IEOR E4602: Quantitative Risk Management Risk Measures

Martin Haugh

Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

Reference: Chapter 8 of 2nd ed. of MFE's Quantitative Risk Management.

Risk Measures

- Let ${\cal M}$ denote the space of random variables representing portfolio losses over some fixed time interval, $\Delta.$
- \bullet Assume that ${\mathcal M}$ is a convex cone so that
 - If $L_1, L_2 \in \mathcal{M}$ then $L_1 + L_2 \in \mathcal{M}$
 - And $\lambda L_1 \in \mathcal{M}$ for every $\lambda > 0$.
- A risk measure is a real-valued function, ρ : $\mathcal{M} \to \mathbb{R}$, that satisfies certain desirable properties.
- $\varrho(L)$ may be interpreted as the riskiness of a portfolio or ...
- ... the amount of capital that should be added to the portfolio so that it can be deemed **acceptable**
 - Under this interpretation, portfolios with $\varrho(L) < 0$ are already acceptable
 - In fact, if $\varrho(L) < 0$ then capital could even be withdrawn.

Axioms of Coherent Risk Measures

Translation Invariance For all $L \in \mathcal{M}$ and every constant $a \in \mathbb{R}$, we have

$$\varrho(L+a) = \varrho(L) + a.$$

- necessary if earlier risk-capital interpretation is to make sense.

Subadditivity: For all $L_1, L_2 \in \mathcal{M}$ we have

$$\varrho(L_1 + L_2) \leq \varrho(L_1) + \varrho(L_2)$$

- reflects the idea that pooling risks helps to diversify a portfolio
- the most debated of the risk axioms
- allows for the decentralization of risk management.

Axioms of Coherent Risk Measures

Positive Homogeneity For all $L \in \mathcal{M}$ and every $\lambda > 0$ we have

 $\varrho(\lambda L) \; = \; \lambda \varrho(L).$

- also controversial: has been criticized for not penalizing concentration of risk
- e.g. if $\lambda>0$ very large, then perhaps we should require $\varrho(\lambda L)>\lambda\varrho(L)$
- but this would be inconsistent with subadditivity:

$$\varrho(nL) = \varrho(L + \dots + L) \le n\varrho(L) \tag{1}$$

- positive homogeneity implies we must have equality in (1).

Monotonicity For $L_1, L_2 \in \mathcal{M}$ such that $L_1 \leq L_2$ almost surely, we have

$$\varrho(L_1) \leq \varrho(L_2)$$

- clear that any risk measure should satisfy this axiom.

Coherent Risk Measures

Definition: A risk measure, ρ , acting on the convex cone \mathcal{M} is called coherent if it satisfies the translation invariance, subadditivity, positive homogeneity and monotonicity axioms. Otherwise it is incoherent.

Coherent risk measures were introduced in 1998

- and a large literature has developed since then.

Convex Risk Measures

- Criticisms of subadditivity and positive homogeneity axioms led to the study of convex risk measures.
- A convex risk measure satisfies the same axioms as a coherent risk measure except that subadditivity and positive homogeneity axioms are replaced by the convexity axiom:

Convexity Axiom For $L_1, L_2 \in \mathcal{M}$ and $\lambda \in [0, 1]$

$$\varrho(\lambda L_1 + (1-\lambda)L_2) \leq \lambda \varrho(L_1) + (1-\lambda)\varrho(L_2)$$

It is possible to find risk measures within the convex class that satisfy $\varrho(\lambda L) > \lambda \varrho(L)$ for $\lambda > 1$.

Recall ...

Definition: Let $\alpha \in (0,1)$ be some fixed confidence level. Then the VaR of the portfolio loss, L, at the confidence level, α , is given by

$$\mathsf{VaR}_{\alpha} := q_{\alpha}(L) = \inf\{x \in \mathbb{R} : F_L(x) \ge \alpha\}$$

where $F_L(\cdot)$ is the CDF of the random variable, L.

Value-at-Risk is not a coherent risk measure since it fails to be subadditive!

Consider two IID assets, X and Y where

$$X = \epsilon + \eta$$
 where $\epsilon \sim \mathsf{N}(0, 1)$

and
$$\eta = \left\{ egin{array}{cc} 0, & {
m with \ prob \ .991} \ -10, & {
m with \ prob \ .009.} \end{array}
ight.$$

Consider a portfolio consisting of X and Y. Then

$$VaR_{.99}(X + Y) = 9.8$$

> $VaR_{.99}(X) + VaR_{.99}(Y)$
= $3.1 + 3.1$
= 6.2

- thereby demonstrating the non-subadditivity of VaR.

Example 2: Defaultable Bonds

Consider a portfolio of n = 100 defaultable corporate bonds

- Probability of default over next year identical for all bonds and equal to 2%.
- Default events of different bonds are independent.
- Current price of each bond is 100.
- $\bullet~$ If bond does not default then will pay $105~{\rm one}~{\rm year}$ from now
 - otherwise there is no repayment.

Therefore can define the loss on the i^{th} bond, L_i , as

```
L_i := 105 Y_i - 5
```

where $Y_i = 1$ if the bond defaults over the next year and $Y_i = 0$ otherwise.

By assumption also see that $P(L_i = -5) = .98$ and $P(L_i = 100) = .02$.

Example 2: Defaultable Bonds

Consider now the following two portfolios:

- A: A fully concentrated portfolio consisting of 100 units of bond 1.
- B: A completely diversified portfolio consisting of 1 unit of each of the 100 bonds.

We want to compute the 95% VaR for each portfolio.

Obtain VaR_{.95} $(L_A) = -500$, representing a gain(!) and VaR_{.95} $(L_B) = 25$.

So according to VaR $_{.95}$, portfolio B is riskier than portfolio A

- absolute nonsense!

Have shown that

$$\mathsf{VaR}_{.95}\left(\sum_{i=1}^{100} L_i\right) \ \ge \ 100 \ \mathsf{VaR}_{.95}(L_1) \ = \ \sum_{i=1}^{100} \mathsf{VaR}_{.95}(L_i)$$

demonstrating again that VaR is not sub-additive.

Example 2: Defaultable Bonds

Now let ϱ be any coherent risk measure depending only on the distribution of L.

Then obtain (why?)

$$\varrho\left(\sum_{i=1}^{100} L_i\right) \leq \sum_{i=1}^{100} \varrho(L_i) = 100 \varrho(L_1)$$

- so ϱ would correctly classify portfolio A as being riskier than portfolio B. We now describe a situation where VaR is always sub-additive ...

Subadditivity of VaR for Elliptical Risk Factors

Theorem

Suppose that $\mathbf{X} \sim \mathsf{E}_n(\mu, \mathbf{\Sigma}, \psi)$ and let \mathcal{M} be the set of linearized portfolio losses of the form

$$\mathcal{M} := \{ L : L = \lambda_0 + \sum_{i=1}^n \lambda_i X_i, \ \lambda_i \in \mathbb{R} \}.$$

Then for any two losses $L_1, L_2 \in \mathcal{M}$, and $0.5 \leq \alpha < 1$,

 $\mathsf{VaR}_{\alpha}(L_1 + L_2) \leq \mathsf{VaR}_{\alpha}(L_1) + \mathsf{VaR}_{\alpha}(L_2).$

Proof of Subadditivity of VaR for Elliptical Risk Factors

Without (why?) loss of generality assume that $\lambda_0 = 0$.

Recall if $\mathbf{X} \sim \mathsf{E}_n(\mu, \mathbf{\Sigma}, \psi)$ then $\mathbf{X} = \mathbf{A}\mathbf{Y} + \mu$ where $\mathbf{A} \in \mathbb{R}^{n \times k}$, $\mu \in \mathbb{R}^n$ and $\mathbf{Y} \sim S_k(\psi)$ is a spherical random vector.

Any element $L \in \mathcal{M}$ can therefore be represented as

$$L = \boldsymbol{\lambda}^{T} \mathbf{X} = \boldsymbol{\lambda}^{T} \mathbf{A} \mathbf{Y} + \boldsymbol{\lambda}^{T} \boldsymbol{\mu}$$

$$\sim ||\boldsymbol{\lambda}^{T} \mathbf{A}|| Y_{1} + \boldsymbol{\lambda}^{T} \boldsymbol{\mu}$$
(2)

- (2) follows from part 3 of Theorem 2 in *Multivariate Distributions* notes.

Translation invariance and positive homogeneity of VaR imply

$$\mathsf{VaR}_{\alpha}(L) = ||\boldsymbol{\lambda}^{T}\mathbf{A}|| \, \mathsf{VaR}_{\alpha}(Y_{1}) + \boldsymbol{\lambda}^{T}\mu.$$

Suppose now that $L_1 := \boldsymbol{\lambda}_1^T \mathbf{X}$ and $L_2 := \boldsymbol{\lambda}_2^T \mathbf{X}$. Triangle inequality implies

$$\|(\boldsymbol{\lambda}_1 + \boldsymbol{\lambda}_2)^T \mathbf{A}\| \leq \|\boldsymbol{\lambda}_1^T \mathbf{A}\| + \|\boldsymbol{\lambda}_2^T \mathbf{A}\|$$

Since $VaR_{\alpha}(Y_1) \ge 0$ for $\alpha \ge .5$ (why?), result follows from (2). \Box

Subadditivity of VaR

Widely believed that if individual loss distributions under consideration are continuous and symmetric then VaR is sub-additive.

This is not true(!)

- Counterexample may be found in Chapter 8 of MFE
- The loss distributions in the counterexample are smooth and symmetric but the copula is highly asymmetric.

VaR can also fail to be sub-additive when the individual loss distributions have heavy tails.

Recall ...

Definition: For a portfolio loss, *L*, satisfying $E[|L|] < \infty$ the expected shortfall (ES) at confidence level $\alpha \in (0, 1)$ is given by

$$\mathsf{ES}_{\alpha} := \frac{1}{1-\alpha} \int_{\alpha}^{1} q_u(F_L) \ du.$$

Relationship between ES_{α} and VaR_{α} therefore given by

$$\mathsf{ES}_{\alpha} := \frac{1}{1-\alpha} \int_{\alpha}^{1} \mathsf{VaR}_{u}(L) \ du \tag{3}$$

- clear that $\mathsf{ES}_{\alpha}(L) \ge \mathsf{VaR}_{\alpha}(L)$.

When the CDF, F_L , is continuous then a more well known representation given by

$$\mathsf{ES}_{\alpha} = \mathsf{E}\left[L \mid L \ge \mathsf{VaR}_{\alpha}\right].$$

Theorem: Expected shortfall is a coherent risk measure.

Proof: Translation invariance, positive homogeneity and monotonicity properties all follow from the representation of ES in (3) and the same properties for quantiles.

Therefore only need to demonstrate subadditivity

- this is proven in lecture notes. \Box

There are many other examples of risk measures that are coherent

- e.g. risk measures based on generalized scenarios
- e.g. spectral risk measures
 - of which expected shortfall is an example.

Risk Aggregation

Let $\mathbf{L} = (L_1, \dots, L_n)$ denote a vector of random variables

- perhaps representing losses on different trading desks, portfolios or operating units within a firm.

Sometimes need to aggregate these losses into a random variable, $\psi(\mathbf{L})$, say.

Common examples include:

- 1. The total loss so that $\psi(\mathbf{L}) = \sum_{i=1}^{n} L_i$.
- 2. The maximum loss where $\psi(\mathbf{L}) = \max\{L_1, \dots, L_n\}$.
- 3. The excess-of-loss treaty so that $\psi(\mathbf{L}) = \sum_{i=1}^{n} (L_i k_i)^+$.
- 4. The stop-loss treaty in which case $\psi(\mathbf{L}) = (\sum_{i=1}^{n} L_i k)^+$.

Risk Aggregation

Want to understand the risk of the aggregate loss function, $\varrho(\psi(\mathbf{L}))$

- but first need the distribution of $\psi({\bf L}).$

Often know only the distributions of the L_i 's

- so have little or no information about the dependency or copula of the L_i 's.

In this case can try to compute lower and upper bounds on $\varrho(\psi(\mathbf{L}))$:

$$\varrho_{min} := \inf \{ \varrho(\psi(\mathbf{L})) : L_i \sim F_i, i = 1, \dots, n \}
\varrho_{max} := \sup \{ \varrho(\psi(\mathbf{L})) : L_i \sim F_i, i = 1, \dots, n \}$$

where F_i is the CDF of the loss, L_i .

Problems of this type are referred to as Frechet problems

- solutions are available in some circumstances, e.g. attainable correlations.

Have been studied in some detail when $\psi(\mathbf{L}) = \sum_{i=1}^{n} L_i$ and $\varrho(\cdot)$ is the VaR function.

Capital Allocation

Total loss given by $L = \sum_{i=1}^{n} L_i$.

Suppose we have determined the risk, $\varrho(L)$, of this loss.

The capital allocation problem seeks a decomposition, AC_1, \ldots, AC_n , such that

$$\varrho(L) = \sum_{i=1}^{n} AC_i \tag{4}$$

- AC_i is interpreted as the risk capital allocated to the i^{th} loss, L_i .

This problem is important in the setting of performance evaluation where we want to compute a risk-adjusted return on capital (RAROC).

e.g. We might set RAROC_i = Expected Profit_i / Risk Capital_i

- must determine risk capital of each L_i in order to compute RAROC_i.

Capital Allocation

More formally, let $L(\lambda) := \sum_{i=1}^{n} \lambda_i L_i$ be the loss associated with the portfolio consisting of λ_i units of the loss, L_i , for i = 1, ..., n.

Loss on actual portfolio under consideration then given by L(1).

Let $\varrho(\cdot)$ be a risk measure on a space \mathcal{M} that contains $L(\lambda)$ for all $\lambda \in \Lambda$, an open set containing 1.

Then the associated risk measure function, $r_{\rho} : \Lambda \to \mathbb{R}$, is defined by

 $r_{\varrho}(\boldsymbol{\lambda}) = \varrho(L(\boldsymbol{\lambda})).$

We have the following definition ...

Capital Allocation Principles

Definition: Let r_{ϱ} be a risk measure function on some set $\Lambda \subset \mathbb{R}^n \setminus \mathbf{0}$ such that $\mathbf{1} \in \Lambda$.

Then a mapping, $f^{r_{\varrho}} : \Lambda \to \mathbb{R}^n$, is called a per-unit capital allocation principle associated with r_{ϱ} if, for all $\lambda \in \Lambda$, we have

$$\sum_{i=1}^{n} \lambda_{i} f_{i}^{r_{\varrho}}(\boldsymbol{\lambda}) = r_{\varrho}(\boldsymbol{\lambda}).$$
(5)

- We then interpret $f_i^{r_{\varrho}}$ as the amount of capital allocated to one unit of L_i when the overall portfolio loss is $L(\lambda)$.
- The amount of capital allocated to a position of $\lambda_i L_i$ is therefore $\lambda_i f_i^{r_{\varrho}}$ and so by (5), the total risk capital is fully allocated.

The Euler Allocation Principle

Definition: If r_{ϱ} is a positive-homogeneous risk-measure function which is differentiable on the set Λ , then the per-unit Euler capital allocation principle associated with r_{ρ} is the mapping

$$f^{r_{\varrho}}:\Lambda o \mathbb{R}^{n} : f^{r_{\varrho}}_{i}(\boldsymbol{\lambda}) = rac{\partial r_{\varrho}}{\partial \lambda_{i}}(\boldsymbol{\lambda}).$$

• The Euler allocation principle is a full allocation principle since a well-known property of any positive homogeneous and differentiable function, $r(\cdot)$ is that it satisfies

$$r(\boldsymbol{\lambda}) = \sum_{i=1}^{n} \lambda_i \frac{\partial r}{\partial \lambda_i}(\boldsymbol{\lambda}).$$

- The Euler allocation principle therefore gives us different risk allocations for different positive homogeneous risk measures.
- There are good economic reasons for employing the Euler principle when computing capital allocations.

Value-at-Risk and Value-at-Risk Contributions

Let $r^{\alpha}_{VaR}(\boldsymbol{\lambda}) = \mathsf{VaR}_{\alpha}(L(\boldsymbol{\lambda}))$ be our risk measure function.

Then subject to technical conditions can be shown that

$$f_{i}^{r_{VaR}^{\alpha}}(\boldsymbol{\lambda}) = \frac{\partial r_{VaR}^{\alpha}}{\partial \lambda_{i}}(\boldsymbol{\lambda})$$

= $\mathsf{E}[L_{i} \mid L(\boldsymbol{\lambda}) = \mathsf{VaR}_{\alpha}(L(\boldsymbol{\lambda}))], \text{ for } i = 1, \dots, n.$ (6)

Capital allocation, AC_i , for L_i is then obtained by setting $\lambda = 1$ in (6).

Will now use (6) and Monte-Carlo to estimate the VaR contributions from each security in a portfolio.

- Monte-Carlo is a general approach that can be used for complex portfolios where (6) cannot be calculated analytically.

An Application: Estimating Value-at-Risk Contributions

Recall total portfolio loss is $L = \sum_{i=1}^{n} L_i$.

According to (6) with $\lambda = 1$ we know that

A

$$C_{i} = \mathsf{E} \left[L_{i} \mid L = \mathsf{VaR}_{\alpha}(L) \right]$$

$$= \frac{\partial \mathsf{VaR}_{\alpha}(\lambda)}{\partial \lambda_{i}} \Big|_{\lambda=1}$$

$$= w_{i} \frac{\partial \mathsf{VaR}_{\alpha}}{\partial w_{i}}$$
(8)

for i = 1, ..., n and where w_i is the number of units of the i^{th} security held in the portfolio.

Question: How might we use Monte-Carlo to estimate the VaR contribution, AC_i , of the i^{th} asset?

Solution: There are three approaches we might take:

First Approach: Monte-Carlo and Finite Differences

As AC_i is a (mathematical) derivative we could estimate it numerically using a finite-difference estimator.

Such an estimator based on (8) would take the form

$$\widehat{AC}_{i} := \frac{\mathsf{VaR}_{\alpha}^{i,+} - \mathsf{VaR}_{\alpha}^{i,-}}{2\delta_{i}}$$
(9)

where $\operatorname{VaR}_{\alpha}^{i,+}$ ($\operatorname{VaR}_{\alpha}^{i,-}$) is the portfolio VaR when number of units of the i^{th} security is increased (decreased) by $\delta_i w_i$ units.

Each term in numerator of (9) can be estimated via Monte-Carlo

- same set of random returns should be used to estimate each term.

What value of δ_i should we use? There is a bias-variance tradeoff but a value of $\delta_i=.1$ seems to work well.

This estimator will not satisfy the additivity property so that $\sum_{i}^{n} \widehat{AC}_{i} \neq \mathsf{VaR}_{\alpha}$

- but easy to re-scale estimated \widehat{AC}_i 's so that the property will be satisfied.

Second Approach: Naive Monte-Carlo

Another approach is to estimate (7) directly. Could do this by simulating N portfolio losses $L^{(1)}, \ldots, L^{(N)}$ with $L^{(j)} = \sum_{i=1}^{n} L_i^{(j)}$

- $L_i^{(j)}$ is the loss on the i^{th} security in the j^{th} simulation trial.

Could then set (why?) $AC_i = L_i^{(m)}$ where m denotes the VaR_{α} scenario, i.e. $L^{(m)}$ is the $\lceil N(1-\alpha) \rceil^{th}$ largest of the N simulated portfolio losses.

Question: Will this estimator satisfy the additivity property, i.e. will $\sum_{i}^{n} AC_{i} = \text{VaR}_{\alpha}$?

Question: What is the problem with this approach? Will this problem disappear if we let $N \to \infty$?

A Third Approach: Kernel Smoothing Monte-Carlo

An alternative approach that resolves the problem with the second approach is to take a weighted average of the losses in the i^{th} security around the VaR_{α} scenario.

A convenient way to do this is via a kernel function.

In particular, say $K(x;h) := K\left(\frac{x}{h}\right)$ is a kernel function if it is:

- 1. Symmetric about zero
- 2. Takes a maximum at x = 0
- 3. And is non-negative for all x.

A simple choice is to take the triangle kernel so that

$$K(x;h) := \max\left(1 - \left|\frac{x}{h}\right|, 0\right).$$

A Third Approach: Kernel Smoothing Monte-Carlo

The kernel estimate of AC_i is then given by

$$\widehat{AC}_{i}^{ker} := \frac{\sum_{j=1}^{N} K\left(L^{(j)} - \hat{\mathsf{VaR}}_{\alpha}; h\right) L_{i}^{(j)}}{\sum_{j=1}^{N} K\left(L^{(j)} - \hat{\mathsf{VaR}}_{\alpha}; h\right)}$$
(10)

where $\widehat{\mathsf{VaR}}_{\alpha} := L^{(m)}$ with m as defined above.

One minor problem with (10) is that the additivity property doesn't hold. Can easily correct this by instead setting

$$\widehat{AC}_{i}^{ker} := \widehat{\mathsf{VaR}}_{\alpha} \frac{\sum_{j=1}^{N} K\left(L^{(j)} - \hat{\mathsf{VaR}}_{\alpha}; h\right) L_{i}^{(j)}}{\sum_{j=1}^{N} K\left(L^{(j)} - \hat{\mathsf{VaR}}_{\alpha}; h\right) L^{(j)}}.$$
(11)

Must choose an appropriate value of smoothing parameter, h.

Can be shown that an optimal choice is to set

$$h = 2.575 \,\sigma \, N^{-1/5}$$

where $\sigma = \operatorname{std}(L)$, a quantity that we can easily estimate.

When Losses Are Elliptically Distributed

If L_1, \ldots, L_N have an elliptical distribution then it may be shown that

$$AC_{i} = \mathsf{E}[L_{i}] + \frac{\mathsf{Cov}(L, L_{i})}{\mathsf{Var}(L)} (\mathsf{VaR}_{\alpha}(L) - \mathsf{E}[L]).$$
(12)

In numerical example below, we assume 10 security returns are elliptically distributed. In particular, losses satisfy $(L_1, \ldots, L_n) \sim \mathsf{MN}_n(\mathbf{0}, \Sigma)$.

Other details include:

- 1. First eight securities were all positively correlated with one another.
- 2. Second-to-last security uncorrelated with all other securities.
- 3. Last security had a correlation of -0.2 with the remaining securities.
- 4. Long position held on each security.

Estimated $VaR_{\alpha=.99}$ contributions of the securities displayed in figure below

- last two securities have a negative contribution to total portfolio VaR
- also note how inaccurate the "naive" Monte-Carlo estimator is
- but kernel Monte-Carlo is very accurate!

