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Risk Measures, Risk Aggregation and Capital
Allocation

We consider risk measures, risk aggregation and capital allocation in these lecture notes and build on our earlier
introduction to Value-at-Risk (VaR) and Expected Shortfall (ES). We will follow Chapter 6 of Quantitative Risk
Management by MFE closely. This chapter, however, contains considerably more material than we will cover
and it should be consulted if further details are required.

1 Coherent Measures of Risk

In 1999 Artzner et al. proposed a list of properties that any good risk measure should have and this list gave rise
to the concept of coherent and incoherent measures of risk. Since then a substantial body of research has
developed on the theoretical properties of risk measures and we describe some of these results here.

Let M denote the space of random variables representing portfolio losses over some fixed time interval, ∆. We
assume that M is a convex cone so that if L1 ∈M and L2 ∈M then L1 + L2 ∈M and λL1 ∈M for every
λ > 0. A risk measure is then a real-valued functions, % : M→ R, that satisfies certain desirable properties.
%(L) may be interpreted as the riskiness of a portfolio or the amount of capital that should be added to a
portfolio with a loss given by L, so that the portfolio can then be deemed acceptable from a risk point of view.
Note that under this latter interpretation, portfolios with %(L) < 0 are already acceptable and do not require
capital injections. In fact, if %(L) < 0 then capital could even be withdrawn while the portfolio would still
remain acceptable. The following properties of a risk measure merit special attention:

Axiom 1 : (Translation Invariance) For all L ∈M and every constant a ∈ R, we have %(L + a) = %(L) + a.

This property is necessary if the risk-capital interpretation we stated above is to make sense.

Axiom 2 : (Subadditivity) For all L1, L2 ∈M, we have %(L1 + L2) ≤ %(L1) + %(L2).

This axiom reflects the idea that pooling risks helps to diversify a portfolio. While this has been the most
debated of the risk axioms, it allows for the decentralization of risk management. For example, if a risk
manager has a total risk budget of B, he can divide B into B1 and B2 where B1 + B2 = B. He can then
allocate risk budgets of B1 and B2 to different trading desks or operating units in the organization, safe in
the knowledge that the firm-wide risk will not exceed B.

Axiom 3 : (Positive Homogeneity) For all L ∈M and every λ > 0 we have %(λL) = λ%(L).

This axiom is also somewhat controversial and has been criticized for not penalizing concentration of risk
and any associated liquidity problems. In particular, if λ > 0 is very large, then some people claim that we
should require %(λL) > λ%(L). However, such a result would be inconsistent with the subadditivity axiom.
This is easily seen if we write

%(nL) = %(L + · · ·+ L) ≤ n%(L)) (1)

where n ∈ N and the inequality follows from subadditivity. The positive homogeneity assumption states
that we must have equality in (1). This reflects he fact that there are no diversification benefits when we
hold multiples of the same portfolio, L.
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Axiom 4 : (Monotonicity) For L1, L2 ∈M such that L1 ≤ L2 almost surely, we have %(L1) ≤ %(L2).

It is clear that any risk measure should satisfy this axiom.

Definition 1 A risk measure, %, acting on the convex cone M is called coherent if it satisfies the translation
invariance, subadditivity, positive homogeneity and monotonicity axioms.

Remark 1 The criticisms of the subadditivity and positive homogeneity axioms have led to the study of
convex risk measures. A convex risk measure satisfies the same axioms as a coherent risk measure except
that the subadditivity and positive homogeneity axioms are replaced by the convexity axiom:

Axiom 5 : (Convexity) For L1, L2 ∈M and λ ∈ [0, 1],

%(λL1 + (1− λ)L2) ≤ λ%(L1) + (1− λ)%(L2).

It is possible within the convex class to find risk measures that satisfy %(λL) ≥ λ%(L) for λ > 1.

Value-at-Risk

Value-at-risk is not a coherent risk measure because it fails to be subadditive. This is perhaps the principal1

criticism that is made of VaR when it is compared to other risk measures. We will see two examples below that
demonstrate this. We first recall the definition of VaR.

Definition 2 Let α ∈ (0, 1) be some fixed confidence level. Then the VaR of the portfolio loss, L, at the
confidence interval, α, is given by

VaRα := qα(L) = inf{x ∈ R : FL(x) ≥ α}.
where FL(·) is the CDF of the random variable, L.

Example 1 Consider2 two assets, X and Y , that are usually normally distributed but are subject to occasional
shocks. In particular, assume that X and Y are independent and identically distributed with

X = ε + η where ε ∼ N(0, 1) and η =
{

0, with prob .991
−10, with prob .009.

Consider a portfolio consisting of X and Y . Then

VaR.99(X + Y ) = 9.8 > VaR.99(X) + VaR.99(Y ) = 3.1 + 3.1 = 6.2

thereby demonstrating the non-subadditivity of VaR.

Exercise 1 Confirm that the VaR values of 3.1 and 9.8 in the previous example are correct.

We now give a more meaningful and disturbing example of how VaR fails to be sub-additive.

Example 2 (VaR for a Portfolio of Defaultable Bonds (E.G. 6.7 in MFE))

Consider a portfolio of n = 100 defaultable corporate bonds where the probability of a default over the next year
is identical for all bonds and is equal to 2%. We assume that defaults of different bonds are independent from
one another. The current price of each bond is 100 and if there is no default, a bond will pay 105 one year from
now. If the bond defaults then there is no repayment. This means we can define Li, the loss on the ith bond, as

Li := 105Yi − 5

where Yi = 1 if the bond defaults over the next year and Yi = 0 otherwise. By assumption we also see that
P (Li = −5) = .98 and P (Li = 100) = .02. Consider now the following two portfolios:

1Of course, the general criticism that summarizing an entire loss distribution with just a single number can be applied to
all risk measures, coherent or not. Furthermore, there is the implicit assumption that we know the loss distribution when
determining the value of a risk measure. This assumption is often unjustifiable: it can and indeed has often led to financial
catastrophe!

2This example is taken from “Subadditivity Re-Examined: the Case for Value-at-Risk” by Dańıelsson et al.
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A: A fully concentrated portfolio consisting of 100 units of bond 1.

B: A completely diversified portfolio consisting of 1 unit of each of the 100 bonds.

We can compute the 95% VaR for each portfolio as follows:

Portfolio A: The loss on portfolio A is given by LA = 100L1 so that VaR.95(LA) = 100VaR.95(L1). Note that
P (L1 ≤ −5) = .98 > .95 and P (L1 ≤ l) = 0 < .95 for l < −.5. We therefore obtain VaR.95(L1) = −5 and so
VaR.95(LA) = −500. So the 95% VaR for portfolio A corresponds to a gain(!) of 500.

Portfolio B: The loss on portfolio B is given by

LB =
100∑

i=1

Li = 105
100∑

i=1

Yi − 500

and so VaR.95(LB) = 105 VaR.95(
∑100

i=1 Yi)− 500. Note that M :=
∑100

i=1 Yi ∼ Bin(100, .02) and by
inspection we see that P (M ≤ 5) ≈ .984 > .95 and P (M ≤ 4) ≈ .949 < .95. Therefore VaR.95(M) = 5 and so
VaR.95(LB) = 525− 500 = 25.

So according to VaR.95, portfolio B is riskier than portfolio A. This is clearly nonsensical. Note that we have
shown that

VaR.95

(
100∑

i=1

Li

)
≥ 100 VaR.95(L1) =

100∑

i=1

VaR.95(Li)

demonstrating again that VaR is not subadditive.

Remark 2 Let % be any coherent risk measure that depends only on the distribution of L. Then we obtain

%

(
100∑

i=1

Li

)
≤

100∑

i=1

%(Li) = 100%(L1)

and so in the previous example, % would correctly classify portfolio A as being riskier than portfolio B.

We now describe a situation where VaR is always subadditive.

Theorem 1 (Subadditivity of VaR for Elliptical Risk Factors (Theorem 6.8 in MFE))

Suppose that X ∼ En(µ,Σ, ψ) and let M be the set of linearized portfolio losses of the form

M := {L : L = λ0 +
n∑

i=1

λiXi, λi ∈ R}.

Then for any two losses L1, L2 ∈M, and 0.5 ≤ α < 1,

VaRα(L1 + L2) ≤ VaRα(L1) + VaRα(L2).

Proof: Without loss of generality we may assume that λ0 = 0. Recall also that if X ∼ En(µ,Σ, ψ) then
X = AY + µ where A ∈ Rn×k, µ ∈ Rn and Y ∼ Sk(ψ) is a spherical random vector. Any element L ∈M can
therefore be represented as

L = λT X = λT AY + λT µ

∼ ||λT A|| Y1 + λT µ (2)

where (2) follows from part 3 of Theorem 2 in the Multivariate Distribution and Dimension Reduction
Techniques lecture notes. Now the translation invariance and positive homogeneity of VaR imply

VaRα(L) = ||λT A|| VaRα(Y1) + λT µ.
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Suppose now that L1 := λT
1 X and L2 := λT

2 X. The triangle inequality implies

||(λ1 + λ2)T A|| ≤ ||λT
1 A|| + ||λT

2 A||

and since VaRα ≥ 0 for α ≥ .5 (why?), the result follows from (2). ¤

Remark 3 It is a widely held belief that if the individual loss distributions under consideration are continuous
and symmetric then VaR is subadditive. This is not true and a counterexample may be found in Section 6.2 of
MFE. The loss distributions in the counterexample are smooth and symmetric but the copula is highly
asymmetric. VaR can also fail to be subadditive when the individual loss distributions have heavy tails.

Expected Shortfall

We now show that expected shortfall (ES) or CVaR is a coherent measure of risk. We first recall the definition
of ES.

Definition 3 For a portfolio loss, L, satisfying E[|L|] < ∞ the expected shortfall at confidence level α ∈ (0, 1)
is given by

ESα :=
1

1− α

∫ 1

α

qu(FL) du.

The relationship between ESα and VaRα is therefore given by

ESα :=
1

1− α

∫ 1

α

VaRu(L) du (3)

from which it is clear that ESα(L) ≥ VaRα(L). When the CDF, FL, is continuous then a more well known
representation of ESα(L) is given by

ESα :=
E [L; L ≥ qα(L)]

1− α
= E [L | L ≥ VaRα] . (4)

The following result demonstrates that expected shortfall is a coherent risk measure. We again follow the proof
in MFE.

Theorem 2 Expected shortfall is a coherent risk measure.

Proof: The translation invariance, positive homogeneity and monotonicity properties all follow from the
representation of ES in (3) and the same properties for quantiles. We therefore only need to demonstrate
subadditivity.

Let L1, . . . , Ln be a sequence of random variables and let L1,n ≥ · · · ≥ Ln,n be the associated sequence of
order statistics. Note that

m∑

i=1

Li,n = sup{Li1 + · · ·+ Lim : 1 ≤ i1 < · · · < im ≤ m} (5)

where m ∈ N satisfying 1 ≤ m ≤ n is arbitrary. Now let (L, L̃) be a pair of random variables with joint CDF, F ,
and let (L1, L̃1), . . . , (Ln, L̃n) be an IID sequence of bivariate random vectors with this same CDF. Then

m∑

i=1

(L + L̃)i = sup{(L + L̃)i1 + · · ·+ (L + L̃)im : 1 ≤ i1 < · · · < im ≤ m}

≤ sup{Li1 + · · ·+ Lim : 1 ≤ i1 < · · · < im ≤ m} + sup{L̃i1 + · · ·+ L̃im : 1 ≤ i1 < · · · < im ≤ m}

=
m∑

i=1

Li,n +
m∑

i=1

L̃i,n. (6)
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Now set3 m = bn(1− α)c and let n →∞. It may be shown4 that
∑m

i=1 Li,n → ESα(L),
∑m

i=1 L̃i,n → ESα(L̃)
and

∑m
i=1(L + L̃)i,n → ESα(L + L̃). The subadditivity of ES then follows immediately from (6). ¤

There are many other examples of risk measures that are coherent. They include, for example, risk measures
based on generalized scenarios and spectral risk measures of which expected shortfall is an example.

2 Bounds for Aggregate Risk

Let L = (L1, . . . , Ln) denote a vector of random variables, each one representing a loss on a particular trading
desk, portfolio or operating unit within a firm. Sometimes we wish to aggregate these losses into a single
random variable, ψ(L), say. Common examples of the aggregating function, ψ(·), include:

• The total loss so that ψ(L) =
∑n

i=1 Li.

• The maximum loss where ψ(L) = max{L1, . . . , Ln}.
• The excess-of-loss treaty so that ψ(L) =

∑n
i=1(Li − ki)+.

• The stop-loss treaty in which case ψ(L) = (
∑n

i=1 Li − k)+.

We wish to understand the risk of the aggregate loss function, %(ψ(L)), but to do so we need to know the
distribution of ψ(L). In practice, however, we often know only the distributions of the Li’s and have little or no
information about the dependency or copula of the Li’s. In this case we can try to compute lower and upper
bounds on %(ψ(L)). In particular we can formulate the two problems

%min := inf{%(ψ(L)) : Li ∼ Fi, i = 1, . . . , n}
%max := sup{%(ψ(L)) : Li ∼ Fi, i = 1, . . . , n}

where Fi is the CDF of the loss, Li. Problems of this type are referred to as Frechet problems and solutions are
available in some circumstances. Indeed, when we studied copulas we saw an example of such a problem when
we addressed the question of attainable correlations given known marginal distributions. In a risk management
context, these problems have been studied in some detail when ψ(L) =

∑n
i=1 Li and %(·) is the VaR function.

The results on this problem are generally of more theoretical than practical interest and so we will not discuss
them many further. Results and references, however, can be found in Section 6.2 of MFE.

3 Capital Allocation

Consider again a total loss given by L =
∑n

i=1 and suppose we have determined the risk, %(L), of this loss. The
capital allocation problem seeks a decomposition, AC1, . . . , ACn, such that

%(L) =
n∑

i=1

ACi (7)

and where ACi is interpreted as the risk capital that has been allocated to the ith loss, Li. This problem is
important in the setting of performance evaluation where we want to compute a risk-adjusted return on capital
(RAROC). This return might be estimated, for example, by Expected Profit / Risk Capital and in order to
compute this we must determine the risk capital of each of the Li’s. Obviously, we would require the
corresponding risk capitals to sum to the total risk capital so that (7) is satisfied.

More formally, let L(λ) :=
∑n

i=1 λiLi be the loss associated with the portfolio consisting of λi units of the loss,
Li, for i = 1, . . . , n. The loss on the actual portfolio under consideration is then given by L(1). Let %(·) be a

3bxc is defined to be the largest integer less than or equal to x, i.e. the floor of x.
4See, for example, Lemma 2.20 in MFE.
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risk measure on a space M that contains L(λ) for all λ ∈ Λ, an open set containing 1. Then the associated risk
measure function, r% : Λ → R, is defined by r%(λ) = %(L(λ)). We have the following definition.

Definition 4 Let r% be a risk measure function on some set Λ ⊂ Rn 0 such that 1 ∈ Λ. Then a mapping,
fr% : Λ → Rn, is called a per-unit capital allocation principle associated with r% if, for all λ ∈ Λ, we have

n∑

i=1

λif
r%

i (λ) = r%(λ). (8)

We then interpret f
r%

i as the amount of capital allocated to one unit of Li when the overall portfolio loss is
L(λ). The amount of capital allocated to a position of λiLi is therefore λif

r%

i and so by (8), the total risk
capital is fully allocated.

Definition 5 (Euler Capital Allocation Principle) If r% is a positive-homogeneous risk-measure
function which is differentiable on the set Λ, then the per-unit Euler capital allocation principle associated with
r% is the mapping

fr% : Λ → Rn : f
r%

i (λ) =
∂r%

∂λi
(λ).

The Euler allocation principle is seen to be a full allocation principle since a well-known property of any positive
homogeneous and differentiable function, r(·) is that it satisfies r(λ) =

∑n
i=1 λi

∂r
∂λi

(λ). The Euler allocation
principle therefore gives us different risk allocations for different positive homogeneous risk measures. It should
also be mentioned that there are good economic reasons5 for employing the Euler principle when computing
capital allocations. We will not discuss those reasons here, however. We end by briefly describing some examples
below but Section 6.3 of MFE should be consulted for proofs and further details if necessary.

Standard Deviation and the Covariance Principle

Let rsd(λ) = std(L(λ)) be our risk measure function and write Σ for the variance-covariance matrix of

L1, . . . , Ln. Then rsd(λ) =
(
λT Σλ

)1/2
and using the Euler allocation principle it follows that

frsd
i (λ) =

∂rsd

∂λi
(λ) =

(Σλ)i

rsd(λ)
=

∑n
j=1 Cov(Li, Lj)λj

rsd(λ)
=

Cov(Li, L(λ))√
Var(L(λ))

(9)

and the actual capital allocation, ACi, for Li is obtained by setting λ = 1 in (9). This is then known as the
covariance principle

Value-at-Risk and Value-at-Risk Contributions

If rα
V aR(λ) = VaRα(L(λ)) is our risk measure function, then subject to technical conditions it can be shown that

f
rα

V aR
i (λ) =

∂rα
V aR

∂λi
(λ) = E [Li | L(λ) = VaRα(L(λ))] , for i = 1, . . . , n. (10)

Expected Shortfall and Shortfall Contributions

If rα
ES(λ) = E [L(λ) | L(λ) ≥ VaRαL(λ)] is our risk measure function, then subject again to technical

conditions it can be shown that

f
rα

ES
i (λ) =

∂rα
ES

∂λi
(λ) =

1
1− α

E [Li | L(λ) ≥ VaRα(L(λ))] , for i = 1, . . . , n. (11)

We therefore have the capital allocation ACi = E [Li | L ≥ VaRα(L)] for the risk, Li, where L := L(1).

5See Section 6.3.3 of MFE for these reasons.


