit exists.

Similarly, the coefficient of lower tail dependence, λl , is given by

λl := lim
q↘0

P (X2 ≤ F←2 (q) | X1 ≤ F←1 (q))

provided again that the limit exists.

If λu > 0, then we say that X1 and X2 have upper tail dependence while if
λu = 0 we say they are asymptotically independent in the upper tail.
Lower tail dependence and asymptotically independent in the lower tail are
similarly defined using λl .
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Simulating the Gaussian Copula
1. For an arbitrary covariance matrix, Σ, let P be its corresponding correlation

matrix.

2. Compute the Cholesky decomposition, A, of P so that P = ATA.

3. Generate Z ∼ MNd(0, Id).

4. Set X = AT Z.

5. Return U = (Φ(X1), . . . ,Φ(Xd)).

The distribution of U is the Gaussian copula C Gauss
P (u) so that

Prob(U1 ≤ u1, . . . ,Ud ≤ ud) = Φ
(
Φ−1(u1), . . . ,Φ−1(ud)

)
- this is also (why?) the copula of X.

Desired marginal inverses can now be applied to each component of U in order
to generate the desired multivariate distribution with the given Gaussian copula

- follows again by invariance of copula to monotonic transformations.

35 (Section 5)



Simulating the t Copula
1. For an arbitrary covariance matrix, Σ, let P be its corresponding correlation

matrix.

2. Generate X ∼ MNd(0,P).

3. Generate ξ ∼ χ2
ν independent of X.

4. Return U =
(

tν(X1/
√
ξ/ν), . . . , tν(Xd/

√
ξ/ν)

)
where tν is the CDF of a

univariate t distribution with ν degrees-of-freedom.

The distribution of U is the t copula C t
ν,P(u)

- this is also (why?) the copula of X.

Desired marginal inverses can now be applied to each component of U in order
to generate the desired multivariate distribution with the given t copula.

36 (Section 5)



Estimating / Calibrating Copulas
There are several related methods that can be used for estimating copulas:

1. Maximum likelihood estimation (MLE)
2. Pseudo-MLE of which there are two types:

- parametric pseudo-MLE
- semiparametric pseudo-MLE

3. Moment-matching methods are also sometimes used
- they can also be used for finding starting points for (pseudo) MLE.

MLE is often considered too difficult to apply
- too many parameters to estimate.

Pseudo-MLE seems to be used most often in practice

- marginals are estimated via their empirical CDFs
- then the copula can be estimated via MLE.

37 (Section 6)



Maximum Likelihood Estimation
Let Y = (Y1 . . .Yd)> be a random vector and suppose we have parametric
models FY1(· |θ1), . . . ,FYd (· |θd) for the marginal CDFs.

Also have a parametric model cY(· |θC ) for the copula density of Y.

By differentiating (2) we see that the density of Y is given by

fY(y) = fY(y1, . . . , yd) = cY (FY1(y1), . . . ,FYd (yd))
d∏

j=1
fYj (yj). (11)

Given an IID sample Y1:n = (Y1, . . . ,Yn), we obtain the log-likelihood as

log L(θ1, . . . ,θd ,θC ) = log
n∏

i=1
fY(yi)

=
n∑

i=1

(
log[cY (FY1(yi,1 |θ1), . . . ,FYd (yi,d |θd) |θC )]

+ log (fY1(yi,1 |θ1)) + · · ·+ log (fYd (yi,d |θd))
)
(12)
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Maximum Likelihood Estimation
The ML estimators θ̂1, . . . , θ̂d , θ̂C are obtained by maximizing (12).

But there are problems with this:
1. Many parameters – especially for large d – so optimization can be difficult.
2. If any of the parametric univariate distributions FYi (· |θi) are misspecified

then this can cause biases in estimation of both univariate distributions and
the copula.

The pseudo-MLE approach helps to resolve these problems.
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Pseudo-Maximum Likelihood Estimation
The pseudo-MLE approach has two steps:

1. First estimate the marginal CDFs to obtain F̂Yj for j = 1, . . . , d. Can do
this using either:

The empirical CDF of y1,j , . . . , yn,j so that

F̂Yj (y) =
∑n

i=1 1{yi,j≤y}

n + 1

A parametric model with θ̂j obtained using usual MLE approach.

2. Then estimate the copula parameters θC by maximizing
n∑

i=1
log
[
cY

(
F̂Y1(yi,1), . . . , F̂Yd (yi,d) |θC

) ]
(13)

- Note relation between (12) and (13)!

Even (13) may be difficult to maximize if d large
- important then to have good starting point for the optimization or to impose

additional structure on θC .
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Fitting Gaussian and t Copulas
Proposition (Results 8.1 from Ruppert and Matteson):
Let Y = (Y1 . . .Yd)> have a meta-Gaussian distribution with continuous
univariate marginal distributions and copula C Gauss

Ω and let Ωi,j = [Ω]i,j . Then

ρτ (Yi ,Yj) = 2
π

arcsin (Ωi,j) (14)

and
ρS(Yi ,Yj) = 6

π
arcsin (Ωi,j/2) ≈ Ωi,j (15)

If instead Y has a meta-t distribution with continuous univariate marginal
distributions and copula C t

ν,Ω then (14) still holds but (15) does not. 2

Question: There are several ways to use this Proposition to fit meta Gaussian
and t copulas. What are some of them?
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Collateralized Debt Obligations (CDO’s)
Want to find the expected losses in a simple 1-period CDO with the following
characteristics:

The maturity is 1 year.
There are N = 125 bonds in the reference portfolio.
Each bond pays a coupon of one unit after 1 year if it has not defaulted.
The recovery rate on each defaulted bond is zero.
There are 3 tranches of interest:

1. The equity tranche with attachment points: 0-3 defaults

2. The mezzanine tranche with attachment points: 4-6 defaults

3. The senior tranche with attachment points: 7-125 defaults.

Assume probability, q, of defaulting within 1 year is identical across all bonds.
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Collateralized Debt Obligations (CDO’s)
Xi is the normalized asset value of the ith credit and we assume

Xi = √ρM +
√

1− ρZi (16)

where M ,Z1, . . . ,ZN are IID normal random variables
- note correlation between each pair of asset values is identical.

We assume also that ith credit defaults if Xi ≤ x̄i .

Since probability, q, of default is identical across all bonds must therefore have

x̄1 = · · · x̄N = Φ−1(q). (17)

It now follows from (16) and (17) that

P(i defaults |M ) = P(Xi ≤ x̄i |M )
= P(√ρM +

√
1− ρZi ≤ Φ−1(q) |M )

= P
(

Zi ≤
Φ−1(q)−√ρM
√

1− ρ

∣∣∣∣ M
)
.
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Collateralized Debt Obligations (CDO’s)
Therefore conditional on M , the total number of defaults is Bin(N , qM ) where

qM := Φ
(Φ−1(q)−√ρM

√
1− ρ

)
.

That is,
p(k |M ) =

(
N
k

)
qk

M (1− qM )N−k .

Unconditional probabilities computed by numerically integrating the binomial
probabilities with respect to M so that

P(k defaults) =
∫ ∞
−∞

p(k |M )φ(M ) dM .

Can now compute expected (risk-neutral) loss on each of the three tranches:
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Collateralized Debt Obligations (CDO’s)

EQ
0 [Equity tranche loss] = 3× P(3 or more defaults) +

2∑
k=1

k P(k defaults)

EQ
0 [Mezz tranche loss] = 3× P(6 or more defaults) +

2∑
k=1

k P(k + 3 defaults)

EQ
0 [Senior tranche loss] =

119∑
k=1

k P(k + 6 defaults).
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Collateralized Debt Obligations (CDO’s)
Regardless of the individual default probability, q, and correlation, ρ, we have:

EQ
0 [% Equity tranche loss] ≥ EQ

0 [% Mezz tranche loss] ≥ EQ
0 [% Senior tranche loss] .

Also note that expected equity tranche loss always decreasing in ρ.

Expected mezzanine tranche loss often relatively insensitive to ρ.

Expected senior tranche loss (with upper attachment point of 100%) always
increasing in ρ.
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Expected Tranche Losses As a Function of ρ



Collateralized Debt Obligations (CDO’s)
Question: How does the total expected loss in the portfolio vary with ρ?

The dependence structure we used in (??) to link the default events of the
various bonds is the famous Gaussian-copula model.

In practice CDO’s are multi-period securities and can be cash or synthetic
CDO’s.

48 (Section 7)



Multi-period CDO’s
Will now assume:

There are N credits in the reference portfolio.

Each credit has a notional amount of Ai .
If the ith credit defaults, then the portfolio incurs a loss of Ai × (1− Ri)

- Ri is the recovery rate
- we assume Ri is fixed and known.

The default time of ith credit is Exp(λi) with CDF Fi

- λi easily estimated from either CDS spreads or prices of corporate bonds
- so can compute Fi(t), the risk-neutral probability that ith credit defaults

before time t.

We can easily relax the exponential distribution assumption
- we simply need to be able to estimate Fi(t).
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Multi-period CDO’s
Again Xi is the normalized asset value of the ith credit and we assume

Xi = aiM +
√

1− a2
i Zi (18)

where M ,Z1, . . . ,ZN are IID normal random variables.

The factor loadings, ai , are assumed to lie in interval [0, 1].

Clear that Corr(Xi ,Xj) = aiaj with covariance matrix equal to correlation
matrix, P, where Pi,j = aiaj for i 6= j.

Let F(t1, . . . , tn) denote joint distribution of the default times of the N credits.

Then assume

F(t1, . . . , tn) = ΦP
(
Φ−1(F1(t1)), . . . ,Φ−1(Fn(tn))

)
(19)

where ΦP(·) is the multivariate normal CDF with mean 0 and correlation P
- so distribution of default times has a Gaussian copula!
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Computing the Portfolio Loss Distribution
In order to price credit derivatives, we need to compute the portfolio loss
distribution.

We fix t = t1 = · · · = tN and set qi := Fi(t).

As before, the N default events are independent, conditional on M . They are
given by

qi(t|M ) = Φ
(

Φ−1(qi)− aiM√
1− a2

i

)
.

Now let pN (l, t) = risk-neutral probability that there are a total of l portfolio
defaults before time t.

Then may write
p(l, t) =

∫ ∞
−∞

pN (l, t|M ) φ(M ) dM . (20)

51 (Section 7)



Computing the Portfolio Loss Distribution
Straightforward to calculate pN (l, t|M ) using a simple iterative procedure.

Can then perform a numerical integration on the right-hand-side of (20) to
calculate p(l, t).

If we assume that the notional, Ai , and the recovery rate, Ri , are constant across
all credits, then the loss on any given credit will be either 0 or A(1− R).

This then implies that knowing probability distribution of the number of defaults
is equivalent to knowing probability distribution of the total loss in the reference
portfolio.
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The Mechanics and Pricing of a CDO Tranche
A tranche is defined by the lower and upper attachment points, L and U ,
respectively.

The tranche loss function, TLL,U (l), for a fixed time, t, is a function of the
number of defaults, l, and is given by

TLL,U
t (l) := max {min{lA(1− R), U} − L, 0} .

For a given number of defaults it tells us the loss suffered by the tranche.

For example:
Suppose L = 3% and U = 7%
Suppose also that total portfolio loss is lA(1− R) = 5%

Then tranche loss is 2% of total portfolio notional
- or 50% of tranche notional.
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The Mechanics and Pricing of a CDO Tranche
When an investor sells protection on the tranche she is guaranteeing to reimburse
any realized losses on the tranche to the protection buyer.

In return, the protection seller is paid a premium at regular intervals
- typically every three months

- though in some cases protection buyer may also pay an upfront amount in
addition to, or instead of, a regular premium

- an upfront typically occurs for equity tranches which have a lower
attachment point of zero.

The fair value of the CDO tranche is that value of the premium for which the
expected value of the premium leg equals the expected value of the default leg.
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The Mechanics and Pricing of a CDO Tranche
Clearly then the fair value of the CDO tranche depends on the expected value of
the tranche loss function.

Indeed, for a fixed time, t, the expected tranche loss is given by

E
[
TLL,U

t

]
=

N∑
l=0

TLL,U
t (l) p(l, t)

– which we can compute using (20).

We now compute the fair value of the premium and default legs ...
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Fair Value of the Premium Leg
Premium leg represents the premium payments that are paid periodically by the
protection buyer to the protection seller.

They are paid at the end of each time interval and they are based upon the
remaining notional in the tranche.

Formally, the time t = 0 value of the premium leg, PL,U
0 , satisfies

PLL,U
0 = s

n∑
t=1

dt∆t

(
(U − L)− E0

[
TLL,U

t

])
(21)

n is the number of periods in the contract
dt is the risk-free discount factor for payment date t
s is the annualized spread or premium paid to the protection seller
∆t is the accrual factor for payment date t, e.g. ∆t = 1/4 if payments take
place quarterly.

Note that (21) is consistent with the statement that the premium paid at any
time t is based only on the remaining notional in the tranche.
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Fair Value of the Default Leg
Default leg represents the cash flows paid to the protection buyer upon losses
occurring in the tranche.

Formally, the time t = 0 value of the default leg, DLL,U
0 , satisfies

DLL,U
0 =

n∑
t=1

dt

(
E0

[
TLL,U

t

]
− E0

[
TLL,U

t−1

])
. (22)
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Fair Value of the Tranche
The fair premium, s∗ say, is the value of s that equates the value of the default
leg with the value of the premium leg:

s∗ := DLL,U
0∑n

t=1 dt∆t

(
(U − L)− E0

[
TLL,U

t

]) .
As is the case with swaps and forwards, the fair value of the tranche to the
protection buyer and seller at initiation is therefore zero.

Easy to incorporate any possible upfront payments that the protection buyer
must pay at time t = 0 in addition to the regular premium payments.

Can also incorporate recovery values and notional values that vary with each
credit in the portfolio.
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Cash CDO’s
First CDOs to be traded were all cash CDOs

- the reference portfolio actually existed and consisted of corporate bonds that
the CDO issuer usually kept on its balance sheet.

Capital requirements meant that these bonds required a substantial amount of
capital to be set aside to cover any potential losses.

To reduce these capital requirements, banks converted the portfolio into a series
of tranches and sold most of these tranches to investors.

Banks usually kept the equity tranche for themselves. This meant:

They kept most of the economic risk and rewards of the portfolio
But they also succeeded in dramatically reducing the amount of capital they
needed to set aside
Hence first CDO deals were motivated by regulatory arbitrage considerations.
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Synthetic CDO’s
Soon become clear there was an appetite in the market-place for these products.

e.g. Hedge funds were keen to buy the riskier tranches while insurance companies
and others sought the AAA-rated senior and super-senior tranches.

This appetite and explosion in the CDS market gave rise to synthetic tranches
where:

the underlying reference portfolio is no longer a physical portfolio of
corporate bonds or loans
it is instead a fictitious portfolio consisting of a number of credits with an
associated notional amount for each credit.
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Synthetic CDO’s
Mechanics of a synthetic tranche are precisely as described earlier.

But they have at least two features that distinguish them from cash CDOs:

(i) With a synthetic CDO it is no longer necessary to tranche the entire
portfolio and sell the entire “deal"
e.g. A bank could sell protection on a 3%-7% tranche and never have to
worry about selling the other pieces of the reference portfolio. This is not
the case with cash CDOs.

(ii) Because the issuer no longer owns the underlying bond portfolio, it is no
longer hedged against adverse price movements

- it therefore needs to dynamically hedge its synthetic tranche position and
would have typically done so using the CDS markets.
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Calibrating the Gaussian Copula Model
In practice, very common to calibrate synthetic tranches as follows:

1. Assume all pairwise correlations, Corr(Xi ,Xj), are identical
- equivalent to taking a1 = · · · = aN = a in (18) so that

Corr(Xi ,Xj) = a2 := ρ for all i, j.

2. In the case of the liquid CDO tranches whose prices are observable in the
market-place, we then choose ρ so that the fair tranche spread in the model
is equal to the quoted spread in the market place.

We refer to this calibrated correlation, ρimp say, as the tranche implied
correlation.
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Calibrating the Gaussian Copula Model
If the model is correct, then every tranche should have the same ρimp.

Unfortunately, this does not occur in practice.

Indeed, in the case of mezzanine tranches it is possible that there is no value of ρ
that fits the market price!
It is also possible that there are multiple solutions.

The market responded to this problem by introducing the concept of base
correlations

- they are the implied correlations of equity tranches with increasing upper
attachment points.

Implied base correlations can always be computed and then bootstrapping
techniques are employed to price the mezzanine tranches.

Just as equity derivatives markets have an implied volatility surface, the CDO
market has implied base correlation curves.
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Calibrating the Gaussian Copula Model
The implied base correlation curve is generally an increasing function of the
upper attachment point.

A distinguishing feature of CDOs and other credit derivatives such as
nth-to-default options is that they can be very sensitive to correlation
assumptions.

As a risk manager or investor in structured credit, it is very important to
understand why equity, mezzanine and super senior tranches react as they do to
changes in implied correlation.
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