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1 Some Basic Analysis

1.1 Function spaces

Definition 1.1 Schwartz class, S(IRn), is the vector space of functions which are C∞ and
which, together with all their derivatives, decay faster than any polynomial rate. Specifically,
if f ∈ S, then for any α, β ∈ Nn

0 , there exists a constant Cα,β such that

sup
x∈IRn

|xα∂β
xf(x)| ≤ Cα,β

Lp(IRn) spaces, 1 ≤ p ≤ ∞
S is dense in Lp

Theorem 1.1 (Approximation of the identity) Let K(x) > 0 and
∫
K(x)dx = 1. Define

KN(x) = NnK(Nx), N ≥ 1.
Let f be a bounded and continuous function on IRn and consider the convolution

KN ⋆ f(x) =

∫
KN (x− y) f(y) dy (1.1)

Then, KN ⋆ f(x) → f(x) uniformly on any compact subset, C, of IRn as N ↑ ∞, i.e.
maxx∈C | [KN ⋆ f ](x) − f(x)| → 0.

1.2 Linear operators

Definition 1.2 A linear transformation, T , between vector spaces X1 and X2...

Definition 1.3 A bounded linear transformation...

Example 1.1 Symmetric matrix n by n

Theorem 1.2 Let T : E → Y be a BLT.

1.3 Fourier Transform

For f ∈ S define the Fourier transform, f̂ or Ff by

f̂(ξ) = Ff(ξ) =

∫
e−2πix·ξf(x) dx (1.2)

Proposition 1.1 Assume f ∈ S.

(a) f̂ ∈ C∞ and ∂β f̂(ξ) =
[

(−2πix)βf(x)
]

(̂ξ)

(b) ∂̂βf(ξ) = (2πiξ)β f̂(ξ)

(c) f̂ ∈ S. Thus, the Fourier transform maps S to S.
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Theorem 1.3 Riemann-Lebesgue Lemma
f ∈ L1(IRn) =⇒ limξ→∞ f̂(ξ) = 0.

Proof: Approximate by step functions, for which the result can be checked. Note: no rate
of decay of the Fourier transform is implied by f ∈ L1.

Theorem 1.4 Let f(x) ≡ e−πa|x|2. Then,

f̂(ξ) = a−
n
2 e−π

|ξ|2

a (1.3)

Proof: Write out definition of f̂ . Note that the computation factors into computing the
Fourier transform of n independent one dimensional Gaussians. For the one-dimensional
Gaussian, complete the square in the exponent, deform the contour using analyticity of the
integrand, and finally use that

∫
IR e

−πy2
dy = 1.

1.4 Fourier inversion on S and L2

Definition: For g ∈ S define ǧ

ǧ(x) ≡
∫
e2πiξ·xg(ξ) dξ = ĝ(−x)

Proposition 1.2 ∫
f̂ g dx =

∫
f ĝ dx (1.4)

Proof: Interchange orders of integration (Fubini’s Theorem).

Theorem 1.5 Fourier inversion formula Assume f ∈ S. Then,

f ∈ S =⇒ ǧ(x) = f(x), where g(ξ) = f̂(ξ) (1.5)

Proof: We shall prove Fourier inversion in the following sense.

lim
ε→0

∫
e−πε2|ξ|2 e2πix·ξ f̂(ξ) dξ = f(x)

For any ε > 0 define
φε(ξ) = e2πix·ξ − πε2|ξ|2

whose Fourier transform is

φ̂ε(y) =
1

εn
e−π |x−y|2

ε2 =
1

εn
g

(
x− y

ε

)
≡ gε(x− y)
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Now,

∫
e−πε2|ξ|2 e2πix·ξ f̂(ξ) dξ =

∫
φε(ξ) f̂(ξ) dξ

=

∫
φ̂ε(y) f(y) dy

=

∫
gε(x− y) f(y) dy → f(x)

as ε ↓ 0 because gε is an approximation of the identity; see Theorem 1.1

Theorem 1.6 (Plancherel Theorem) Assume f ∈ S. Then,

‖f̂‖2 = ‖f‖2

Therefore, the Fourier transform preserves the L2 norm on S. Furthermore, for any f, g ∈ S
∫
f g dx =

∫
F [f ] F [g]

Corollary 1.1 The Fourier transform can be extended to a unitary operator defined on all
L2 such ‖f̂‖2 = ‖f‖2.

Proof: A BLT argument. S is dense in L2. If f ∈ L2, there exists a sequence fj ∈ S such

that ‖fj − f‖2 → 0. Define f̂ = limj→∞ f̂j .

1.5 Sobolev spaces on IRn

Definition 1.4 (1) For any s ∈ IR, define the Hs(IRn) norm for u ∈ S(IRn) by

‖u‖2
Hs =

∫
|û(ξ)|2 (1 + |ξ|2)s dξ. (1.6)

(2) The Sobelev space Hs = Hs(IRn) is defined to be the completion of S(IRn) with respect
to the norm ‖ · ‖Hs.

The following estimate shows the important connection between the control of derivatives
of a function in L2 with the pointwise behavior of a function.

Theorem 1.7 (Sobelev Lemma) Let k be a non-negative integer. Let u ∈ Hs(IRn), where
s > k + n/2. Then, u is almost everywhere (in the measure theoretic sense) equal to a
function of class Ck. Moreover, for any α ∈ Nn with |α| = k, we have ∂αu ∈ C↓(IR

n) and
there exists a constant C > 0 depending only on s, α, n, but not on u, such that

‖∂αu‖L∞ ≤ C ‖u‖Hs.
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The connection between the general Lq behavior of a function and that of its Sobelev
space regularity also plays an important role, quite often in nonlinear problems. We will use
the following special case of the Sobelev-Nirenberg-Gagliardo estimate:

Theorem 1.8 Let f be in H1. Then, f is almost everywhere equal to an Lq function for
2 ≤ q < 2q

n−2
if n ≥ 3 and all q ≥ 2 if n = 1 or n = 2. Furthermore,

‖ f ‖Lq ≤ Cq,n ‖f‖H1, and in fact

‖ f ‖Lq ≤ Cq,n ‖∇f‖n q−2
2q

L2 ‖f‖1−n q−2
2q

L2 (1.7)

1.6 Notes and references for section 1

A good short and user-friendly introduction to basic functional analysis appears in Chapter
0 of G.B. Folland’s text on PDEs [1]. Volume 1 of Reed-Simon’s series, Functional Analysis
[3], contains a discussion, going considerably further.

2 Linear dispersive PDEs - introduction

In this section we introduce the notion of dispersion and give numerous examples. A good
reference is [6].

2.1 Dispersion relations, examples

Consider a system of m linear, constant coefficient, homogeneous partial differential equa-
tions:

P (i∂t,−i∂x1 , . . . ,−i∂xn)u(x, t) = 0 (2.1)

Here, for simplicity, we take P (τ, k1, . . . , kn) to be an n by m matrix, whose entries are
polynomials in τ and ξk. A plane wave solution is a solution of the form ei(k·x−ωt)w, where w
is a constant vector in IRn. Substitution into (2.1) yields the system of algebraic equations
for v:

P (ω, k1, . . . , kn) w = 0

A non-trivial plane wave solution exists if and only if

G(ω, k) ≡ detP (ω, k) = 0. (2.2)

The relation (2.2) is called the dispersion relation of the system of PDEs. We assume it
defines m real-valued branches of the form

ω = ω(k), for which G(ω(k), k) = 0 (2.3)

Example 2.1 Transport equation

∂tu+ v · ∇u = 0 (2.4)

Dispersion relation: ω(k) = v · k.
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Example 2.2 One dimensional wave equation

c−2∂2
t u = ∂2

xu (2.5)

Dispersion relation: c−2ω2(k)− k2 = 0, defining two branches ω+(k) = ck and ω−(k) = −ck.

Example 2.3 One dimensional Klein-Gordon equation

c−2∂2
t u =

(
∂2

x − m2
)
u, m > 0. (2.6)

Dispersion relation: c−2ω2(k) − (m2 + k2) = 0, defining two branches ω+(k) = c
√
m2 + k2

and ω−(k) = −c
√
m2 + k2.

Example 2.4 Free Schrödinger equation

i~∂t ψ = − ~
2

2m
∆ψ (2.7)

Dispersion relation: ω(k) = ~

2m
|k|2

Example 2.5 One dimensional beam equation

∂2
t u + γ2∂4

xu. (2.8)

Dispersion relation: ω+(k) = γk2 and ω−(k) = −γk2.

Exercise 2.1 Show that if ψ = U+iV , where U and V are real, satisfies the free Schrödinger
equation, then U and V each statisfy the beam equation.

Example 2.6 Linearized KdV aka Airy equation

∂tu + c∂xu + ∂3
xu = 0. (2.9)

Dispersion relation: ω(k) = ck − k3.

Example 2.7 Linearized BBM

∂tu + c∂xu − ∂2
x∂tu = 0. (2.10)

Dispersion relation: ω(k) = ck
1+k2 .

Example 2.8 Coupled mode equations

∂tE+ + ∂xE+ + κE− = 0

∂tE− + ∂xE− + κE+ = 0 (2.11)

Dispersion relation: ω±(k) = ±
√
κ2 + k2. Note that the first order system (2.11) has the

same dispersion relation as the Klein-Gordon equation (2.6), with κ = m.
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3 Introduction to the Schrödinger equation

In this section we introduce the Schrödinger equation in two ways. First, we mention how
it arises in the fundamental description of quantum atomic phenomena. We then show its
role in the description of diffraction of classical waves.

3.1 Quantum mechanics

The hydrogen atom: one proton and one electron of mass m and charge e. The state of the
atom is given by a function ψ(x, t), complex-valued, defined for all x ∈ IR3 and t ∈ IR. ψ is
often called the wave function.
Let Ω ⊂ IR3. |ψ(x, t)|2 dx is a probability measure with the interpretation

∫

D

|ψ(x, t)|2 dx = Probability (electron ∈ Ω at time t)

Thus, we require

∫

IR3
|ψ(x, t)|2 dx = Probability

(
electron ∈ IR3 at time t

)
= 1

Given an initial wave function, ψ0

i~ ∂tψ = H ψ

H = − ~
2

2m
∆ + V (x) (3.1)

Here, ~ denotes Planck’s constant divided by 2π. The operator H is called a Schrödinger
operator with potential V , a real-valued function determined by the nucleus. For the special
case of the hydrogen atom

H = − ~
2

2m
∆ − e2

r
, r = |x| (3.2)

The free electron (unbound to any nucleus) is governed by the free Schrödinger equation
(V ≡ 0):

i~ ∂tψ = − ~
2

2m
∆ψ (3.3)

3.2 Free Schrödinger - initial value problem

Initial Value Problem
i∂tu = −∆ u, u(x, 0) = f(x) (3.4)

Unlike the heat equation, ∂tu = ∆u, which has an exponentially decaying Gaussian fun-
damental solution, the fundamental solution of the Schrödinger equation is an oscillatory
Gaussian with no spatial decay. For this reason, the derivation of the solution to the initial

8
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value problem is more subtle. One approach is to regularize the Schrödinger equation by
adding a small (ε > 0) diffusive term, which we then take to zero (ε→ 0).

Regularized initial value problem Take ε > 0.

i∂tu
ε = −(1 − iε)∆ uε, uε(x, 0) = f(x) (3.5)

Lemma 3.1
f(x) = e−πa|x|2, ℜa ≥ 0 =⇒ f̂(ξ) = a−

n
2 e−

π
a
|ξ|2 (3.6)

Solution of regularized IVP

i∂tû
ε = 4π2(1 − iε)|ξ|2û

ûε(ξ, t) = e−4π2(i+ε)|ξ|2t f̂(ξ) (3.7)

uε(x, t) =

∫
Kε

t (x− y) f(y) dy,

where

Kε
t (x) =

∫
e−2πix·ξ e−4π2(i+ε)|ξ|2t dξ. (3.8)

Here, we have used that for ε > 0, e2πiξ·(x−y) e−4π2(i+ε)|ξ|2t f(y) ∈ L1(dξdy), so we can
interchange integrals by Fubini’s Theorem.

We now apply Lemma 3.1 with a = (4π(i+ ε)−1 and obtain

Kε
t (x) = (4π(i+ ε)t)−n/2 e−

|x|2

4t(i+ε)

For any t 6= 0, if f ∈ L1, we can pass to the limit ε → 0+ by the Lebesgue dominated
convergence theorem. We define the free Schrödinger evolution by

u(x, t) = ei∆tf =

∫
Kt(x− y) f(y) dy

Kt(x) = (4πit)−n/2 ei |x|
2

4t , (3.9)

where (3.9) is understood as limε→0+ Kε
t ⋆ f .

For f ∈ L2, we can use that the Fourier transform is defined (and unitary) on all L2 to
define, by (3.7),

u(x, t) =
(
e−4π2i|ξ|2t f̂(ξ)

)
(̌x, t) = ei∆tf (3.10)

3.3 Free Schrödinger in Lp

ei∆tf for f ∈ L1(IRn): In this case,

|u(x, t)| =

∣∣∣∣
∫

Kt(x− y) f(y) dy

∣∣∣∣ ≤
∫

|f | dy

9
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Therefore, if f ∈ L1(IRn), then ei∆tf ∈ L∞(IRn) for t 6= 0 and

‖ ei∆tf ‖L∞ ≤ |4πt|−n
2 | ‖f‖L1 (3.11)

ei∆tf for f ∈ L2(IRn): In this case

∫
|u(x, t)|2dx =

∫
|û(ξ, t)|2dξ =

∫
|e−4π2i|ξ|2t f̂(ξ)|2dξ =

∫
|f(ξ)|2dξ

Thus, if f ∈ L2(IRn), then ei∆tf ∈ L2(IRn) and

‖ei∆tf‖L2 = ‖f‖L2 (3.12)

Extension to Lp: Suppose f ∈ Lp(IRn) with 1 ≤ p ≤ 2. Using a theorem of M. Riesz on
interpolation of linear operators, Theorem 9.1, one can show:

Theorem 3.1 Let 1 ≤ p ≤ 2 and 2 ≤ q ≤ ∞, where p−1 + q−1 = 1. If f ∈ Lp(IRn), then
for t 6= 0 ei∆tf ∈ Lq(IRn) and

‖ei∆tf‖Lq ≤ |4πt|−(n
2
−n

q
) ‖f‖Lp (3.13)

3.4 Structural properties of the Schrödinger equation

Invariances properties: The following transformations map solutions of the free Schrödinger
equation to solutions of free Schrödinger equation.

(1) Spatial translation: u(x, t) 7→ u(x+ x0, t), x0 ∈ IRn

(2) Time translation: u(x, t) 7→ u(x, t+ t0), t0 ∈ IR

(3) Complex conjugation: u(x, t) 7→ ¯u(x, t)

(4) Time-reversal / conjugation: u(x, t) 7→ u(x,−t)

(5) Galilean invariance:

u(x, t) 7→ Gη[u](x, t) = eiη·(x−ηt) u(x− 2ηt, t). (3.14)

Remark 3.1 Note that (3.14) contains the two velocities: vphase(η) = ω(η)/η = η and
vgroup(η) = 2η, the group velocity. Energy propagates with the group velocity; see Remark
3.2.
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3.5 Free evolution of a Gaussian wave packet

Consider the evolution of a Gaussian wave-packet in one-space dimension. Let η0 = 2πξ0.

i∂tu = −∂2
xu

u(x, 0) = eiη0x e−
x2

2L2 = gL,η0(x) (3.15)

Thus u(x, 0) is an oscillatory and localized initial condition with carrier oscillation period
ξ−1
0 or frequency ξ0. Its evolution has an elegant and illustrative form:

Theorem 3.2

u(x, t) = ei∆tgL,η0 =
eiη0(x−η0t)

(
1 + 2it

L2

) 1
2

e
−

(x−2η0t)2

2L2(1+ 2it
L2 ) (3.16)

Proof of Theorem 3.2 : The Fourier representation of the solution is:

u(x, t) =

∫
e2πiξxĝL,2πξ0(ξ) dξ (3.17)

Note: ĝL,2πξ0(ξ) = ĝL,0(ξ−ξ0) = (2π)
1
2 L e−2π2L2(ξ−ξ0)2 . Substitution into (3.17) and grinding

away with such tools as completing the square yields the result.

A “better” proof of Theorem 3.2: We prove the result in two steps. Step 1: Treat the
case where η0 = 0, u(x, 0) = gL,0. Step 2: Apply the Galilean transformation, Gη0 , to obtain
Theorem for general η0.
Step 1: u(t) = ei∆tgL,0 is the convolution of Gaussians. Thus, it is useful to have

Lemma 3.2 Let Ga(x) = e−aπ|x|2. Let a and b be such that ℜa ≥ 0, ℜb ≥ 0, a 6= 0 and
b 6= 0. Then,

Ga ⋆ Gb =
1

(a + b)
n
2

G ab
a+b

(3.18)

Proof of Lemma 3.2: The Fourier transform of the right hand side of (3.18) is the product
of the Fourier transforms, computed using Theorem 1.3. Rewriting this product as a single
Gaussian and computing the inverse transform, using Theorem 1.3, gives the result.
Step 2: Note that the Galilean boost: U(x, t) = Gη0 [e

i∆tgL,0] solves the initial value problem
for the free Schrödinger equation with initial data U(x, 0) = eiη0xgL,0, as desired. This gives
the formula (3.16).

Remark 3.2 • Phase propagates with velocity η0, the phase velocity

• Energy ∼ |u(x, t)|2 propagates with velocity 2η0, the group velocity

• Solution disperses (spreads and decays) to zero as t ↑. This is seen from the general
estimate (3.11) as well as the explicit solution (3.16).

• However, solution does not decay in L2. The Schrödinger evolution is unitary in L2;
see (3.12).

• Concentrated (sharp) initial conditions (L small) disperse more quickly than spread out
initial conditions (L large). The time scale of spreading is t ∼ L2.
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3.6 Observables

Recall that |ψ(x, t)|2 has the interpretation of a probability density for a quantum particle
to be at position x at time t. |ψ̂(ξ, t)|2 has the interpretation of a probability density for a
quantum particle to be at momentum ξ at time t.

The expected value of an observable or operator , A, is formally given by1

〈A〉 = (ψ,Aψ) =

∫
ψAψ (3.19)

Theorem 3.3
d

dt
〈A〉 = i〈[H,A]〉, (3.20)

where [B,A] = BA− AB.

Examples

(i) 〈X〉, the average position =
∫
x|ψ(x, t)|2dx.

(ii) 〈Ξ〉 =
∫
ξ|ψ̂(ξ, t)|2dξ; Let Pk = −i∂xk

, the momentum operator. Then, 〈Pk〉 =
2π〈Ξ〉 is the average momentum.

(iii) 〈|X|2〉, the variance or uncertainty in position =
∫
|x|2|ψ(ξ, t)|2dx.

(iv) 〈|Ξ|2〉, the variance or uncertainty in momentum =
∫
|ξ|2|ψ̂(ξ, t)|2dξ.

Exercise 3.1 Show that 〈Xk〉(t) = 〈Xk〉(0) + 2〈Pk〉(0) t.

3.7 The Uncertainty Principle

Theorem 3.4 (Uncertainty Inequality) Suppose xf and ∇f are in L2(IRn). Then,

∫
|f |2 ≤ 2

n

(∫
|xf |2

) 1
2
(∫

|∇f |2
) 1

2

or equivalently ∫
|f |2 ≤ 4π

n

(∫
|xf |2

) 1
2
(∫

|ξf̂ |2
) 1

2

(3.21)

Exercise 3.2 (a) Prove the uncertainty inequality, using the pointwise identity

x · ∇|f |2 = ∇ · (x|f |2) − n |f |2,

(b) Prove that the inequality (3.21) is sharp in the sense that equality is attained for the
Gaussian f(x) = exp(−|x|2/2).

1We proceed formally, without any serious attention to operator domains etc. For a fully rigorous treat-
ment, see [3].
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Applying the uncertainty inequality (3.21) to a solution of the Schrödinger equation, with
initial condition ‖ψ(·, 0)‖L2 = 1 and we have,

1 =

∫
|ψ(x, 0)|2dx =

∫
|ψ(x, t)|2dx ≤ 4π

n

(∫
|xψ(x, t)|2

) 1
2
(∫

|ξψ̂(ξ, t)|2
) 1

2

(3.22)

The latter, can be written as

n

4π
≤
√
〈|X|2〉(t)

√
〈|Ξ|2〉(t) (3.23)

and is called Heisenberg’s uncertainty principle.

4 Oscillatory integrals and Dispersive PDEs

Consider a scalar constant coefficient partial differential equation

∂tu = P (D) u, D = (∂x1 , . . . , ∂xn) (4.1)

Assuming a real-valued dispersion relation ω = ω(k), we have that the solution to the initial
value problem with initial data u(x, 0) = g(x) has the form

u(x, t) =

∫
ei(x·ξ−ω(ξ)t) ĝ(ξ) dξ (4.2)

Question: What is the large time (t→ ∞) behavior of u(x, t)?
This question is now considered in the context of the following more general question in the
asymptotic analysis of oscillatory integrals of the form

I(λ) =

∫
eiλφ(ξ) h(ξ) dξ, for λ→ ∞ (4.3)

where φ(ξ) is a smooth and real-valued a phase-function.
Our goal in this section is to make precise the notion that: as λ→ ∞, rapid oscillations

of eiλφ(ξ) tend to cancel each other out and the dominant contribution from I(λ) comes from
a neighborhood of points, ξ, for which ∇φ(ξ) = 0.

Here’s the idea; when in doubt, integrate by parts. Let’s consider the integral:
∫ b

a
eiλφ(ξ)dξ.

If φ′ 6= 0 on [a, b], then

∫ b

a

eiλφ(ξ)dξ =

∫ b

a

1

iλφ′(ξ)

d

dξ
eiλφ(ξ)dξ

=
1

iλφ′(ξ)
eiλφ(ξ)

∣∣∣ξ=b
ξ=a −

∫ b

a

eiλφ(s) d

ds

1

iλφ′(s)
ds

13
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Therefore, |
∫ b

a
eiλφ(ξ)dξ| ≤ C|λ|−1 maxa≤ξ≤b |φ′(ξ)|−1. If there is an interior point ξ0, a <

ξ0 < b, at which φ′(ξ0) = 0 and φ′′(ξ0) 6= 0. Then, we break the integral into an integral
over a small neighborhood of ξ0 (or, more generally, neighborhoods of any finite set of non-
degenerate critical points of φ,) and an integral over the complement of this neighborhood.
On the complement, φ′ 6= 0 so the previous estimate holds. On the small neighborhood of
ξ0, we have φ(ξ) ∼ φ(0)+ 1

2
φ′′(ξ0)(ξ− ξ0)2. Therefore, the contribution from a neighborhood

of ξ0 comes from a Gaussian integral, which can be estimated as O
(

(|φ′′(ξ0)| |λ|)−
1
2

)
. We

now proceed with a rigorous treatment.

4.1 Non-stationary phase

Theorem 4.1 (Non-stationary phase) Let K be a compact subset of IRn. Suppose φ is real-
valued and defined on a neighborhood, O, of K, such that φ ∈ Cr+1(O) and such that ∇φ 6= 0
on K. Let h ∈ Cr

0(int(K)). Then,

| I(λ) | ≤ C〈λ〉−r ‖h‖r,∞, (4.4)

where
‖u‖r,∞ =

∑

|α|≤r

‖∂αu‖∞, (4.5)

C = C (maxK |∇ξφ|−1, ‖∂φ‖r,∞) and C(s, s′) → ∞ as s or s′ tend to infinity. In particular,
if φ and h are C∞ then I(λ) = O(〈λ〉−r) for any r > 0.

Proof of Theorem 4.1: First note that for |λ| ≤ 1 we can use the bound | I(λ) | ≤ ‖h‖L1 .
Therefore, it suffices to consider |λ| ≥ 1.

We seek an operator L =
∑n

j=1 b
j(ξ)∂ξj

such that

L eiλφ(ξ) = eiλφ(ξ)

In order to see how to choose bj , compute:

L eiλφ(ξ) = eiλφ(ξ)

(
n∑

j=1

iλ ∂ξj
φ(ξ) bj(ξ)

)

implying the choice

bj(ξ) =
1

iλ
|∇φ(ξ)|−2 ∂ξj

φ(ξ) (4.6)

Note that if h has compact support then,

I(λ) =

∫
eiλφ(ξ) h(ξ) dξ

=

∫
Lr(eiλφ(ξ)) h(ξ) dξ

=

∫
eiλφ(ξ) (Lt)r h(ξ) dξ,

(4.7)

14
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where

Lt = − 1

iλ

n∑

j=1

∂ξj

(
|∇φ(ξ)|−2 ·

)
(4.8)

Since |eiλφ| = 1, we have

| I(λ) | ≤
∫

| (Lt)r h(ξ) | dξ.

Note that (Lt)r contains a factor λ−r. The proof now follows by expanding and estimating
the right hand side.

Corollary 4.1 Let ĝ(ξ), appearing in the expression for u(x, t) in (4.2), be smooth and have
compact support. Denote by

Λ = {∇ξ ω(ξ) : ξ ∈ supp(ĝ) } (4.9)

Let G ⊂ IRn be an open subset which contains Λ. For any m = 1, 2, . . . , there exists a
constant c = c(m, g,G), such that for any (x, t) with x/t /∈ G:

|u(x, t)| ≤ c〈|t| + |x|〉−m (4.10)

4.2 Stationary Phase

Theorem 4.2 (Stationary Phase) Let φ, defined in a neighborhood of the origin 0 ∈ IRn,
be a C∞ and real-valued function. Assume that 0 is a non-degenerate critical point of φ, i.e.
∇φ(0) = 0 and Hφ(0) = ( φξiξj

(0) ) is invertible. Then, there exist neighborhoods O and O′

of the origin and a constant C > 0, such that for all h ∈ C∞
0 (O)

| I(λ) | ≤ C | detHφ(0) |−
n
2 〈λ〉−n

2 ‖h‖Hs , s >
n

2
(4.11)

Corollary 4.2 Consider u(x, t), given by (4.2), where ĝ ∈ C∞
0 and

supp(ĝ) ∩ {ξ : det(φξiξj
)(0) = 0} is empty.

Then, for all x, t
|u(x, t)| ≤ C | detHφ(0)|−n

2 〈t〉−n
2 (4.12)

The proof of the stationary phase theorem uses the following

Lemma 4.1 (Morse Lemma)
Let φ satisfy the hypotheses of Theorem 4.2. In particular, ∇φ(0) = 0 and Hφ(0) =

( φxj ,xk
(0) ) is non-singular. There exist open neighborhoods O and O′ of the origin and a

C∞ invertible mapping X : O → O′, such that

X(k) = k + O(|k|2)

φ(k) = φ(0) +
1

2
(X(k), AX(k)) . (4.13)

for k ∈ O, where here (a, b) = aT b.
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Proof of the Morse Lemma: As in the proof of Taylor’s Theorem, we have

φ(k) − φ(0) =

∫ 1

0

d

dt
φ(tk) dt

= (t− 1)
d

dt
φ(tk)

∣∣t
0 −

∫ t

0

(t− 1)
d2

dt2
φ(tk) dt

=

(
k,

∫ 1

0

(1 − t) Hφ(tk) dt k

)

≡ 1

2
(k,B(k)k), where (4.14)

Bij(k) = 2

∫ 1

0

φkikj
(sk) (1 − s) ds (4.15)

We seek a C∞ n by n matrix R(k), such that R∗(k)AR(k) = B(k). If we can find such a
matrix, R(k), with R(k) = I + O(|k|), then

(k,B(k)k) = (k,R∗(k)AR(k)k) = ([R(k)k], A[R(k)k])

and defining X(k) = R(k)k does the trick.
We construct R(k) by applying the implicit function theorem to the matrix equation

F (R,B) ≡ R∗(k)AR(k) − B(k) = 0, (4.16)

in a neighborhood of the solution R = I, B = A.
Here’s the setup. Let

(i) M = the vector space of all n by n matrices.

(ii) Ms = the vector space of all n by n symmetric matrices.

Then, the mapping F : (R,B) 7→ F (R,B) maps M ×Ms → Ms, by the symmetry of A. We
also have F (I, A) = 0. To apply the implicit function theorem in a neighborhood of (I, A),
we first compute the Jacobian FR(R,B) evaluated at (R,B) = (I, A).

Computation of FR(R,B):

F (R + ǫC,B) − F (R,B) = (R∗ + ǫC∗)A(R + ǫC) − R∗AR

= R∗AR + ǫ(C∗AR + R∗AC) + O(ǫ2) (4.17)

Thus,

FR(R,B) C = C∗AR + R∗AC, and therefore

FR(I, A) C ≡ T (C) = C∗A + AC (4.18)

To apply the implicit function theorem, we need to check that T : M →Ms is one to one
and onto.

(a) T is one to one. Proof: Exercise
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(b) T is onto: Let D ∈ Ms. We need to show that C∗A + AC = D has a solution. Let
C = 1

2
A−1D, which exists because A is assumed invertible. Then one can easily check

that T (C) = D.

By the implicit function theorem, there exists an neighborhood A ⊂Ms of A and a C∞ map
R : A → M , such that F (R(A), A) = 0, R(A) = I. Now choose O, an open neighborhood
of k = 0, so that k ∈ O implies that B(k) ∈ A, and take X(k) = R(B(k))k. This completes
the proof.

Proof of Stationary Phase Theorem: Consider the integral

I(λ) =

∫
eiλφ(ξ) h(ξ) dξ.

By the Morse Lemma, in a sufficiently small neighborhood, O, of ξ = 0 we have

φ(ξ) = φ(0) +
1

2
〈X(ξ), AX(ξ)〉, where A = Hφ(0) (4.19)

is the Hessian matrix of φ(ξ) at the critical point ξ = 0. Assume that h is supported within
O. Then,

I(λ) = eiλφ(0)

∫
eiλ〈X(ξ),AX(ξ)〉/2 h(ξ) dξ

Set y = X(ξ). Then,

I(λ) = eiλφ(0)

∫
eiλ〈y,Ay〉/2 (h ◦X−1)(y)

∣∣detDξX(X−1(y))|
∣∣−1

dy

= eiλφ(0)

∫
v(y) e−iλ〈y,Ay〉/2 dy, where

v(y) = (h ◦X−1)(y)
∣∣detDξX(X−1(y))|

∣∣−1

By the Plancherel Theorem 1.6,

| I(λ) | =

∣∣∣∣
∫

Fv(η) Fe−i λ〈y,Ay〉
2 (η) dη

∣∣∣∣

≤ C | det(A)λ|−n
2

∫
|Fv(η)| dη

≤ C ′ | det(A)λ|−n
2 ‖v‖Hs

≤ C ′′ | det(Hφ(0)) λ|−n
2 ‖h‖Hs, s > n/2 (4.20)

4.3 Degenerate dispersion and Van der Corput’s Lemma

It may happen that the oscillatory integral, I(λ), has points of stationary phase, which are
degenerate. We consider an example:
Airy / linearized KdV:
For concreteness, consider the initial value problem for the linearized KdV (Airy equation);
see Example 2.6:

∂tu + ∂3
xu = 0, u(x, 0) = g(x) (4.21)
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The dispersion relation, as noted in section 2, is ω(k) = −k3. For a large class of initial
conditions, the solution can be represented, via the Fourier transform (see section 1) as a
superposition of plane waves:

u(x, t) =
1

2π

∫
ei(kx−ω(k)t)ĝ

(
k

2π

)
dk

=

∫
Kt(x− y) g(y) dy, where

Kt(x) =
1

2π

∫
ei(kx−ω(k)t) dk (4.22)

The large time, t → ∞, asymptotics of u(x, t) are governed by those of Kt(x). By sections
4.1 and 4.2, the large time behavior of Kt is governed by a neighborhood of points, where
the phase φ(k; x, t) = kx/t+ k3, is stationary. Thus we consider points, k0, for which

x

t
− ω′(k) =

x

t
+ 3k2 = 0, i .e. k2

0(x, t) = − x

3t

Note however that ω′′(k0(x, t)) vanishes at x = 0 and therefore, our basic theorem on sta-
tionary phase does not apply as t→ ∞ for all x. Thus, we require a version of the stationary
phase theorem that can handle more degenerate situations.

We consider the case where I(λ) is a one-dimensional integral. The key tool is Van der
Corput’s Lemma [4].

Theorem 4.3 Let φ(ξ) be real-valued and smooth on (a, b). Assume that
∣∣∣∣
dk

dxk
φ(x)

∣∣∣∣ ≥ 1, x ∈ (a, b)

In the case, k = 1, assume additionally that φ′(x) is monotone on the interval (a, b). Then,
∣∣∣∣
∫ b

a

eiλφ(x)dx

∣∣∣∣ ≤ ckλ
− 1

k . (4.23)

The inequality (4.23) holds with the choice of constant ck = 5 2k − 2.

Proof of Van der Corput’s Lemma: We begin with the case k = 1.
∫ b

a

eiλφ(x)dx =

∫ b

a

1

iλφ′(x)

d

dx
eiλφ(x)dx

=
1

iλφ′(x)
eiλφ(x)

∣∣x=b
x=a −

∫ b

a

eiλφ(x) d

dx

(
1

iλφ′(x)

)
dx

Therefore, using that φ′ is monotone,

| I(λ) | ≤ 2

λ
+

1

λ

∫ b

a

∣∣∣∣
d

dx

(
1

φ′(x)

) ∣∣∣∣ dx

=
2

λ
+

1

λ

∣∣∣∣
∫ b

a

d

dx

(
1

φ′(x)

)
dx

∣∣∣∣

≤ 2

λ
+

∣∣∣∣
1

φ′(b)
− 1

φ′(a)

∣∣∣∣ ≤ 3

λ
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This settled the case: k = 1.
We now turn to the case k ≥ 2. We proceed by induction on k. Let’s assume that the

proposition holds for the case, k, and prove that it holds for k+1. Since φ is smooth, |φk(x)|
attains its minimum on [a, b]. Let x = c denote the location of this minimum. By hypothesis
φ(k)(x) is monotone on (a, b) and therefore, either φ(k)(c) = 0 or c is an endpoint a or b.

If c is an interior point at which φ(k)(c) = 0, then we write I(λ) as

I(λ) =

( ∫ c−δ

a

+

∫ c+δ

c−δ

+

∫ b

c−δ

)
eiλφ(ξ) dξ

Note that φ(k)(x) = φ(k)(c)+φ(k+1)(η)(x− c) = φ(k+1)(η)(x− c) and therefore if x ∈ [a, c− δ]
or x ∈ [c + δ, b] we have φ(k+1)(x) ≥ δ. Therefore, by the induction hypothesis on the case
k, we get ∣∣∣∣

∫ c−δ

a

+

∫ b

c−δ

∣∣∣∣ ≤ 2ck

(λδ)
1
k

Clearly, the remaining contribution to I(λ) can be bounded above by 2δ. Therefore, for any
δ small and positive

| I(λ) | ≤ 2ck

(λδ)
1
k

+ 2δ (4.24)

Choose δ = λ−
1
k . Then, we have

| I(λ) | ≤ 2ck + 2

λ
1
k

(4.25)

Therefore, ck satisfies the first order difference equation ck+1 = 2ck + 2 with initial data
c1 = 3, with solution displayed in the statement of the theorem.

Note that if φ(k)(c) = 0 and c is an endpoint of [a, b], then the above argument gives δ
instead of 2δ on the right hand side of (4.24). Therefore, the previous bound applies. Finally,
a similar argument can be given if minξ∈[a,b] |φ(k)(ξ)| = |φ(k)(c)| 6= 0 and therefore c = a or
c = b.

The following corollary of Van der Corput’s Lemma is also useful.

Corollary 4.3 Assume φ is as in Theorem 4.3 and assume ψ′(x) is defined and integrable
on [a, b]. Then,

∣∣∣∣
∫ b

a

eiλφ(x) ψ(x) dx

∣∣∣∣ ≤ ck

λ
1
k

(
|ψ(b)| + ‖ψ′‖L1(a,b)

)
(4.26)

Proof of Corollary 4.3:

∫ b

a

eiλφ(x) ψ(x) dx =

∫ b

a

d

dx

∫ x

a

eiλφ(t)dt ψ(x) dx

= ψ(b)

∫ b

a

eiλφ(x)dx −
∫ b

a

∫ x

a

eiλφ(t)dt ψ′(x) dx
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Therefore, by Theorem 4.3

∣∣∣∣
∫ b

a

eiλφ(x) ψ(x) dx

∣∣∣∣ ≤
(
|ψ(b)| + ‖ψ′‖L1(a,b)

)
sup

x∈[a,b]

∣∣∣∣
∫ x

a

eiλφ(t)dt

∣∣∣∣

≤ ck

λ
1
k

(
|ψ(b)| + ‖ψ′‖L1(a,b)

)

4.4 PDE asymptotics via localization in Fourier space

In this subsection we continue our discussion of the Airy / linearized KdV equation initiated
at the beginning of section 4.3. In particular, we now show how one uses the above results
on oscillatory integrals to study the large time asymptotics of solutions.

We introduce a smooth cutoff function χ(k), defined as follows. Let χ(k) be a C∞ function
which is identically equal to one for |k| ≤ 1 and identically equal to zero for |k| ≥ 2.

4.5 Notes and references for Section 4

References on stationary and non-stationary phase - see [3, 4]. Reference on Van der Corput’s
Lemma - see [4] Chapter 8.

5 The Nonlinear Schrödinger / Gross-Pitaevskii Equa-

tion

Nonlinear Schrödinger equations

i∂tΦ = −∆Φ + f(x, |Φ|2)Φ (5.1)

form a class of nonlinear, conservative (Hamiltonian) dispersive PDEs, which arise in many
fields of application. Here, ∆ denotes the n− dimensional Laplace operator. We list several
application areas:

(1) Nonlinear optics: Propagation of laser beams through a nonlinear medium, (gas,
water) with the refractive index exhibits a dependence on the the local field intensity,
if the latter is suffficiently large [?]. In this case,

i∂zΦ = −
(
∂2

x + ∂2
y

)
Φ − |Φ|2Φ (5.2)

Thus, n = 2 and f(x, |Φ|2) = −|Φ|2. Here, Φ denotes the slowly varying envelope of
the highly oscillatory electric field, which is nearly-monochromatic. If the propagation
is in a waveguide, with transverse refractive index profile, then we have [?, ?]

i∂zΦ = −
(
∂2

x + ∂2
y

)
Φ + V (x, y)Φ − |Φ|2Φ. (5.3)
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(2) Macroscopic quantum systems: The effective dynamics of a quantum system
consisting of N− Bosons, where N is large, in the mean-field limit [?]. Here, n =
3, f(x, |Φ|2) = |Φ|2 or, more generally, f(x, |Φ|2) =

∫
K(x − y)|Φ(y)|2 dy, where

0 < K ∈ L1 and K(x) = K(−x). In this case, NLS is sometimes referred to as the
Gross-Pitaevskii equation.

(3) Dynamics of waves in a nearly-collisionless plasma Here, n = 2 or n = 3 and
f(x, |Φ|2) = |Φ|2. See [?].

(4) Hydrodynamics: The motion of a vortex filament governed by the Euler equations
of fluid mechanics [?]. Here, n = 1 and f(x, |Φ|2) = |Φ|2.

5.1 “Universality” of NLS

Why the ubiquity of NLS? In this section we show the manner in which NLS naturally
arises as an envelop equation governing the evolution of small amplitude wave-packets in a
weakly nonlinear and strongly-dispersive system. The calculation presented is quite general;
although implemented for the nonlinear Klein-Gordon equation, it can be carried out for a
very general system of the above type.

We begin with a prototypical nonlinear dispersive wave equation, the nonlinear Klein-
Gordon equation:

∂2
t v − ∂2

xv + m2v = λ|v|2v (5.4)

Here, v = v(x, t) is a complex valued function. λ is a “nonlinear coupling parameter” which
we take to be of order one; more on the role of lambda later.

We shall consider the case of weakly nonlinear solutions. Thus we introduce a small
parameter ε and define

v(x, t) = εuε(x, t) (5.5)

Thus,
∂2

t u
ε − ∂2

xu
ε + m2uε = λε2|uε|2uε (5.6)

is an equation in which the small parameter, ε, is explicit. We consider (5.6) with order one
initial data which are of “nearly plane wave type” or nearly mono-chromatic:

uε(x, 0) ∼ A(εx) eikx, ∂tu
ε(x, 0) ∼ −iω(k) A(εx) eikx (5.7)

where A(X) is a localized function, say A smooth and rapidly decaying.

5.2 Multiple scales

We view uε as a function of fast and slow variables:

uε(x, t) = uε(x,X; t, T1, T2, . . . )

X = εx, Tj = εjt (5.8)
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Thus, we take for initial conditions

uε(x,X; 0, 0, . . . ) = A(X) eikx

∂tu
ε(x,X; 0, 0, . . . ) = −iω(k) A(X) eikx (5.9)

Multiscale Expansion We expand the solution in a formal series in powers of ε and treat
the slow and fast variables as independent variables. We must then also rewrite the PDE as
a PDE with respect to this extended list of independent variables:

uε = u0 + εu1 + ε2u2 + . . .

∂t → ∂t + ε∂T1 + ε2∂T2 + . . .

∂x → ∂x + ε∂X

Thus,

∂2
t → ∂2

t + 2ε∂t∂T1 + ε2
(
∂2

T1
+ 2∂t∂T2

)
+ ε3 ( 2∂T1∂T2 + 2∂t∂T3 ) + . . .

∂2
x → ∂2

x + 2ε∂x∂X + ε2∂2
X

The nonlinear Klein-Gordon becomes

Lεu
ε = λ ε2 |uε|2uε, where (5.10)

Lε =
[
∂2

t − ∂2
x +m2

]
+ 2ε [ ∂t∂T1 − ∂x∂X ] + ε2

[
∂2

T1
+ 2∂t∂T2 − ∂2

X

]
+ O(ε3)

(5.11)

Substitution of the expansion for uε, using that

|uε|2uε = |u0|2u0 + 2εu0u1(u0)∗ + ε(u0)2(u1)∗ + . . .

and equation of like orders of ε, we obtain the following

5.3 Hierarchy of equations

O(ε0) :
(
∂2

t − ∂2
x + m2

)
u0 = 0

O(ε1) :
(
∂2

t − ∂2
x + m2

)
u1 = −2 [ ∂t∂T1 − ∂x∂X ] u0

O(ε2) :
(
∂2

t − ∂2
x + m2

)
u2 = −2 [ ∂t∂T1 − ∂x∂X ] u1 −

[
∂2

T1
− ∂2

X + 2∂t∂T2

]
u0

+ λ|u0|2u0

. . . . . . . . .

O(εj) :
(
∂2

t − ∂2
x + m2

)
uj = S(u0, . . . , uj−1), j ≥ 1.
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5.4 Solution of equation hierarchy

O(ε0): We take u0 to be a plane wave solution:

u0(x,X; t, T1, T2, . . . ) = A(X;T1, T2, . . . ) e
i(kx−ω(k)t) (5.12)

The slowly varying amplitude, A, is to be determined at higher order in the perturbation
scheme.

O(ε1): Using the expression (5.12) for u0, we find that u1 satisfies:

(
∂2

t − ∂2
x + m2

)
u0 = −2 [ ∂t∂T1 − ∂x∂X ] u0

= 2i [ ω(k)∂T1A + k ∂XA ] ei(kx−ω(k)t)

= 2iω(k)

[
∂T1A +

k

ω(k)
∂XA

]
ei(kx−ω(k)t)

= 2iω(k) [ ∂T1A + ω′(k)∂XA ] ei(kx−ω(k)t), (5.13)

where we have used that ω2 = m2 + k2 and therefore ω′(k) = k/ω(k).

Exercise 5.1 Prove the following

Proposition 5.1 If α 6= 0, then the PDE

(
∂2

t − ∂2
x + m2

)
U = α ei(kx−ω(k)t

has resonant forcing and its general solution grows linearly in time.

It follows that the expansion uε = u0 + εu1 + . . . will break down on times of order ε−1

in the sense that εu1 will become comparable in size with u0 unless A is constrained so that
the right hand side of (5.13) vanishes. This gives the equation:

∂T1 A + ω′(k) ∂X A = 0 (5.14)

Equation (5.14) implies that the amplitude propagates with the group velocity, ω′(k). We
have

A = A(Y, T2, . . . ), where Y = X − ω′(k)T1

Furthermore, u1 is now seen to satisfy a homogeneous equation and we take u1 ≡ 0. The
solution we have thus far constructed is

uε = A(X − ω′(k)T1, T2, . . . ) e
i(kx−ω(k)t) + ε2u2 + . . .

Using that u1 = 0 as well as the expression for u0 we obtain the following equation for u2:

(
∂2

t − ∂2
x + m2

)
u2 =

[
2iω(k)∂T2A −

(
∂2

T1
− ∂2

X

)
A + λ|A|2A

]
ei(kx−ω(k)t) (5.15)

By Proposition 5.1 we require

2iω(k)∂T2A −
(
∂2

T1
− ∂2

X

)
A + λ|A|2A = 0 (5.16)
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We can simplify (5.16) by making the following observations:

∂T1 = −ω′∂Y , ∂Y = ∂X , ∂2
T1

− ∂2
X =

(
(ω′)2 − 1

)
∂2

Y

This gives
2iω(k)∂T2A +

(
1 − (ω′)2

)
∂2

YA + λ|A|2A = 0 (5.17)

Finally, note that

ω2 = m2 + k2 =⇒ ωω′ = k =⇒ ωω′′ + (ω′)2 = 1

Thus,
2iω(k)∂T2A + ω(k)ω′′(k) ∂2

YA + λ|A|2A = 0 (5.18)

5.5 Conclusion and Theorem

Definition We call a wave equation strongly dispersive at wave number k0 if its dispersion
relation satisfies ω′′(k0) 6= 0.

Conclusion: A nearly monochromatic (about wave number k) wave packet in a strongly
dispersive system will translate with the group velocity, ω′(k), and modulate in accordance
with the nonlinear Schrödinger equation (5.18).

The following result can be proved:

Theorem 5.1 Let A(Y, T2) satisfy the nonlinear Schrödinger equation (5.18). There exists
a small constant ε0 > 0, such that for any τ > 0 and ε < ε0, the nonlinear Klein-Gordon
equation (5.4) has solutions

v(x, t) = ε
[
A(ε(x− ω′(k)t), ε2t) ei(kx−ω(k)t) + ε wε(x, t)

]
,

where wε satisfies the following bound:

‖ wε(·, t) ‖
H1(IR)

≤ C1, |wε(x, t)| ≤ C2, 0 ≤ t ≤ τε−2

6 Structural Properties of NLS

6.1 Hamiltonian structure

6.2 Symmetries and conserved integrals

7 Formulation in H1 and the basic well-posedness the-

orem

8 Special solutions of NLS - nonlinear plane waves and

nonlinear bound states
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9 Appendices

9.1 The M. Riesz Convexity Theorem

A linear operator, T , is of type (p, q), where p−1 + q−1 = 1, if there exists a positive constant
k such that for all f ∈ Lp

‖Tf‖q ≤ k ‖f‖p (9.1)

Theorem 9.1 [5] Let T be of type (pi, qi) with norm ki, i = 0, 1. Then, T is of type (pθ, qθ)
with (pθ, qθ) norm

kθ ≤ k1−θ
0 kθ

1, (9.2)

provided
(p−1

θ , q−1
θ ) = (1 − θ)(p−1

0 , q−1
0 ) + θ(p−1

1 , q−1
1 ) (9.3)

9.2 The Implicit Function Theorem

Definition 9.1 A mapping between Banach spaces X and Z, F : X → Z, is (Frechét)
differentiable if there is a bounded linear transformation L : X → Z, such that

‖F (x+ ξ) − F (x) − Lξ‖Z = o(‖ξ‖X)

as |ξ‖X → 0.

Theorem 9.2 [2] Let X, Y and Z denote Banach spaces. Let F denote a continuous map-
ping

F : U ⊂ X × Y → Z, (x, y) 7→ F (x, y),

where U is open. Assume F is (Frechét) differentiable with respect to x and that Fx(x, y)
is continuous in U . Let (x0, y0) ∈ U and F (x0, y0) = 0. If the linear operator η 7→ Lη ≡
Fx(x0, y0)η is one to one and onto Z (an isomorphism from X to Z), then

(i) There exists a ball {y : ‖y − y0‖Y < r} = Br(y0) and a unique continuous mapping
u : Br(y0) → X such that u(y0) = x0 and F (u(y), y) = 0.

(ii) uy ∈ Cp if F ∈ Cp, 1 < p ≤ ∞.

Remark 9.1 IfX = IRm, Y = IRn and Z = IRm, this reduces to the usual finite dimensional
case. The m by m matrix, Fx(x0, y0), is assumed to be invertible.

9.3 The Contraction Mapping Principle

Theorem 9.3 Let T : X → X denote a mapping from a complete metric space, X, into
itself. Assume that T is a contraction on X, i.e. there exists k with 0 < k < 1, such that
for any α and β in X

ρ(Tα, Tβ) ≤ k ρ(α, β) (9.4)

Then, there exists a unique element of X, α∗, for which Tα∗ = α∗. Moreover, starting with an
arbitrary element α0 ∈ X and defining αj = Tαj−1, j = 1, 2, 3, . . . , we have α∗ = limj→∞ αj.
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