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We consider the Kiefer-Wolfowitz (KW) stochastic approximation algorithm and derive general upper

bounds on its mean-squared error. The bounds are established using an elementary induction argument

and phrased directly in the terms of tuning sequences of the algorithm. From this we deduce the non-

necessity of one of the main assumptions imposed on the tuning sequences in the Kiefer-Wolfowitz paper

and essentially all subsequent literature. The optimal choice of sequences is derived for various cases of

interest, and an adaptive version of the KW algorithm, scaled-and-shifted KW (or SSKW), is proposed

with the aim of improving its finite-time behavior. The key idea is to dynamically scale and shift the

tuning sequences to better match them with characteristics of the unknown function and noise level, and

thus improve algorithm performance. Numerical results are provided which illustrate that the proposed

algorithm retains the convergence properties of the original KW algorithm while dramatically improving its

performance in some cases.
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1. Introduction

Background and motivation. The term stochastic approximation refers to a broad class of

optimization problems in which function values can only be computed in the presence of noise.

Representative examples include stochastic estimation of a zero crossing, first introduced in the

work of Robbins and Monro (1951), and stochastic estimation of the point of maximum, first studied

by Kiefer and Wolfowitz (1952). Such problems arise in a variety of fields including engineering,

statistics, operations research and economics, and the literature on the topic is voluminous; cf. the
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survey paper by Lai (2003) and the book by Kushner and Yin (2003).

A natural setting in which one encounters the need for stochastic approximation algorithms is

simulation-based optimization. Here it is only possible to evaluate a function by means of simula-

tion, and the observation noise is a direct consequence of the sample generating scheme; see, for

example, Andradóttir (1995, 1996) for further discussion.

For concreteness we focus in this paper on the problem of sequential estimation of the point of

maximum of an unknown function from noisy observations, noting that the main ideas developed

in the paper extend in a straightforward manner to Robbins-Monro (RM) type algorithms; more

specific commentary will be given in §2 and the electronic companion to this paper. In particular,

we consider the following stochastic approximation scheme first studied by Kiefer and Wolfowitz

(1952):

Xn+1 =Xn + an

(
f̃(Xn+ cn)− f̃(Xn− cn)

cn

)
, n= 1,2, . . . (1)

Here X1 is the initial condition (either deterministic or random), {an} and {cn} are two real-valued,

deterministic tuning sequences, and f̃(Xn + cn), f̃(Xn − cn) are drawn according to conditional

distribution functions H(y∣Xn + cn) and H(y∣Xn − cn) which have uniformly bounded second

moments. Assuming the regression function f(x) :=
∫
ydH(y∣x) admits a unique point of maximum

and is strongly concave, Kiefer and Wolfowitz (1952) proved that the sequence {Xn} generated by

recursion (1) converges in probability to x∗, the unique maximizer of f(⋅), if {an} and {cn} satisfy

the following conditions:

(KW1) cn→ 0 as n→∞;

(KW2)
∑∞

n=1 an =∞;

(KW3)
∑∞

n=1
a2n
c2n

<∞;

(KW4)
∑∞

n=1 ancn <∞.

Shortly after the publication of the KW algorithm, Blum (1954a) established that condition

(KW4) is not necessary for convergence, leaving conditions (KW1)-(KW3) which have been

imposed in almost all subsequent papers published on the subject (cf. Kushner and Yin (2003,
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§5.3.3) for a discussion of more general convergence conditions albeit in a more restricted setting).

Roughly speaking, to have a convergent algorithm one requires that: (i) the gradient estimate

localizes, hence cn should shrink to zero; (ii) the step-size sequence an should shrink to zero, but

in a manner that allows the algorithm to “cover” any distance from the initial point X1 to the

point of maximum, hence
∑

n an diverges. If one adds the assumption that an→ 0 to (KW1) and

(KW2), the role of (KW3) becomes questionable, and in fact, as this paper shows, superfluous.

A major focus in the literature has been establishing bounds on the mean-squared error (MSE)

E∣Xn−x∗∣2, and deriving optimal rates at which the MSE converges to zero, under various assump-

tions on the unknown function and various modifications to the basic KW scheme; see, e.g., Derman

(1956), Dupac (1957), Fabian (1967), Tsybakov and Polyak (1990). A common thread in these

papers is that they all rely on a key lemma by Chung (1954) which restricts the tuning sequences

{an} and {cn} to be polynomial-like, specifically, of the form n−a and n−c, respectively, for some

a, c > 0 such that conditions (KW1)-(KW3) hold. (Exceptions to this can be found in a stream of

literature that develops weak convergence results; see, e.g., Burkholder (1956), Sacks (1958), and

more recently Mokkadem and Pelletier (2007) as well as references therein.)

At a more practical level, the KW algorithm, theoretical convergence guarantees notwithstand-

ing, has often been noted to exhibit poor behavior in implementations. The main culprit seems to be

the tuning sequences which may not match up well with the characteristics of the underlying func-

tion. Hence there is a need to adapt the choice of these sequences to observed data points. Among

the first to tackle this issue was Kesten (1958), who proposed a simple scheme to determine the step

size at the nth iteration using the total number of sign changes of {Xm− Xm−1 : m= 1, . . . , n}. In

a more recent paper, Andradóttir (1996) observed divergence of the KW algorithm when applied

to functions which are “too steep,” and proposed to adjust for this using two independent gradient

estimates at each iteration.

A related issue arises when the magnitude of the step size is “too small” relative to the curvature

of the function, which may lead to a degraded rate of convergence; see Nemirovski et al. (2009) for

a simple example of this phenomenon. Ruppert (1988), Polyak (1990) and Polyak and Juditsky
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(1992) introduced the idea of iterate averaging to tackle this issue and proved that it guarantees

asymptotically optimal convergence rates. Dippon and Renz (1997) use the same idea to propose

a weighted averaging scheme specifically for the KW algorithm; see also further discussion in §3.

The convergence theory and specification of tuning sequences subject to (KW1)-(KW3) hinges

on the global strong concavity/convexity of the underlying function f(⋅); see conditions (F1) and

(F2) in §2. This assumption is unrealistic when it comes to most application settings. Kiefer

and Wolfowitz (1952) identified this issue in their original paper, and proposed to “localize” the

algorithm by restricting attention to a compact set (say, a closed bounded interval) which is

known to contain the point of maximum. They argued that by projecting the iterates of the

KW algorithm so that there will be no function evaluations outside of this set, one preserves the

desired convergence properties without the need for the function to satisfy overly restrictive global

regularity conditions. This truncated KW algorithm solves the divergence problem identified by

Andradóttir (1996), however it introduces the problem of oscillatory behavior of the iterates: if

the magnitude of the step-size sequence ({an}) is chosen too large relative to the magnitude of

the gradient, the algorithm may end up oscillating back and forth between the boundaries of the

truncation interval (see further discussion in §3). Andradóttir (1995) proposed an algorithm that

adaptively determines the truncation interval, but still points to the oscillatory behavior as an open

problem (see also Chen et al. (1999)). Finally, poor performance is also observed when function

evaluations tend to be “too noisy,” degrading the quality of the gradient estimate (see Vaidya and

Bhatnagar (2006) who propose to replace the gradient estimate with its sign in order to mitigate

this effect).

Main contributions. This paper makes contributions along the two dimensions discussed

above. On the theoretical end, we present a new induction-based approach to bounding the MSE

of the KW algorithm. The proof is simpler and more rudimentary than most extant methods which

rely on martingale arguments or tools from weak convergence (cf. Kushner and Yin (2003)), and at

the same time yields general bounds that hold under broad assumptions on the tuning sequences;

see Theorem 1. Our assumptions allow for more general sequences than the ones typically found
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in the literature (see, for example, Dippon (2003) and Spall (1992)), and cover cases in which the

MSE converges yet the sequences violate necessary conditions for almost sure convergence of the

algorithm as laid out, for example, in Chen et al. (1999). The proof technique can be easily applied

also to multidimensional settings (e.g., the one in Blum (1954b)), randomized modifications of

KW (e.g., the Simultaneous Perturbation Stochastic Approximation (SPSA) procedure of Spall

(1992)), and root finding variants of the Robbins-Monro type; see further commentary following

Theorem 1 and the electronic companion. The bounds demonstrate that assumption (KW3) is in

fact not necessary for the MSE to converge to zero (see §2.2.2), and at the same time allow us

to deduce the optimal choice of tuning sequences {an} and {cn} for a variety of cases of interest.

Unlike previous literature, we do not impose polynomial decay a priori, but rather show how this

property is derived from minimizing the order of our general MSE bounds (see Proposition 1 and

Proposition 3). Other settings such as quadratic-like functions (see Proposition 2) and functions

that satisfy further smoothness assumptions (see Theorem 2) are discussed as well.

Building on qualitative insights and intuition gleaned from our proofs, we present an adap-

tive version of the KW algorithm and illustrate via several examples its improved finite-time

behavior. The algorithm is based on adaptively scaling the magnitude of the tuning sequences

values, as well as shifting the index set. In particular, the rate degradation stemming from a

step size that is “too small” is addressed by adaptively scaling up the {an} sequence by a mul-

tiplicative constant. The oscillatory behavior that is due to a “too large” step size is solved

by adaptively shifting the index of the {an} sequence. Finally, the issue related to “large”

simulation/estimation error in function evaluations is addressed by adaptively scaling up the

{cn} sequence values. The MATLAB implementation of the algorithm can be downloaded from

http://www.columbia.edu/˜mnb2/broadie/research.html/.

Remainder of the paper. Section 2 gives the main theoretical results, introduces the new

proof technique, and discusses some implications, in particular, the non-necessity of assumption

(KW3). Section 3 describes our proposed adaptive algorithm. All the remaining proofs are given in

Section EC.1 of the electronic companion. Section 2 of the electronic companion contains a detailed
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description of the new adaptive KW algorithm (SSKW). Extensions of the proof technique to the

multidimensional RM and KW algorithms, and to more general settings such as multidimensional

KW-type algorithms that allow for randomized directions, specifically the SPSA algorithm are also

given in the electronic companion.

2. Performance Bounds and Their Implications

2.1. Bounds on the mean squared error

Consider the recursion (1) in the previous section. Throughout the paper, we assume that

�2 := sup
x∈ℝ

Var[f̃(Xn+ cn)− f̃(Xn− cn)∣Xn = x]<∞. (2)

Remark 1. (Observation noise) The setting we treat in this paper, requiring the unknown

function to be a conditional expectation, namely f(x) :=
∫
ydH(y∣x), with bounded variance as

in (2), allows for certain dependencies in the observations (e.g., common random numbers in

gradient estimation), non-homogeneous noise and non-additive noise structure. A common setting

for stochastic approximation is one where, conditioned on x, f̃(xi) = f(xi) + "i, where {"i} is a

sequence of independent and identically distributed (i.i.d.) random variables with mean zero and

finite variance bounded by �2. In the additive noise setting, requiring the unknown function to be a

conditional expectation essentially restricts the noise to be a martingale difference sequence (which

many books and papers on the topic of stochastic approximation take as a primitive assumption).

For the function f to be maximized, we assume that:

(F1) There exist finite positive constants K0 and K1 such that K0∣x− x∗∣ ≤ ∣f ′(x)∣ ≤K1∣x− x∗∣

for all x∈ℝ, and

(F2) f ′(x)(x−x∗)< 0 for all x∈ℝ ∖ {x∗}.

Remark 2. (Objective function) Assumptions (F1) and (F2) are identical to those found in

most of the literature and will be used in Theorem 1; cf. Dupac (1957) and Wasan (1969). Assump-

tion (F1) imposes a linearly growing envelope on the gradient. In essence, it guarantees that the

function does not have flat regions away from the point of maximum. Assumption (F2) requires
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the function to be increasing for x < x∗ and decreasing for x > x∗, i.e., it has a “well-separated”

point of maximum.

The tuning sequences to be used in the algorithm, {an} and {cn}, are assumed to be positive

and bounded, and for some finite positive constants A,�1 and �2 satisfy:

(S1) an/c
2
n≤ (an+1/c

2
n+1)(1+Aan+1) for all n≥ 1.

(S2) c2n ≤ c2n+1(1+Aan+1) for all n≥ 1.

(S3) an→ 0 as n→∞.

(S4) either (i) c4n/an ≤ �1 or (ii) c4n/an≥ �2, for all n≥ 1.

Remark 3. (Tuning sequences) The sequences an = �a/n
a and cn = �c/n

c for 0 < a ≤ 1 and

c≥ 0 satisfy (S1)-(S4), but unlike most of the literature referenced in §1, these assumptions do not

constrain {an} and {cn} to be polynomial-like. In particular, they allow for a much broader class of

sequences, some simple examples being an = �a/n, cn = �c/ log(n) and an = log(log(n+2))/n, cn = �c

with �a and �c being finite positive constants. We also note that the assumption “for all n ≥ 1”

in (S1)-(S4) is made mainly for simplicity; with obvious changes it can be replaced by “for all n

sufficiently large.”

The following is the main result of this section.

Theorem 1. Let {Xn} be generated by the Kiefer-Wolfowitz stochastic approximation recursion

given in (1) using {an} and {cn} satisfying (S1)-(S4) with A< 4K0. Then under assumptions (F1)

and (F2),

E(Xn+1−x∗)2 ≤
{
C1an/c

2
n if c4n ≤ �1an

C2c
2
n if c4n ≥ �2an

(3)

for all n≥ 1, where C1 and C2 are finite positive constants identified explicitly in (19) and (20),

respectively.

Proof Step 1: Fix {an} and {cn} as in the statement of the theorem. For positive integer n and

xn ∈ℝ, using Taylor expansion, there exist 0≤ T1, T2 ≤ 1 such that f(xn± cn) = f(xn)± f ′(xn±

T1cn)cn. Using this, we have

∇̂f(xn) :=
f(xn + cn)− f(xn− cn)

cn
= f ′(xn +T1cn)+ f ′(xn−T2cn) (4)
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=

[
f ′(xn +T1cn)

xn−x∗ +T1cn
+

f ′(xn−T2cn)

xn−x∗−T2cn

]
(xn−x∗)

+cn

[
T1

f ′(xn +T1cn)

xn−x∗ +T1cn
−T2

f ′(xn−T2cn)

xn−x∗−T2cn

]
. (5)

Now note that, using (F1) and (F2) we have

K0≤
∣∣∣∣
f ′(x)

x−x∗

∣∣∣∣=−
f ′(x)

x−x∗
≤K1. (6)

Using (5), we have

(xn−x∗)∇̂f(xn) =

[
f ′(xn +T1cn)

xn−x∗ +T1cn
+

f ′(xn−T2cn)

xn−x∗−T2cn

]
(xn−x∗)2

+cn(xn−x∗)

[
T1

f ′(xn +T1cn)

xn−x∗ +T1cn
−T2

f ′(xn−T2cn)

xn−x∗−T2cn

]

≤ −2K0(xn−x∗)2 +K1cn∣xn−x∗∣, (7)

where the inequality uses the fact that f ′(x)/(x− x∗)≤−K0 for any x ∈ℝ, and the second term

follows from

∣∣∣∣T1

f ′(xn +T1cn)

xn−x∗ +T1cn
−T2

f ′(xn−T2cn)

xn−x∗−T2cn

∣∣∣∣ ≤ max

{
T1

∣∣∣∣
f ′(xn +T1cn)

xn−x∗ +T1cn

∣∣∣∣ , T2

∣∣∣∣
f ′(xn−T2cn)

xn−x∗−T2cn

∣∣∣∣
}

≤ max{T1K1, T2K1} ≤K1. (8)

Now, using the inequality ∣a+ b∣r ≤ 2r−1(∣a∣r + ∣b∣r) for r > 1 (Wasan 1969, p.192), with (5), we

obtain

[∇̂f(xn)]
2 ≤ 2

[
f ′(xn +T1cn)

xn−x∗ +T1cn
+

f ′(xn−T2cn)

xn−x∗−T2cn

]2
(xn−x∗)2

+2c2n

[
T1

f ′(xn +T1cn)

xn−x∗ +T1cn
−T2

f ′(xn−T2cn)

xn−x∗−T2cn

]2

≤ 8K2
1(xn−x∗)2 +2K2

1c
2
n, (9)

where the last inequality follows from bounding the first term using (6) and the second using (8).

Step 2: Let Xn be the output of the ntℎ iterate of (1) and let f̃(Xn + cn), f̃(Xn − cn) be the

function observations at points Xn + cn and Xn− cn respectively. Note that

E

(
f̃(Xn+ cn)− f̃(Xn− cn)

cn

∣∣∣ Xn

)
=

f(Xn+ cn)− f(Xn− cn)

cn
=: ∇̂f(Xn), (10)
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which together with the bounded variance assumption implies that

E

⎡
⎣
(
f̃(Xn+ cn)− f̃(Xn− cn)

cn

)2 ∣∣∣ Xn

⎤
⎦ = Var

(
f̃(Xn + cn)− f̃(Xn− cn)

cn

∣∣∣ Xn

)
+ [∇̂f(Xn)]

2

≤ �2

c2n
+ [∇̂f(Xn)]

2. (11)

Now, using (1) we have

Zn+1 := (Xn+1−x∗)2 =

[
Xn−x∗ + an

(
f̃(Xn+ cn)− f̃(Xn− cn)

cn

)]2
(12)

= (Xn−x∗)2 +2an(Xn−x∗)

(
f̃(Xn+ cn)− f̃(Xn− cn)

cn

)

+ a2
n

(
f̃(Xn + cn)− f̃(Xn− cn)

cn

)2

.

Taking expectations of both sides conditioned on Xn and using (10) with (11) we get

E(Zn+1∣Xn)≤Zn +2an(Xn−x∗)∇̂f(Xn)+ a2
n

(
�2

c2n
+ [∇̂f(Xn)]

2

)
. (13)

Using (7) and (9) we have E(Zn+1∣Xn) ≤ Zn − 4anK0Zn + 2K1ancn
√
Zn + a2n

c2n
�2 + 8K2

1a
2
nZn +

2K2
1a

2
nc

2
n. Finally, taking expectations, using the inequality E(

√
Zn)≤

√
E(Zn), and setting bn :=

E(Zn) we get the following recursion:

bn+1 ≤ (1− 4anK0 +8K2
1a

2
n)bn +2K1ancn

√
bn +

a2
n

c2n
�2 +2K2

1a
2
nc

2
n. (14)

Step 3: Before we start the induction proof, we will derive a crude upper bound on bn that

will be used later. Using
√
bn ≤ 1+ bn in (14) we get bn+1 ≤ bn(1− 4anK0 + 8K2

1a
2
n +2K1ancn) +

2K1ancn +
a2n
c2n
�2 +2K2

1a
2
nc

2
n, which can be expressed more compactly as

bn+1 ≤ bnpn + qn, (15)

with: pn := 1−4anK0+8K2
1a

2
n+2K1ancn > 0 and qn := 2K1ancn+

a2n
c2n
�2+2K2

1a
2
nc

2
n. Note that since

2K1ancn > 0 by (S3), we have pn ≥ 1− 4anK0 + 8K2
1a

2
n which is a quadratic equation in an with

positive leading coefficient, and 0 <K0 <K1 ensures it has negative discriminant, hence pn > 0.

Solving recursion (15), we get that for all n

bn ≤ b1

n∏

i=1

pi +
n−1∑

i=2

qi

n∏

j=i+1

pj + qn :=Bn (16)
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which provides a crude upper bound on the MSE at the ntℎ step of the algorithm. Put n0 := sup{n≥

1 : (8K2
1 − 4K0A)an + 8K2

1Aa
2
n ≥ 4K0 −A} + 1, and set n0 = 1 if (8K2

1 − 4K0A)an + 8K2
1Aa

2
n <

4K0−A for all n. Since we assume A< 4K0, we have n0 <∞ because an→ 0 as n→∞ (assumption

(S3)). Also, note that from the definition of n0

� :=− sup{A− 4K0 +(8K2
1 − 4K0A)an +8K2

1Aa
2
n : n≥ n0}> 0. (17)

Step 4: Now we will carry out the induction part of the proof.

Case (i): Suppose c4n/an ≤ �1, for all n≥ 1. We will first show that bn+1 ≤C1an/c
2
n for all n≥ n0

and some finite positive constant C1. First, for n= n0 suppose C1 is chosen large enough to ensure

C1 ≥Bn0+1c
2
n0
/an0

≥ bn0+1c
2
n0
/an0

. Now fix n>n0 and suppose bk+1 ≤C1ak/c
2
k for all n0 ≤ k≤ n−1.

We need to show that bn+1 ≤C1an/c
2
n. Using (14) and the induction hypothesis we have

bn+1 ≤ (1− 4anK0 +8K2
1a

2
n)C1

an−1

c2n−1

+2K1ancn
√
C1

√
an−1

cn−1

+
a2
n

c2n
�2 +2K2

1a
2
nc

2
n

≤ C1

an

c2n
(1+Aan)− 4K0C1

a2
n

c2n
(1+Aan)+ 8K2

1C1

a3
n

c2n
(1+Aan)

+ 2K1

√
C1a

3/2
n (1+

A

2
an)+

a2
n

c2n
�2 +2K2

1a
2
nc

2
n,

where for the second inequality we have used condition (S1) and the inequal-

ity
√
1+Aan ≤ 1 + Aan/2. Rearranging terms we get bn+1 ≤ C1an/c

2
n +

a2
n/c

2
n

{
C1[A− 4K0 +(8K2

1 − 4K0A)an +8K2
1Aa

2
n] + 2

√
C1K1(c

2
n/
√
an +A

√
anc

2
n)/2+�2 +2K2

1c
4
n

}
.

Letting � and � denote the upper bounds on the {an} and {cn} sequences, respectively, and using

c2n/
√
an ≤

√
�1, (17) gives:

bn+1 ≤C1

an

c2n
+

a2
n

c2n

[
−C1� +2

√
C1K1(

√
�1 +

A

2

√
��2)+�2 +2K2

1�
4

]
. (18)

Now, if we can show that for some finite positive constant C1, −C1� + 2
√
C1K1(

√
�1 +

A
2

√
��2) + �2 + 2K2

1�
4 ≤ 0 then the induction proof would be complete. Viewing this as a

quadratic in
√
C1, we first observe that the leading coefficient is negative, by (17). It follows

that this quadratic admits a solution, in particular, solving for the positive root and using

√
a+ b ≤ √a+

√
b, we have bn+1 ≤ C1an/c

2
n for all n ≥ n0 with any choice of C1 satisfying C1 ≥
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max

{[
2K1(

√
�1 +A

√
��2/2)/�+

√
�2 +2K2

1�
4/�
]2

, c2n0
/an0

Bn0+1

}
. Finally let us modify the con-

stant C1 so that the result holds for all n≥ 1. Using bn ≤Bn we set

C1 =max

⎧
⎨
⎩

[
2K1(

√
�1 +

A
2

√
��2)

�
+

√
2�2 +2K2

1�
4

�

]2
, max
1≤n≤n0

{
c2n
an

Bn+1

}⎫⎬
⎭ . (19)

Case (ii): Suppose c4n/an ≥ �2, for all n≥ 1. Using similar steps to those in the proof of case (i),

we will first show that bn+1 ≤ C2c
2
n for all n ≥ n0 for some finite positive constant C2. First, for

n= n0 suppose C2 is chosen large enough to assure C2 ≥Bn0+1/c
2
n0
≥ bn0+1/c

2
n0
. Now suppose we

have bk+1 ≤C2c
2
k for all n0 ≤ k ≤ n− 1. We need to prove bn+1 ≤C2c

2
n. Using inequality (14) and

the induction hypothesis we have

bn+1 ≤ (1− 4anK0 +8K2
1a

2
n)C2c

2
n−1 +2K1ancn

√
C2cn−1+

a2
n

c2n
�2 +2K2

1a
2
nc

2
n

≤ C2c
2
n(1+Aan)− 4K0C2anc

2
n(1+Aan)+ 8K2

1C2a
2
nc

2
n(1+Aan)

+ 2K1

√
C2anc

2
n(1+

A

2
an)+

a2
n

c2n
�2 +2K2

1a
2
nc

2
n.

where for the second inequality we have used (S2) with the inequal-

ity
√
1+Aan ≤ 1 + Aan/2. Rearranging terms we get bn+1 ≤ C2c

2
n +

anc
2
n

{
C2[A− 4K0 +(8K2

1 − 4K0A)an +8K2
1Aa

2
n] + 2

√
C2K1(1+Aan/2)+�2an/c

4
n +2K2

1an

}
.

Using an ≤ �, (17) and the assumption that an/c
4
n ≤ 1/�2, we get bn+1 ≤ C2c

2
n +

anc
2
n

[
−C2� +2

√
C2K1(1+

A�
2
)+ �2

�2
+2K2

1�
]
. Similar to the first case, we need −C2� +

2
√
C2K1(1 + A�

2
) + �2

�2
+ 2K2

1� ≤ 0 for a suitable choice of C2. Using the same argu-

ment as before, we have bn+1 ≤ C2c
2
n for all n ≥ n0 with any C2 satisfying C2 ≥

max

{[
2K1(1+A�/2)/�+

√
�2/�2 +2K2

1�/�
]2

,1/c2n0
Bn0+1

}
. Setting

C2 =max

⎧
⎨
⎩

[
2K1(1+

A�
2
)

�
+

√
�2/�2 +2K2

1�

�

]2
, max
1≤n≤n0

{
1

c2n
Bn+1

}⎫⎬
⎭ . (20)

we get the result for all n≥ 1 and this completes the proof. □

Remark 4. (Truncated KW algorithm) Thereom 1 requires the assumptions (F1) and (F2)

to hold globally, which can be quite restrictive. This issue is also addressed in Kiefer and Wolfowitz
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(1952) where they argue that it suffices to have assumptions (F1) and (F2) hold only on a compact

interval I0 = [l, u], that is known to contain the point of maximum for the asymptotic theory to be

valid. They propose projecting iterate n+1 onto a “truncation interval” In+1 = [l+cn+1, u−cn+1] at

step n so that there will be no function evaluations outside the interval I0 (we assume cn < (u− l)/2

for all n ≥ 1). Such truncated algorithms are commonly used in the literature; see Andradóttir

(1995) and Nemirovski et al. (2009) and references therein for some examples.

Using the same notation of the recursion given in (1), the “truncated KW algorithm” uses the

recursion

Xn+1 =ΠIn+1

(
Xn + an

(
f̃(Xn+ cn)− f̃(Xn− cn)

cn

))
(21)

where ΠIn+1
(⋅) denotes the Euclidean projection operator onto the truncation interval In+1 =

[l+ cn+1, u− cn+1]. The results of Theorem 1 still hold for the truncated KW algorithm. The proof

follows the same lines of the proof of Theorem 1 using the contraction property of the Euclidean

projection operator.1

Remark 5. (Error bounds for the maximum) Using a simple Taylor expansion and assump-

tion (F1), we can derive from Theorem 1 upper bounds on f(x∗)−Ef(Xn). Specifically, we have

f(x∗)− f(Xn) = ∣x∗−Xn∣ ⋅ ∣f ′(�n)∣ for some �n ∈ (x∗,Xn)

≤ K1∣x∗−Xn∣ ⋅ ∣�n−x∗∣ ≤K1(Xn−x∗)2,

where the first inequality follows from (F1) and the second since �n ∈ (x∗,Xn). Taking expectations

and applying Theorem 1 we get

f(x∗)−E(f(Xn))≤
{
K1C1an/c

2
n if c4n≤ �1an

K1C2c
2
n if c4n≥ �2an,

(22)

where C1,C2, �1, �2 are defined in Theorem 1.

Remark 6. (Multidimensional extensions) The result in Theorem 1, and the proof that sup-

ports it, can be easily extended to certain multidimensional versions of the KW algorithm, e.g., that

of Blum (1954b), with some obvious modifications to assumptions (F1) and (F2); see Theorem 2
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in the electronic companion to this paper. The proof technique can also be applied to “random

direction”-type algorithms such as SPSA, introduced by Spall (1992), and related variants (cf.

Chen et al. (1999)), by simply exploiting the tower property of conditional expectations; this is

illustrated in Theorem 3 of the electronic companion.

Remark 7. (Extensions to root-finding problems) Consider the setting described by Robbins

and Monro (1951). The problem is to sequentially find the unique root x∗ of g(x) = � using g̃(⋅)

which are noisy observations of g(⋅). Robbins and Monro (1951) consider the following stochastic

approximation scheme:

Xn+1 =Xn + an(�− g̃(Xn)) n= 1,2, . . . (23)

Here, g̃(Xn) is drawn according to the conditional distribution function H(y∣Xn) with g(x) :=

∫
ydH(y∣x). The function g(x) is assumed to satisfy (x − x∗)g(x) ≥ K0(x − x∗)2 and Eg̃(x)2 ≤

K1(1+(x−x∗)2) for all x∈ℝ and for some finite positive constantsK0, K1. These are the standard

assumptions in the Robbins-Monro (RM) context, cf. Benveniste et al. (1990). For any step-size

sequence {an} that satisfies an ≤ an+1(1+Aan+1) for some positive constant A such that A<K0,

one can easily show that

E(Xn+1−x∗)2 ≤Can, for all n≥ 1, (24)

for some finite positive constant C which can be explicitly identified. The proof follows almost ver-

batim the proof in Theorem 1. As a straightforward corollary of result (24), we conclude that the

assumption
∑∞

n=1 a
2
n <∞, imposed in the majority of the stochastic approximation root-finding

literature, is not required to prove convergence of the MSE to zero. Section 3.1 in the electronic

companion extends this result to the multidimensional RM algorithm, and contains the full state-

ment of the theorem along with its proof.

2.2. Implications

2.2.1. Optimizing the choice of tuning sequences From Theorem 1, it follows that cn≈

a1/4
n minimizes the order of the upper bound on the MSE. With this choice Theorem 1 yields an
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MSE of order
√
an. This implies that one should choose {an} to decrease as “fast” as possible while

not violating (S1)-(S4). Proposition 1 shows that an ≈ 1/n is the optimal choice.

Proposition 1. Let the assumptions of Theorem 1 hold and suppose {an} is a non-increasing

sequence. Then the minimal order of the upper bound in (3) is O(1/
√
n), which is achieved by setting

an = �a/n and cn = �c/n
1/4 for any finite positive constants �a and �c with �a > (

√
2− 1)/(2K0).

Remark 8. (Optimality of polynomial-like sequences) The result of Proposition 1 recovers

the well known optimal rate of convergence of the KW algorithm under assumptions (F1) and (F2);

see Dupac (1957) and Tsybakov and Polyak (1990). Unlike these papers, as well as essentially all

antecedent literature, we do not assume the sequences to have the structure in the proposition,

but rather deduce this structure from the more general bounds given in Theorem 1.

Remark 9. (Specification and adjustment of the tuning sequences) Once the optimal

order of tuning sequences has been determined, it is then possible to optimize the constants �a and

�c. In particular, if we possess a priori knowledge on the curvature of the function f(⋅) we can specify

the sequence {an} such that the condition �a > (
√
2− 1)/(2K0) holds, and hence ensure optimal

convergence rates for the KW algorithm. Moreover, the explicit expressions for the constants in

the upper bounds given in Theorem 1 can be used to further customize {an} and {cn} so that

these constants are optimized. In §3 we show how this idea leads to adaptive modifications of the

KW algorithm that are applicable when one does not have good a priori knowledge of the function

curvature, Lipschitz bounds, noise level, etc.

2.2.2. Non-necessity of (KW3) We exhibit sequences {an} and {cn} which violate assump-

tion (KW3), yet satisfy all assumptions of Theorem 1 and hence yield convergence of the mean-

squared error to zero under the standard assumptions of (F1) and (F2). As mentioned in Remark 7,

the non-necessity of (KW3) in the context of sequentially estimating the point of maximum trans-

lates into non-necessity of the assumption
∑∞

n=1 a
2
n <∞ in the context of sequential root finding.

Put an = 1/n and cn =
√

log(n+1)/n for n= 1,2, . . .. It is easily verified that this choice satisfies

(S1)-(S4). From Theorem 1 since c4n < �1an with �1 = 1, we deduce that the MSE converges to zero
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Figure 1 Illustration of the non-necessity of (KW3). The figure depicts the behavior of the MSE for a choice

of sequences {an} and {cn} that violates assumption (KW3); the MSE is seen to decay roughly like

(log(n))−1, which follows from Theorem 1.
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log(MSE) =−1.35− 1.01 log(log(n))

at rate O(an/c
2
n) = O(log(n)−1) for any function satisfying assumptions (F1) and (F2) and such

that A< 4K0. At the same time, it is evident that
∑∞

n=1 a
2
n/c

2
n diverges, hence violating (KW3).

Figure 1 gives a plot of log(MSE) versus log log(n) for this setting using the function f(x) =−x2.

To find the MSE at each step, we run the algorithm 50,000 times and average the results. The

graph shows the results up to n= 106 steps of the algorithm. For numerical purposes, we assumed

additive noise as described in Remark 1 using independent samples of a normal random variable

with �= 1 at each function evaluation. The regression coefficient in the log log-log plot in Figure 1

is for iterations 5000 to 106 and is −1.01 (95% confidence interval (−1.11,−0.91)), consistent with

Theorem 1 which for an = 1/n and cn =
√
log(n)/n predicts a convergence rate of an/c

2
n = 1/ log(n).

This choice of sequence only guarantees convergence of MSE and not almost sure convergence.

Chen et al. (1999) develop necessary conditions for almost sure convergence of the iterates and this

choice of sequence violates those conditions.

2.3. The special case of “quadratic-like” functions

The paper by Derman (1956) analyzes the performance of the KW algorithm for the special case

of quadratic-like functions, relying on Chung’s lemma and hence restricting {an} and {cn} to be
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polynomially decaying sequences. With this restriction the “best” rate of convergence for the MSE

is shown to be O(1/n1−�) for some � > 0. Next we revisit this analysis under the general framework

developed in §2. We first restate the assumption given in Derman (1956).

(F3) There exist positive constants K0,K1 and C0 such that for every c, with 0≤ c≤C0,

−K1(x−x∗)2 ≤ f(x+c)−f(x−c)

c
(x−x∗)≤−K0(x−x∗)2.

Proposition 2. Let {Xn} be generated by the KW recursion (1) using {an} and {cn} that satisfy

(S1) and (S3) with A< 2K0. Then, under assumption (F3),

E(Xn+1−x∗)2≤Can/c
2
n for all n≥ 1, (25)

where C is identified explicitly in (10).

With this bound in place, we now exhibit the “best” choice of tuning sequences.

Proposition 3. Let the assumptions of Proposition 2 hold and suppose {an/c
2
n} is a non-

increasing sequence. Then the minimal order of the upper bound in (25) is O(1/n), which is achieved

by setting an = �a/n and cn = �c for any finite positive constants �a and �c satisfying �a > 1/K0.

Unlike Proposition 1, here the finite-difference approximation of the gradient matches the true

gradient for any value of cn due to the “quadratic-like” function structure. As a result, the tradeoff

between the two tuning sequences that determines the convergence rate in Theorem 1 does not

exist in the setting of Proposition 3. Therefore, the optimal MSE convergence rate is achieved by

setting the {cn} sequence to a constant value, in violation of condition (KW1). As a side note, by

not relying on Chung’s lemma we allow for more general sequences and use that to improve on the

results of Derman (1956), eliminating the “for some " > 0” in his convergence result.

To illustrate this numerically, let an =1/n and cn = 1. This choice satisfies (S1) with A= 2 and

(S3) with �= 1. By Proposition 2, for any quadratic function, we should observe MSE convergence

rate of order 1/n. In particular for f(x) =−x2, using additive independent standard normal noise

at each function evaluation, Figure 2 contains a log-log plot of MSE versus iteration number, n

up to n= 106 steps in the algorithm. The MSE values are calculated using 1000 independent runs



Broadie, Cicek, and Zeevi: General Bounds and Finite Time Improvement for KW Stoch. Approx. Alg.
Article submitted to Operations Research; manuscript no. OPRE-2009-02-058.R4 17

Figure 2 Illustration of non-necessity of (KW1) for “quadratic-like” functions. The log-log plot of MSE versus

iteration number, n shows that the MSE behaves roughly like O(n−1) which can be calculated using

Proposition 2 with an = 1/n and cn =1.
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of the algorithm. The regression coefficient for this example is −0.99 (95% confidence interval

(−1.02,−0.97)), which is close to the theoretical value of −1 predicted by Proposition 3.

2.4. Performance of the KW algorithm under further smoothness assumptions

Dupac (1957) derives the optimal rate of convergence for the basic KW algorithm (1) when the

underlying function is thrice-differentiable. The result in Dupac (1957) is restricted to polynomial

sequences as it again relies on the lemma by Chung (1954). We now revisit this problem and derive

an analogue to Theorem 1. We restrict our attention to functions that satisfy (F1), (F2) and:

(F4) f ′′′(x) exists for all x∈ℝ and ∣f ′′′(x)∣ ≤ T for some T ∈ℝ.

For the sequences to be used in the algorithm we require (S1), (S3) and for some finite positive

constants A,�1 and �2:

(S2’) c4n ≤ c4n+1(1+Aan+1) for all n≥ 1.

(S4’) Either (i) c6n/an≤ �1, or (ii) c
6
n/an≥ �2, for all n≥ 1.

Remark 10. Since the functions are now assumed to be thrice-differentiable, we can expand to

one further term in the Taylor expansion and derive a similar recursion to the one used to prove
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Theorem 1 (see proof sketch there). Hence we require assumptions (S2’) and (S4’) which replace

(S2) and (S4) assumed in §2.

Theorem 2. Let {Xn} be generated by the Kiefer-Wolfowitz stochastic approximation recursion

given in (1) with {an} and {cn} satisfying (S1), (S2’), (S3) and (S4’) with A< 4K0. Then under

assumptions (F1), (F2) and (F4)

E(Xn+1−x∗)2 ≤
{
C ′

1an/c
2
n if c6n/an≤ �1

C ′
2c

4
n if c6n/an ≥ �2,

(26)

for all n≥ 1 and for some finite positive constants C ′
1 and C ′

2.

The proof follows the same steps as in the proof of Theorem 1. The main difference is in the

first step where we derive bounds on the gradient estimate using further smoothness assumed here.

This adds one more term in the Taylor expansion of step 1 in the proof outline of Theorem 1, and

in turn modifies the real number recursion for bn outlined there.

Theorem 2 suggests that one should set cn ≈ a1/6
n to minimize the upper bound, whose order

is then O(a2/3
n ). This implies that one should choose {an} to decrease as “fast” as possible while

not violating (S1), (S2’), (S3) and (S4’) to get the optimal rate. The best choice of the tuning

sequences is given as follows. The proof follows the same steps as the proof of Proposition 1, and

hence we omit the details.

Proposition 4. Let the assumption of Theorem 2 hold and suppose {an} is a non-increasing

sequence. Then the minimal order of the upper bound in (26) is O(n−2/3), which is achieved by

the setting an = �a/n and cn = �c/n
1/6 for any finite positive constants �a and �c that satisfy

�a > (22/3− 1)/(2K0).

3. Finite-Time Behavior

3.1. Problems and remedies for finite-time behavior

Despite theoretical performance guarantees (e.g., those contained in Theorem 1), it is well known

that stochastic approximation methods often perform quite poorly in practice. This emphasizes



Broadie, Cicek, and Zeevi: General Bounds and Finite Time Improvement for KW Stoch. Approx. Alg.
Article submitted to Operations Research; manuscript no. OPRE-2009-02-058.R4 19

the importance of investigating the finite-time behavior of the algorithm, to complement the long

run asymptotics and rates of convergence.

In this section we propose a modified version of the KW algorithm, which we call the Scaled-and-

Shifted KW algorithm. This algorithm uses simple adaptive adjustments of the tuning sequences

to address three main sources of poor performance:

1. a long oscillatory period due to a step-size sequence {an} that is “too large;”

2. a degraded convergence rate due to a step-size sequence {an} that is “too small;”

3. poor gradient estimates due to a gradient estimation step-size sequence {cn} that is “too

small.”

Next we explain in more detail each of these problems, illustrate them numerically and propose

potential remedies that are combined in the final scaled-and-shifted KW algorithm.

3.1.1. The oscillation problem An issue that can arise in practical applications of the trun-

cated KW algorithm (which is described in Remark 4) is a long period characterized by oscillations

between boundaries of the truncation interval.

Definition 1. (Oscillatory period) Consider the truncated KW algorithm restricted to an

interval I0 = [l, u]. The oscillatory period T is defined as the number of iterations until the algorithm

ceases consecutive visits to different boundary points, i.e.,

T = sup{n≥ 2 : (Xn = u− cn and Xn−1 = l+ cn−1) or (Xn = l+ cn and Xn−1 = u− cn−1)}, (27)

if the supremum on the right-hand-side above is finite, otherwise we set T = 0.

Roughly speaking, when the step-size sequence {an} is too large relative to the gradient, the

algorithm will exhibit a long transient period oscillating between boundary points until the step

size becomes suitably small. This issue will not affect the algorithm’s asymptotic performance, but

the following example illustrates the severity of the problem. Figure 3(a) shows a single path of

the truncated KW algorithm using I0 = [−50,50] for the function f(x) = −x4, and independent

standard normal additive noise (i.e., Yi = f(x) + "i, with "i ∼ N(0, �2) and � = 1) and X1 = 30.
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Figure 3 Oscillatory behavior of the truncated KW algorithm. Panel (a) shows a sample path of iterates in the

truncated KW algorithm for the function f(x) =−x4 with an =1/n, cn = 1/ 4
√
n and � =1. The initial

interval is assumed to be I0 = [−50,50] and oscillatory behavior is observed for T = 9960 iterations.

Panel (c) shows a sample path in the scaled-and-shifted KW algorithm in the same setting, using the

same noise random sequence. The shift of � = 9800 corresponding to an = 1/(n+9800) is finalized after

28 iterations. The sequence cn = 1/ 4
√
n is not shifted. Panels (b) and (d) give the relative frequency of

X10,000 using 1000 simulation replications for the truncated KW and scaled-and-shifted KW algorithms,

respectively.
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The tuning sequences are an = 1/n and cn = 1/ 4
√
n as prescribed in §2. The oscillatory behavior

can be observed for the first T = 9960 iterations and the algorithm only starts to converge after

this period. The relative frequency of X10,000 over many paths is illustrated in Figure 3(b). Even

after 10,000 iterations, most of the paths are relatively far from x∗ = 0.

The length T = 9960 of the oscillatory period depends on the length of the initial interval I0.

If one has more a priori information about the point of maxima and can specify a smaller initial
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Figure 4 Oscillatory period vs. initial interval. This figure shows the estimated average length of the oscillatory

period T as a function of the initial interval length u− l, for the function f(x) =−x4 with an = 1/n,

cn =1/ 4
√
n and � = 1.
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interval, then the oscillatory period will be shorter. Similarly, less a priori information requires

a larger initial interval, which leads to a longer oscillatory period. Figure 4 exhibits the relation

between the average length of the oscillatory period estimated over 1000 sample paths and the

length of the initial interval for the function f(x) =−x4.

The long oscillatory period is caused by a step-size sequence {an} that is too large in comparison

to the magnitude of the gradient. To avoid this, we propose to decrease the step size when necessary

by shifting the {an} sequence; i.e., redefining the sequence {a′
n} := {an+�} for some positive integer

�. Specifically, whenever an iterate Xn falls outside the truncation interval known to contain x∗, we

calculate the minimum positive integer � so that using an+� ensures that the function evaluations

are within the interval; i.e., bothXn±cn ∈ [l, u]. The shifted sequence is used in the computation of

all future iterates. Multiple shifts can occur, but the number of shifts is bounded in advance. Note

that the shift(s) is adaptive, i.e., it is determined during the course of the algorithm and it does

not require any additional information about the function. Figure 3(c) presents a typical sample

path that results from applying the shift using the same parameters and random numbers as in

Figure 3(b) and Figure 3(d) gives the relative frequency chart for X10,000 using 1000 simulation

replications.

Remark 11. (Intuition for shifting) The idea of shifting the {an} sequence is inspired by close

examination of the constants present in the upper bounds developed in §2. For instance, if we
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seek to minimize the constant C in the upper bound for “quadratic-like” functions, see (10) in the

electronic companion, it is seen that this is achieved by balancing two terms. The first decreases

with a decrease in the {an} sequence for large values of K1. The second term increases as {an}

decreases, so there is an evident tradeoff. The key observation is that when the gradient is steep,

the first term dominates the second one and therefore a smaller {an} sequence decreases the value

of the constant C in our bound. Decreasing the step-size sequence {an} by a shift preserves more

“energy” for future iterations, since it does not dampen the entire subsequent entries in {an} by

the same multiplicative factor.

3.1.2. Degraded convergence rate due to a small step size The asymptotic results

developed in the literature, as well as the bounds given in Theorem 1, require a careful choice

of the {an} sequence in relation to the curvature of the function that is being optimized. This is

encoded in assumptions (S1) and (S2) with the requirement that A < 4K0; see also Nemirovski

et al. (2009) for further discussion. If the tuning sequences do not satisfy this assumption, for

instance if the multiplicative constant �a in an = �a/n is not large enough, a degraded convergence

rate may result. As a simple example, similar to the one worked out in Nemirovski et al. (2009),

consider f(x) = −0.001x2 with an = 1/n and cn = 1/ 4
√
n, and there is no observation error (i.e.,

�= 0). Then the KW recursion becomes Xn+1 =Xn(1−1/(250n)). Starting with X1 = 30, we have

Xn = 30
n−1∏

m=1

(
1− 1

250m

)
≥ exp

[
−

n−1∑

m=1

1

250m− 1

]
≥ 27

n0.004
, (28)

so the MSE cannot converge faster than 272/n0.008. In contrast, the upper bound in Theorem 1

guarantees a rate of 1/
√
n, but this rate is not achieved because the {an} sequence violates (S1) and

(S2). Figure 5(a) illustrates a sample path of the iterates Xn in this setup with independent normal

noise with zero mean and standard deviation �= 0.001. The MSE convergence rate for this setting

is −0.008 (see Table 3 for a corresponding confidence interval) which matches the theoretical rate

given in (28). The relative frequency of X10,000 given in Figure 5(b) shows all sample paths exhibit

a similar lack of convergence.
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The problem of degraded convergence rate due to the constant �a in an = �a/n being too small

relative to the magnitude of the gradient is present both in the Robbins-Monro and the Kiefer-

Wolfowitz algorithms. In order to tackle this problem in the RM framework, Ruppert (1988)

and Polyak (1990) introduced the idea of averaging the iterates. They choose the {an} sequence

to converge to zero slower than 1/n and define Xn = (
∑n

i=1Xi)/n, where {Xn} is the sequence

generated by the RM algorithm with this choice of {an} sequence. They prove that with these

changes, n1/2(Xn − x∗) converges in distribution to a normally distributed random variable with

zero mean and variance that is independent of the constant in the {an} sequence. Thus, the method

achieves the optimal convergence rate for the RM framework independent of the choice of the

constant in the tuning sequence. A corresponding result is developed by Dippon and Renz (1997)

for the KW algorithm. In particular, for twice differentiable functions, the choice of an = �a log(n)/n

combined with iterate averaging guarantees the optimal convergence rate in the KW framework.

This class of algorithms serve as a natural benchmark for our proposed algorithm.

Our remedy for this rate degradation problem is to scale up the {an} sequence as follows. In

the first several iterations of the algorithm, we multiply the {an} sequence by a constant greater

than or equal to one, so that iterate n is at the boundary of the current truncation interval, i.e.,

Xn = l+ cn or Xn = u− cn. This scaling up forces the algorithm to oscillate between the endpoints

of the truncation interval In = [l + cn, u − cn]. This maps the problem of rate degradation into

a problem of oscillatory behavior, which is then remedied by the shifted sequence approach of

§3.1.1. The maximum number of forced boundary hits is a user-specified parameter set to four in

all of our numerical experiments.2 Figure 5(e) shows a sample path of iterates generated by the

scaled-and-shifted KW algorithm on f(x) =−0.001x2 using the same parameters and same random

numbers as in Figure 5(a). In this example, no shifting is needed after the {an} sequence is scaled

up and the optimal rate of convergence is recovered with this simple scaling (see Table 3 for a

confidence interval on the convergence rate). As seen in Figure 5(f), the scaled-and-shifted KW

algorithm improves the convergence on all 1000 simulated samples although, unlike the Polyak-

Ruppert scheme, there are no theoretical guarantees for the SSKW algorithm. The performance
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Figure 5 Degraded convergence rate due to a small step size. Panel (a) shows a sample path in the KW algorithm

for f(x) = −0.001x2 with an = 1/n, cn = 1/ 4
√
n and � = 0.001. The A < 4K0 assumption in (S1) and

(S2) is violated. From Table 3, the convergence rate of the MSE is −0.008±1.9×10−6 . Panel (b) is the

relative frequency chart for X10,000 exhibiting poor performance in all 1000 simulated sample paths.

Panel (c) shows a sample path of Polyak-Ruppert averages of iterates generated in the exact same

setting, but with using an = log(n)/n. The MSE of the averages converges at a rate estimated to be

−0.05± 1.6× 10−5 . Relative frequency chart for X10,000 given in Panel (d) shows the poor convergence

of the averages is present in all 1000 sample paths. Panel (e) shows a sample path in the scaled-and-

shifted KW algorithm in the same setting using the same noise random sequence. After four scale-ups,

the {an} sequence becomes an = 1987/n and shifting is not needed. From Table 3, the scaling results in

an MSE convergence rate estimate of −0.53±0.05 which recovers the optimal rate. As seen in Panel (f),

this is observed in all of the 1000 simulated sample paths.
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of Polyak-Ruppert averaging, with an = log(n+ 1)/n, is displayed in Figure 5(c) under the same

setting as in panel (a) and using identical random numbers. A slight improvement is noted relative

to the TKW results given in panels (a) and (b) but the observed convergence behavior of Polyak-

Ruppert averaging in this example is quite poor. In particular, the MSE exponent is calculated to

be −0.05 (see Table 3 for a confidence interval) which is far from the guaranteed asymptotically

optimal rate of −0.5. Figure 5(d) contains the relative frequency of final estimates and shows all

1000 sample paths exhibit similar poor performance.

3.1.3. The problem of noisy gradient estimates The finite-difference estimate of the

gradient in (1) uses a tuning sequence {cn}. Cases where the noise in the function observation is

too large in magnitude relative to the {cn} sequence may give rise to excessive noise in the gradient

estimates. As a consequence, even at the boundaries of the truncation interval, the algorithm

may step away from the point of maximum of the function. Moreover, the iterates might move in

random directions governed purely by the noise for a long period of iterations. This can lead to poor

finite-time performance, even if the asymptotic convergence rate is eventually achieved. Figure 6(a)

illustrates a sample path for the function f(x) = 1000 cos(�x/100) with an = 1/n, cn = 1/n1/4 and

an initial interval I0 = [−50,50]. As before, we assume independent normal additive noise, i.e.,

Yi = f(x)+ "i, with "i ∼N(0, �2) and X1 = 30. The main difference is that we assume a large noise

level given by � = 1000. The sample path in Figure 6(a) does not show convergent behavior for

the first 10,000 iterations. (Similar behavior can be observed even up to 100,000 iterations.) The

relative frequency of X10,000 in Figure 6(b) shows a nearly uniform distribution between −50 and

50, i.e., the algorithm has not improved over X1 in 10,000 iterations.

Our remedy for this problem is to scale up the {cn} sequence. Specifically, we multiply the {cn}

sequence by a constant 0 > 1 when an iterate hits the boundary of the interval and the gradient

estimate points in a direction away from the current truncation interval (i.e., away from x∗). This

situation is one where the error in the gradient estimates is dominated by the noise term, since by

assumption (F2) the true gradient at the boundary has to point towards x∗. We also make sure
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Figure 6 Noisy gradient estimate problem. Panel (a) shows a sample path of the truncated KW algorithm for the

function f(x) = 1000cos(�x/100) assuming an initial interval I0 = [−50,50], using normally distributed

noise with � = 1000, an = 1/n and cn = 1/n1/4. The MSE convergence rate estimate for this setting is

−0.08± 0.008 (see Table 5). Panel (c) shows a sample path in the scaled-and-shifted KW algorithm for

the same function, using the same random noise sequence. The algorithm adjusts the {cn} sequence to

the noise level and shows much faster convergence. After scaling and shifting, the final sequences are

an = 1/n and cn =16/n1/4 . The last row in Table 5 corresponds to this setting and gives an estimate of

the MSE rate of convergence of −0.53± 0.02. The relative frequency of X10,000 in both algorithms are

given in panels (b) and (d).
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that the scaled-up {cn} sequence does not exceed an upper bound cmax, which is a parameter for

our algorithm. In our numerical examples, we use 0 = 2. Multiple scale-ups can occur, but the

number is bounded in advance. The scaled-up {cn} sequence is used for the remaining iterations

of the algorithm. The {an} sequence is also scaled and shifted as necessary as described before.

Figure 6(c) shows the sample path of the scaled-and-shifted KW algorithm applied to the function
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f(x) = 1000 cos(�x/100) with the same parameters and random numbers. The {cn} sequence is

scaled up four times at early stages of the algorithm, while the {an} sequence is neither shifted

nor scaled. With this adaptive tuning of the sequences, the iterates move toward the point of

maximum much faster and this behavior is consistent throughout 1000 sample paths as shown in

Figure 6(d). In this setting, the scaled-and-shifted KW algorithm achieves an MSE convergence

rate of −0.53± 0.02 (see Table 5).

3.2. Numerical results

In this section we provide numerical results for the scaled-and-shifted KW algorithm, as described

in the Appendix, which combines the remedies described previously. Results for the truncated

KW algorithm are given for comparison. We also provide the results for Polyak-Ruppert averaging

for the second example below that illustrate the rate degradation problem (since that scheme is

only aimed at mitigating this particular issue). Algorithm sample paths are generated for 10,000

iterations. The standard errors are within 7% of the MSE values in all cases. Empirical convergence

rates are calculated by computing a least squares fit of log(MSE) vs. log(n) using iterations

n= 1000 to n= 10,000.

The initial tuning sequences are an =1/n and cn =1/ 4
√
n in all cases but for the Polyak-Ruppert

averaging case where an = log(n)/n is used (these are the settings proved to be optimal for the

KW-algorithm in Proposition 1, and for Polyak-Ruppert averaging by Dippon and Renz (1997)).

We report the statistics on the final adapted tuning sequences in separate tables. The initial interval

used in all examples is [−50,50] and the initial starting point is always set to be X1 = 30. The input

parameters for the scaled-and-shifted KW algorithm are set so that the iterates hit the opposite

boundaries of the truncation interval at the first four iterations, and the scale-up factor for the

{cn} sequence is two. The upper bounds on the total number of shifts in the {an} sequence and

scale-ups in the {cn} sequence are both set to be 50. In order to prevent large shifts in a single

iteration due to noise, the amount of shift in single iteration is upper bounded initially by 10 and

every time a shift that equals to the upper bound is realized, we double this upper bound. Also to
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prevent a large scale-up in the {an} sequence due to noise, the amount of scale-up per iteration is

bounded by 10 in all runs. We also upper bound the {cn} sequence so that cn ≤ 20 for all n≥ 1.

All functions are estimated using f̃(xi) = f(xi)+ "i with independent noise "i ∼N(0, �2).

Remark 12. (Theoretical guarantees) The result given in Theorem 1 also hold for the scaled-

and-shifted KW algorithm. As mentioned in Remark 3, it is enough to have conditions (S1)-(S4)

satisfied “for all sufficiently large n” for the bounds in Theorem 1 to hold. Since neither scaling nor

shifting can occur more than finitely many times (the notation mmax introduced in the appendix),

the conditions of Theorem 1 hold for all n > mmax. Together with the extension of Theorem 1

to the truncated KW algorithm (see Remark 4), this is sufficient to conclude that adaptation of

the tuning sequences in the scaled-and-shifted KW algorithm preserve the theoretical performance

guarantees, at least asymptotically.

Table 1 Comparison of the scaled-and-shifted KW algorithm and the truncated KW algorithm for f(x) =−x4.

This table shows the MSE calculated at iterations 100, 1000 and 10000, the convergence rate estimate for the MSE

and the 5th and 95th percentile along with the median of the length of the oscillatory periods at different noise

levels (�). The numbers in square brackets [⋅] correspond to the truncated KW algorithm.

MSE Length of oscillatory period
� 100 1000 10000 5% Median 95%

0.1
8.7 0.6 0.08 27 27 27

[2469] [2482] [16] [9960] [9960] [9960]

1
8.5 0.6 0.08 27 27 29

[2469] [2482] [15] [9959] [9960] [9960]

10
7.2 0.6 0.2 22 27 31

[2469] [2482] [12] [9957] [9959] [9961]

Example 1. The first test function is f(x) =−x4. This function does not satisfy assumption (F1)

and hence we do not have a theoretical MSE convergence rate, but it serves to “stress test” the

algorithm. When the truncated KW algorithm is applied to this function, slow convergence is often

observed due to long oscillatory periods. Table 1 shows this effect and also shows that the scaled-

and-shifted KW algorithm decreases the oscillatory period significantly for all noise levels and
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Table 2 Tuning sequence statistics for f(x) =−x4. The 5th and 95th percentile along with the median values

are given for the total scale-up factor �, and the total shift amount �, in the {an} tuning sequence, as well as the

total scale-up factor , for the {cn} sequence. For this test function, we observe only shifting of the {an} sequence

and no scaling up at all noise levels (�).

� � 
� 5% Median 95% 5% Median 95% 5% Median 95%
0.1 1 1 1 9799 9799 9799 1 1 1
1 1 1 1 9799 9799 9800 1 1 1
10 1 1 1 9796 9799 9801 1 1 1

Table 3 Comparison of the scaled-and-shifted KW algorithm, the truncated KW algorithm and the KW

algorithm with Polyak-Ruppert (PR) averaging for f(x) =−0.001x2. This table shows the MSE calculated at

iterations 100, 1000 and 10000, the convergence rate for the MSE, and the 5th and 95th percentile and the median

of the length of the oscillatory periods at different noise levels, �.

MSE Convergence Length of oscillatory period
� Alg. 100 1000 10000 Rate 5% Median 95%

0.001
SSKW 0.05 0.02 0.005 −0.51± 0.05 4 4 4
PR 843 773 679 −0.06± 3.7× 10−6 0 0 0

TKW 863 848 833 −0.008± 5.4× 10−7 0 0 0

0.01
SSKW 5.1 1.7 0.5 −0.51± 0.05 4 4 5
PR 843 773 679 −0.06± 3.7× 10−5 0 0 0

TKW 863 848 832 −0.008± 5.4× 10−6 0 0 0

0.1
SSKW 179 58 19 −0.50± 0.09 4 4 10
PR 843 772 678 −0.06± 3.6× 10−4 0 0 0
TW 863 847 832 −0.008± 5.3× 10−5 0 0 0

1
SSKW 243 73 24 −0.49± 0.1 4 4 11
PR 844 784 696 −0.05± 0.003 0 0 0

TKW 863 848 833 −0.008± 4.9× 10−4 0 0 0

dramatically reduces the MSE which is calculated using 1000 independent replications. Statistics

on the adaptations to the sequences are given in Table 2.

Example 2. The second test function is f(x) =−0.001x2, which has a “flat” gradient away from

the point of maximum. The {an = 1/n} sequence then violates assumption A< 4K0 of Theorem 1.

This results in a degraded rate of convergence which also impacts the finite-time behavior of the

algorithm. Table 3 shows that the estimated convergence rate of truncated KW algorithm is close

to zero, i.e., it is not converging for all practical purposes. The Polyak-Ruppert averaging idea

improves on this slightly, but the estimated convergence rate is still quite far from the optimal
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rate of −0.5. On the other hand, SSKW algorithm significantly improves the convergence behavior,

recovering the optimal rate. Table 4 presents statistics on the adaptations to the sequences and

shows that there is significant scaling up in the {an} sequence. The scaling up in the {cn} sequence

is more pronounced at high noise levels. Although there is no shifting in the {an} sequence at small

� values, when � gets larger we observe occasional shifts as shown in the values for �. That is, the

algorithm adjusts the magnitude of the {an} sequence by shifting, if it was scaled up too much at

the initial phase. All the numbers in Table 3 and Table 4 are calculated using 2000 independent

replications.

Table 4 Tuning sequence statistics for f(x) =−0.001x2. The 5th and 95th percentile along with the median

values are given for the total scale-up factor �, and the total shift amount �, in the {an} sequence, as well as the

total scale-up factor , for the {cn} sequence, for various noise levels (�).

� � 
� 5% Median 95% 5% Median 95% 5% Median 95%

0.001 1968 2001 2035 0 0 0 1 1 1
0.01 1714 2007 2410 0 0 1 1 1 1
0.1 963 1794 7967 0 1 19 1 2 4
1 165 888 4187 0 2 15 4 16 32

Table 5 Comparison of the scaled-and-shifted KW algorithm and the truncated KW algorithm for

f(x) = 1000cos(�x/100). This table shows the MSE calculated at iterations 100, 1000 and 10000, the convergence

rate for the MSE, and the 5th and 95th percentile and the median of the length of the oscillatory periods at

different noise levels (�). The numbers in square brackets [⋅] correspond to the truncated KW algorithm.

MSE Convergence Length of oscillatory period
� 100 1000 10000 Rate 5% Median 95%

10
48 13 4 −0.50± 0.03 4 4 6
[6] [1.9] [0.6] [−0.50± 0.03] [0] [0] [0]

100
188 51 15 −0.52± 0.04 4 6 16
[530] [207] [61] [−0.53± 0.03] [0] [0] [3]

1000
252 79 24 −0.51± 0.06 4 6 16.5

[1499] [937] [814] [−0.06± 0.02] [29] [61] [114]

Example 3. The last test function is f(x) = 1000 cos(�x/100); this specification enables us to use

the same truncation interval [−50,50] used in the two other cases. Note that the function satisfies
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conditions (F1) and (F2) in the truncation interval. Table 5 shows that the scaled-and-shifted KW

algorithm outperforms the truncated KW algorithm in both MSE and convergence rate measures

for large noise levels. The only case where the truncated KW algorithm outperforms its adaptive

counterpart in terms of MSE is at the lower noise level of � =10. In this case, since the assumption

A< 4K0 is satisfied for the initial choice of the {an} sequence, the scaling up of the {an} sequence

decreases performance in terms of MSE. But since the algorithm does not “know” the assumption

holds, it forces the iterates to hit the boundary at the first two iterations by increasing the step-size

sequence {an}. Although the rate of convergence is still preserved, we observe slightly worse MSE

results. Statistics about the adaptation of the sequences are given in Table 6. All the numbers in

Table 5 and Table 6 are calculated using 3000 independent replications of the algorithm.

Table 6 Modifications in the tuning sequences for f(x) = 1000cos(�x/100). The 5th and 95th percentile along

with the median values are given for the total scale-up factor, � and the total shift amount, � in {an} sequence as

well as the total scale-up factor for the {cn} sequence, , for various noise levels (�).

� � 
� 5% Median 95% 5% Median 95% 5% Median 95%
10 4.5 6.9 15.1 0 0 7 1 1 1
100 1.8 7.3 33 0 4 37 2 8 16
1000 1.0 1.8 12 0 6 42 16 32 62

In all three examples, scaling and shifting the tuning sequences resulted in vastly improved finite-

time performance, and essentially optimal estimates of the rate of convergence (for example,the

improvement in the MSE can be as high as a factor of 150,000). In instances where the original

choice of the sequences is a good fit to the characteristics of the underlying function, and where the

TKW algorithm does seem to converge at the optimal rate, scaling and shifting does not degrade

the convergence rate. In these instances (such as example 3 with � = 10 given in Table 5), the

MSE values for the SSKW algorithm are slightly worse than those of the TKW algorithm mainly

because of the scale-ups in the {an} sequence which forces boundary hits.
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Endnotes

1. The proof of Theorem 1 for the truncated KW algorithm is identical until equation (12), where

we now have

Zn+1 := (Xn+1−x∗)2

=

[
ΠIn+1

(
Xn + an

(
f̃(Xn + cn)− f̃(Xn− cn)

cn

))
−x∗

]2

≤
[
Xn + an

(
f̃(Xn+ cn)− f̃(Xn− cn)

cn

)
−x∗

]2
,

and the inequality follows from the contraction property of Euclidean projection onto any compact

interval I:

(ΠI(Wn)−x∗)2 = (ΠI(Wn)−ΠI(x
∗))2≤ (Wn−x∗)2,

with Wn :=Xn + an(f̃(Xn+ cn)− f̃(Xn− cn))/cn. The remainder of the proof is identical.

2. If the starting point of optimization is known to be close to the optimal solution, then this

remedy may remove the value of a good starting point. However, if the rate degradation problem

is known not to be an issue, the user can set the number of forced boundary hits, parameter ℎ0,

to zero. Also, if it’s known a priori that the optimal solution is close to the starting point, one can

set tighter bounds on the truncation interval.
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Electronic Companion: Proofs, Full Algorithm Description
and Multidimensional Extensions

In this electronic companion, we provide the proofs of the theorems and propositions given in

the paper. We also give full description of the scaled-and-shifted KW algorithm. Furthermore, we

use the new proof technique to establish bounds on the mean-squared-error of multidimensional

variants of RM and KW algorithms as well as the SPSA algorithm.

EC.1. Proofs

Proof of Proposition 1 First, we claim that the optimal rate of convergence is achieved with

sequences {an} and {cn} that satisfy c4n/an = � . To see this note that if c4n/an < � , then we are

in case (i) of Theorem 1 and the rate of convergence is an/c
2
n. But if we increase cn or decrease

an until we get c4n/an = � , we achieve a tighter bound. The same line of argument applies when

c4n/an > � . Hence the best possible bound in (3) is of order
√
an. Thus, once we specify the {an}

sequence, we set {cn} such that c4n/an = � .

Next we show that an =O(1/n) is the optimal order of magnitude for the {an} sequence, in the

sense that this choice yields the fastest convergence to zero of the MSE among those sequences

satisfying assumptions (S1)-(S4). Now, clearly an = �a/n and cn = �c/n
1/4 satisfy assumptions

(S1)-(S4). Suppose, towards a contradiction, that {an} is of lower order than 1/n, i.e., suppose

an = �asn/n for some finite positive sequence {sn} such that sn→ 0 as n→∞ and {an} is non-

increasing.

We first observe that since {an} is non-increasing, i.e., an+1 ≤ an, we have sn+1 ≤ sn(n+ 1)/n.

Using this, we have

s2n+1

n+1
≤ s2n

n

(
1+

1

n

)
≤ 2

s2n
n
. (1)

Now, note that (S1) and (S2) imply an ≤ an+1(1+Aan+1) for some constant A. Using this, we

have sn/n≤ sn+1/(n+1)+A�as
2
n+1/(n+1)2, which implies

sn+1 ≥ sn

(
1+

1

n

)
−A�a

s2n+1

n+1
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≥ sn

(
1+

1

n
− 2A�a

sn
n

)
, (2)

where we used (1) for the second inequality. Since sn→ 0 as n→∞, we have that 2A�asn ≤ 1/2 for

n sufficiently large. Using this in (2), we get sn+1 ≥ sn(1+ 1/(2n)) for all n sufficiently large. But

this implies sn→∞, which contradicts the assumption sn→ 0 as n→∞. Therefore the optimal

choice is an = �a/n, and hence cn = �c/n
1/4 for positive constants �a and �c.

The last step is to find the restrictions on �a and �c to ensure that the condition A< 4K0 holds.

If we substitute these sequences in (S1) or (S2), after some algebra, we get

A≥ n+1

�a

(√
n+1

n
− 1

)
.

Combining this with A< 4K0, we get

�a >
1

4K0

[
(n+1)

(√
n+1

n
− 1

)]
≥
√
2− 1

2K0

,

since the term in square brackets is maximized when n= 1.

Proof of Proposition 2 Step 1: Without loss of generality, we can assume cn≤C0 for all n≥ 1

since we can scale down the sequence otherwise. Using (F3) and ∇̂f(x) = (f(xn + cn)− f(xn −

cn))/cn we have

(x−x∗)∇̂f(x)≤−K0(x−x∗)2. (3)

Squaring the terms in (F3), we obtain

[∇̂f(x)]2≤K2
1(x−x∗)2. (4)

Step 2: We now derive a real number recursion for bn =E(Zn) using the same ideas as in Step

2 of the proof of Theorem 1. Using (13) and taking expectations of both sides and applying the

bounds (3) and (4), denoting bn =E(Zn), we get

bn+1 ≤ bn− 2anK0bn +
a2
n

c2n
�2 +K2

1a
2
nbn

= bn(1− 2anK0 +K2
1a

2
n)+

a2
n

c2n
�2. (5)
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Step 3: In the third step of the proof of Theorem 1, we established a bound for sequences

satisfying bn+1 ≤ bnpn + qn. Using this, we have bn ≤ Bn, where Bn is defined in (16)and pn :=

1− 2anK0 +K2
1a

2
n > 0, qn := �2a2

n/c
2
n.

Now define

n′
0 := sup{n≥ 1 : (K2

1 − 2AK0)an +K2
1Aa

2
n ≥ 2K0−A}+1 (6)

and set n′
0 = 1 if (K2

1 − 2AK0)an +K2
1Aa

2
n < 2K0−A for all n≥ 1. Using A< 2K0, and since it is

assumed in (S3) that an→ 0 as n→∞ we have n′
0 <∞. We note that by (6)

� :=− sup{A− 2K0 +(K2
1 − 2AK0)an +K2

1Aa
2
n : n≥ n′

0}> 0. (7)

Step 4: We will again use induction to complete the proof. For n= n′
0 suppose C is chosen large

enough to ensure C ≥ Bn′

0
+1c

2
n′

0

/an′

0
≥ bn′

0
+1c

2
n′

0

/an′

0
. Now suppose bk+1 ≤ Cak/c

2
k for all n′

0 ≤ k ≤

n− 1. We need to show that bn+1 ≤Can/c
2
n. Using (5) and the induction hypothesis we have

bn+1 ≤ (1− 2anK0+K2
1a

2
n)C

an−1

c2n−1

+
a2
n

c2n
�2

≤ C
an

c2n
(1+Aan)− 2K0C

a2
n

c2n
(1+Aan)+K2

1C
a3
n

c2n
(1+Aan)+

a2
n

c2n
�2,

where for the second inequality we have used condition (S1). Rearranging terms we get

bn+1 ≤C
an

c2n
+

a2
n

c2n

{
C(A− 2K0 +(K2

1 − 2K0A)an +K2
1Aa

2
n)+�2

}
. (8)

Using (7) gives

bn+1 ≤C
an

c2n
+

a2
n

c2n
(−C�+�2). (9)

Using a similar argument to the one in proof of Theorem 1, with

C =max

{
�2

�
, max
1≤n≤n′

0

{
c2n
an

Bn +1

}}
. (10)

we have bn+1 ≤Can/c
2
n for all n≥ 1 and this completes the proof.

Proof of Proposition 3 First note that with the choice of sequences and with �a > (
√
2−1)/K0,

we satisfy all the conditions of Proposition 2 (the inequality is verified at the end of the proof).
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Using this, the rate of convergence is an/c
2
n. To obtain the optimal rate of convergence, we should

choose an/c
2
n as small as possible such that it satisfies the assumptions in the proposition. Using

assumption (S1), and cn≤ � for all n≥ 1, we get

an

c2n
≤ an+1

c2n+1

(1+Aan+1)≤
an+1

c2n+1

(1+A�2an+1

c2n+1

). (11)

Substituting dn = an/c
2
n and D = A�2 in (11), to complete the proof, we need to find the non-

increasing sequence {dn} satisfying dn ≤ dn+1(1+Ddn+1) which converges to zero as fast as possible.

But in the proof of Proposition 1, we showed that under these condition, the best choice of {dn},

in the sense of minimizing the order of the MSE, is dn = �d/n for some finite positive constant

�d. This can be achieved by choosing an = �a/n and cn = �c for some finite positive constants

�a and �c. As we did in the proof of Proposition 1, the last step is to translate the requirement

A< 2K0 into a condition on �a. Substituting the sequences in assumption (S1) gives the condition

A≥ [(n+1)/n]/�a. With A< 2K0, this requires �a > [(n+1)/n]/(2K0) which completes the proof

since the term in the square brackets is maximized when n= 1.

2. Scaled-and-Shifted KW Algorithm

We present a formal statement of the scaled-and-shifted KW algorithm. As in the trun-

cated KW algorithm, we assume knowledge of an interval I0 = [l, u], that contains the

point of maximum. The scaled-and-shifted KW algorithm requires parameter inputs to

be set by the user in Step 1. The MATLAB implementation can be downloaded from

http://www.columbia.edu/˜mnb2/broadie/research.html/.

Step 1. Setting algorithm parameters and initialization

∙ ℎ0: the number of forced hits to boundary points l + cn and u− cn by scaling up the {an}

sequence (sample default: 4).

∙ 0: the scaling up factor for the {cn} sequence (sample default: 2).

∙ ka: an upper bound on the number of shifts in the {an} sequence (sample default: 50).

∙ �a: an initial upper bound on the shift in the {an} sequence (sample default: 10).
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∙ 'a: an upper bound on the amount of scale up in the {an} sequence per iteration (sample

default: 10).

∙ kc: an upper bound on the number of scale-ups in the {cn} sequence (sample default: 50).

∙ c(0): the parameter defining the maximum possible value of {cn} sequence after the scale-ups;

i.e., cn≤ cmax = c(0)(u− l) for all n≥ 1 (sample default: 0.2).

∙ mmax: an upper bound on the iteration number of the last adaptation in the sequences, i.e.,

after iteration mmax no scaling nor shifting on the sequences is done; we require mmax ≥ ℎ0 (sample

default: total number of iterations).

∙ gmax: the maximum number of gradient estimations allowed to achieve oscillation along each

dimension (sample default: 20).

∙ Initialization:

—X1: initial starting point; can be random or deterministic but must satisfyX1 ∈ [l+c1, u−c1].

— sℎ=0: variable for number of shifts in {an} sequence.

— sc=0: variable for number of scale-ups in {cn} sequence.

Step 2: The scaling phase Set n= 1, for m≤ ℎ0,

(a) Calculate Xn+1 using the recursion given in (1).

(b) Scale up the {an} sequence, if necessary, ensuring the opposite truncation interval boundary

point is hit. Set g =1 (counter for number of gradient estimations). While g≤ gmax

(i) If Xn+1 < u− cn and Xn+1 > Xn, find the scale-up factor for {an} sequence that makes

Xn+1 = u− cn+1; i.e., set �=min('a, (u− cn+1−Xn)/(Xn+1−Xn)) and then use the new sequence

{an}← {�an} for the rest of the iterations. Set Xn+1 = u− cn+1.

(ii) If Xn+1 > l+ cn and Xn+1 <Xn, find the scale-up factor for {an} sequence that makes

Xn+1 = l+ cn+1; i.e., set �=min('a, (l+ cn+1−Xn)/(Xn+1−Xn)) and then use the new sequence

{an}← {�an} for the rest of the iterations. Set Xn+1 = l+ cn+1.

(iii) If n≤mmax and sc≤ �c, scale up the {cn} sequence whenever the gradient estimate is

too noisy: If Xn+1 >Xn = u− cn or Xn+1 <Xn = l+ cn then calculate  =min{0, cmax/cn} and

use the new sequence {cn}← {cn} for the rest of the iterations.
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(iv) Update Xn+1 =min{u− cn+1,max{Xn+1, l+ cn+1}}. Increment n and g.

Step 3: The shifting phase Until the termination of the algorithm,

(a) Calculate Xn+1 using the recursion given in (1).

(b) If n ≤mmax and sℎ ≤ �a, shift the {an} sequence, if necessary, to prevent iterates exiting

the truncation interval, but use the upper bound parameter �a to prevent a too large shift.

(i) If Xn+1 >u− cn+1, Xn = l+ cn then find the minimum shift in {an} sequence that makes

Xn+1 ≤ u− cn+1; i.e.,

∙ Solve (u− cn+1−Xn)/
(

f̃(Xn+cn)−f̃(Xn−cn)

cn

)
= an+�′ for �′.

∙ Use {an}← {an+min(�a,⌈�′⌉)} for the rest of the iterations. If min(�a, ⌈�′⌉)) = �a, then set

�a = 2�a.

(ii) If Xn+1 < l+ cn+1, Xn = u− cn then find the minimum shift in {an} sequence that makes

Xn+1 ≤ l+ cn+1; i.e.,

∙ Solve (l+ cn+1−Xn)/
(

f̃(Xn+cn)−f̃(Xn−cn)

cn

)
= an+�′ for �′.

∙ Use {an}← {an+min(�a,⌈�′⌉)} for the rest of the iterations. If min(�a, ⌈�⌉)) = �a, then set

�a = 2�a.

(c) Repeat Step 2(b)(iii). Set Xn+1 =min{u− cn+1,max{Xn+1, l+ cn+1}}. Increment n.

3. Multidimensional Extensions

3.1. Bounds on the Multidimensional Robbins-Monro Algorithm

We consider the multidimensional RM algorithm introduced by Blum (1954b). The algorithm is

structurized along the following recursion:

X(n+1) =X(n)− a(n)g̃(X(n)) (12)

Here g̃(⋅) is a noisy observation of the function g(⋅) :Rd→R
d and {a(n)} is a finite positive real

number sequence. We establish bounds on the MSE, E∥X(n+1) − x∗∥2, of this algorithm where

g(x∗) = 0. These bounds are formulated in terms of the {a(n)} sequence as in Theorem 1. For the

underlying function, as in Benveniste et al. (1990), we assume
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(G1) (x−x∗)Tg(x)≥K0∥x−x∗∥2

(G2) E∥g̃(x)∥2 ≤K1(1+ ∥x−x∗∥2)

for all x∈Rd, for some finite positive constant K0 <K1.

The assumptions found in most of the literature on the {a(n)} sequence are relaxed with our

proof technique. Instead of assuming
∑∞

n=1 a
(n) =∞ and

∑∞

n=1(a
(n))2 <∞, we assume

a(n)→ 0 as n→∞ and a(n) ≤ a(n+1)(1+Aa(n+1)) for all n≥ 1 where A< 2K0. (13)

This assumption still requires
∑∞

n=1 a
(n) =∞, but does not require

∑∞

n=1(a
(n))2 <∞.

Theorem 1. Let {X(n)} be generated by the Robbins-Monro stochastic approximation recursion

given in (12) using {a(n)} that satisfies (13). Then under assumptions (G1) and (G2),

E∥X(n+1)−x∗∥2 ≤ C̆a(n)

for all n≥ 1, where C̆ is a finite positive constant.

From Therorem 1, we deduce that the fastest rate of convergence for the RM algorithm is O(1/n)

and is achieved by setting a(n) =�/(n+�). Any {a(n)} sequence that converges faster violates the

assumption given in (13).

Proof of Theorem 1 Step 1: Using the recursion given in (12) we have

Z(n+1) := ∥X(n+1)−x∗∥2 =
∥∥X(n)−x∗− a(n)g̃(X(n))

∥∥2

= ∥X(n)−x∗∥2− 2a(n)(X(n)−x∗)T g̃(X(n))+ (a(n))2
∥∥g̃(X(n))

∥∥2 .

Taking expectations of both sides conditioned on Xn and using (G1) and (G2) we get

E(Z(n+1)∣X(n)) ≤ Z(n)− 2K0a
(n)Z(n) +K1(a

(n))2(1+ ∥X(n)−x∗∥2)

≤ Z(n)
(
1− 2K0a

(n) +K1(a
(n))2

)
+K1(a

(n))2.

Now taking expectations and denoting bn :=E(Z(n)) we get the following real number recursion

bn+1 ≤ bn(1− 2K0a
(n) +K1(a

(n))2)+K1(a
(n))2 (14)
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which can be expressed more compactly as bn+1 ≤ bnpn+ qn with pn := 1−2K0a
(n)+K1(a

(n))2 and

qn :=K1(a
(n))2.

Step 2: In this step of the proof, we establish a bound for sequences satisfying bn+1 ≤ bnpn+ qn.

Note that since K1 >K0 > 0, pn is a quadratic equation in a(n) with positive leading coefficient,

and negative discriminant, hence pn > 0.

Solving the recursion bn+1 ≤ bnpn + qn, we get that for all n

bn ≤ b1

n∏

i=1

pi +
n−1∑

i=2

qi

n∏

j=i+1

pj + qn =:Bn (15)

which provides a crude upper bound on the MSE at the ntℎ step of the algorithm.

Now define

n0 := sup{n≥ 1 : (K1− 2AK0)a
(n) +K1Aa

2
n ≥ 2K0−A}+1 (16)

and set n0 =1 if (K1−2AK0)a
(n)+K1Aa

2
n < 2K0−A for all n≥ 1. Since A< 2K0 we have n0 <∞

because an→ 0 as n→∞. We note that by (16)

� := inf{2K0−A− (K1− 2AK0)a
(n)−K1Aa

2
n : n≥ n0}> 0. (17)

Step 3: We now carry out the induction part of the proof; for a detailed introduction of this step

see the proof of Theorem 1 in the main body of the paper. For n= n0 suppose C̆ is chosen large

enough to ensure C̆ ≥Bn0+1/a
(n0) ≥ bn0+1/a

(n0). Now suppose bk+1 ≤ C̆a(k) for all n0 ≤ k ≤ n− 1.

We need to show that bn+1 ≤ C̆a(n). Using (14) and the induction hypothesis we have

bn+1 ≤ C̆a(n−1)(1− 2K0a
(n) +K1(a

(n))2)+K1(a
(n))2

≤ C̆a(n)(1+Aa(n))− 2K0C̆(a(n))2(1+Aa(n))+K1C̆(a(n))3(1+Aa(n))+K1(a
(n))2,

where for the second inequality we have used assumption (13). Rearranging terms we get

bn+1 ≤ C̆a(n) +(a(n))2
[
C̆
(
A− 2K0 +(K1− 2K0A)a

(n) +K1A(a
(n))2

)
+K1

]
, (18)

Using (17) gives

bn+1 ≤ C̆a(n) +(a(n))2(−C̆� +K1). (19)
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Putting

C̆ =max

{
K1

�
, max
1≤n≤n0

{
Bn+1

a(n)

}}
. (20)

we have bn+1 ≤ C̆an for all n≥ 1 and this completes the proof.

3.2. Bounds on the Multidimensional Kiefer-Wolfowitz Algorithm

Consider the multidimensional optimization problem: maxx∈Rd f(x) = E[f̃(x)] where f̃ is a noisy

observation of f :Rd→R. In order to solve this problem Blum (1954b) introduced a multidimen-

sional version of the KW algorithm. The algorithm uses a finite difference approximation of the

gradient in each direction and satisfies the following recursion:

X(n+1) =X(n) + a(n) g̃(X
(n))

c(n)
, n=1,2, . . . (21)

Here g̃(X(n)) = (f̃(X(n) + c(n)e1)− f̃(X(n)), . . . , f̃(X(n) + c(n)ed)− f̃(X(n))), and {e1, . . . , ed} is the

standard basis in R
d.

In this section, we extend the result in Theorem 1 to the setting above. We use the same proof

technique as before to establish upper bounds on the MSE of this algorithm. On the observation

noise, we assume

�2 := sup
x∈ℝd

Var[f̃(x+ cei)− f̃(x)∣x]<∞ (22)

for all x∈ℝ and for any i=1, . . . , d. The gradient of the underlying function ∇f(x) is assumed to

satisfy the following conditions for all x∈Rd:

(G1’) (x−x∗)T∇f(x)≤−K0∥x−x∗∥2

(G2’) ∥∇f(x)∥≤K1∥x−x∗∥

where K0 <K1 are finite positive constants.

Theorem 2. Let {X(n)} be generated by the recursion (21) using {a(n)} and {c(n)} satisfying (S1)-

(S4) with A< 2K0. Then under assumptions (22), (G1’), (G2’), and for �1, �2 defined in (S4),

E∥X(n+1)−x∗∥2 ≤
{
C̆1a

(n)/(c(n))2 if (c(n))4≤ �1a
(n)

C̆2(c
(n))2 if (c(n))4≥ �2a

(n)

for all n≥ 1, and some finite positive constants C̆1, C̆2.
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Proof of Theorem 2 Step 1: Fix {a(n)} and {c(n)} as in the statement of the theorem. Setting

∇fi(x) := ∂f(x)/∂xi and using Taylor expansion, for x∈ℝd and c∈ℝ+, there exist T = [T1, . . . , Td]

with 0 ≤ Ti ≤ 1 for all i = 1, . . . , d, such that f(x+ cei) = f(x) + c∇fi(x+ Ticei), since ei has all

zero entries except its itℎ coordinate.

Therefore, we have

∇̂fi(x) :=
f(x+ c(n)ei)− f(x)

c(n)
=∇fi(x+Tic

(n)ei). (23)

Defining ∇̂f(x) := (∇̂f1(x), . . . , ∇̂fd(x)) and using (23), we have

(x−x∗)T ∇̂f(x) = (x−x∗)T∇f(x+Tc(n))

= (x+Tc(n)−x∗)T∇f(x+Tc(n))− c(n)T T∇f(x+Tc(n))

≤ −K0∥x−x∗ +Tc(n)∥2 +K1c
(n)∥x+Tc(n)−x∗∥

= −K0

(
∥x−x∗∥2 +2c(n)(x−x∗)TT + ∥Tc(n)∥2

)
+K1c

(n)∥x+Tc(n)−x∗∥

≤ −K0∥x−x∗∥2 +2K0c
(n)∥x−x∗∥+K1c

(n)∥x−x∗∥+K1(c
(n))2 (24)

Here, the first inequality follows from assumptions (G1’) and (G2’) and the last one follows from

simple algebra and subadditivity of the Euclidean norm.

Using (23) and (G2’), we obtain

∥∇̂f(x)∥2 = ∥∇f(x+Tc(n))∥2

≤ K2
1∥x+Tc(n)−x∗∥2

≤ 2K2
1∥x−x∗∥2 +2K2

1 (c
(n))2. (25)

where the last inequality follows from the inequality ∥a+ b∥2 ≤ 2(∥a∥2 + ∥b∥2).

Step 2: Let X(n) be the output of the ntℎ iterate of (21). Note that

E

(
f̃(X(n) + c(n)ei)− f̃(X(n))

c(n)

∣∣∣ X(n)

)
= ∇̂fi(X(n)),

which together with bounded variance assumption and (25) implies that

E

[∥∥∥∥
g̃(X(n), c(n))

c(n)

∥∥∥∥
2 ∣∣∣ X(n)

]
=

d∑

i=1

Var

(
f(X(n)+ c(n)ei)− f̃(X(n))

c(n)

∣∣∣ X(n)

)
+ ∥∇̂f(X(n))∥2
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≤ d�2

(c(n))2
+2K2

1∥x−x∗∥2 +2K2
1(c

(n))2. (26)

Now, using (21) we have

Z(n+1) := ∥X(n+1)−x∗∥2 =
∥∥∥∥X

(n)−x∗ + a(n) g̃(X
(n), c(n))

c(n)

∥∥∥∥
2

= ∥X(n)−x∗∥2 +2a(n)(X(n)−x∗)T
g̃(X(n), c(n))

c(n)
+(a(n))2

∥∥∥∥
g̃(X(n), c(n))

c(n)

∥∥∥∥
2

.

Taking expectations of both sides conditioned on X(n) and using (26) we get

E(Z(n+1)∣X(n))≤Z(n) +2a(n)(X(n)−x∗)T ∇̂f(X(n))+ (a(n))2
(

d�2

(c(n))2
+2K2

1Z
(n) +2K2

1(c
(n))2

)
.

Using the bound in (24) we have

E(Z(n+1)∣X(n)) ≤ Z(n)− 2a(n)K0Z
(n) +2(2K0+K1)a

(n)c(n)
√
Z(n) +2K1a

(n)(c(n))2

+ (a(n))2
(

d�2

(c(n))2
+2K2

1Z
(n) +2K2

1(c
(n))2

)
.

Finally, taking expectations, using Jensen’s inequality, and setting bn := E(Z(n)) we get the

following recursion:

bn+1 ≤
(
1− 2a(n)K0 +2K2

1 (a
(n))2

)
bn +(4K0 +2K1)a

(n)c(n)
√
bn

+ 2K1a
(n)(c(n))2 +(a(n))2

(
d�2

(c(n))2
+2K2

1 (c
(n))2

)
. (27)

Step 3: Before we start the induction proof, we will derive a crude upper bound on bn that will

be used later. Using
√
bn ≤ 1+ bn in (27) we get

bn+1 ≤
(
1− 2a(n)K0+2K2

1 (a
(n))2+(4K0 +2K1)a

(n)c(n)
)
bn

+ (4K0+2K1)a
(n)c(n)+2K1a

(n)(c(n))2 +(a(n))2
(

d�2

(c(n))2
+2K2

1(c
(n))2

)
,

which can be expressed more compactly as bn+1 ≤ bnpn + qn with

pn := 1− 2a(n)K0 +2K2
1(a

(n))2 +(4K0+2K1)a
(n)c(n) > 0,
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qn := (4K0+2K1)a
(n)c(n)+2K1a

(n)(c(n))2+(a(n))2
(

d�2

(c(n))2
+2K2

1(c
(n))2

)
.

Note that since (4K0+2K1)a
(n)c(n) > 0, we have pn ≥ 1−2a(n)K0+2K2

1(a
(n))2 which is a quadratic

equation in a(n) with positive leading coefficient, and 0<K0 <K1 ensures it has negative discrim-

inant, hence pn > 0. As in the proof of Theorem 1, we get bn ≤Bn with the new definitions of pn

and qn, where Bn is defined in (15).

Put

n′
0 := sup{n≥ 1 : (2K2

1 − 2K0A)a
(n) +2K2

1A(a
(n))2 ≥ 2K0−A}+1, (28)

and set n′
0 = 1 if (2K2

1 − 2K0A)a
(n) +2K2

1A(a
(n))2 < 2K0−A for all n. Since we assume A< 2K0,

we have n′
0 <∞ because a(n)→ 0 as n→∞ (assumption (S3’)). Also, note that by (28)

� := inf{2K0−A− (2K2
1 − 2K0A)a

(n) +2K2
1A(a

(n))2 : n≥ n′
0}> 0. (29)

Step 4: Now we carry out the induction part of the proof.

Case (i): Suppose (c(n))4/a(n) ≤ �1, for all n ≥ 1. We will first show that bn+1 ≤ C̆1a
(n)/(c(n))2

for all n ≥ n′
0 and some finite positive constant C̆1. First, for n = n′

0 suppose C̆1 is chosen large

enough to ensure C̆1 ≥Bn′

0
+1(c

(n′

0))2/a(n′

0) ≥ bn′

0
+1(c

(n′

0))2/a(n′

0). Now fix n>n′
0 and suppose bk+1 ≤

C̆1a
(k)/(c(k))2 for all n′

0 ≤ k ≤ n− 1. We need to show that bn+1 ≤ C̆1a
(n)/(c(n))2. Using inequality

(27) and the induction hypothesis we have

bn+1 ≤
(
1− 2a(n)K0 +2K2

1(a
(n))2

)
C̆1

a(n−1)

(c(n−1))2
+(4K0+2K1)a

(n)c(n)
√

C̆1

√
a(n−1)

c(n−1)

+ 2K1a
(n)(c(n))2 +(a(n))2

(
d�2

(c(n))2
+2K2

1(c
(n))2

)

≤ C̆1

a(n)

(c(n))2
(1+Aa(n))− 2K0C̆1

(a(n))2

(c(n))2
(1+Aa(n))+ 2K2

1 C̆1

(a(n))3

(c(n))2
(1+Aa(n))

+ (4K0+2K1)(a
(n))3/2

√
C̆1

(
1+

A

2
a(n)

)
+2K1a

(n)(c(n))2 +(a(n))2
(

d�2

(c(n))2
+2K2

1(c
(n))2

)
,

where for the second inequality we have used condition (S1) and the inequality
√
1+Aan ≤ 1 +

Aan/2. Rearranging terms we get

bn+1 ≤ C̆1

a(n)

(c(n))2
+

(a(n))2

(c(n))2

{
C̆1[A− 2K0 +(2K2

1 − 2K0A)a
(n) +2K2

1A(a
(n))2]
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+ (4K0+2K1)

√
C̆1

[
(c(n))2√
a(n)

+
A

2

√
a(n)(c(n))2

]
+2K1

(c(n))4

a(n)
+ d�2 +2K2

1(c
(n))4

}
.

Let � and � denote the upper bounds on the {a(n)} and {c(n)} sequences, respectively. Using

(c(n))4/a(n) ≤ �1 with (29) gives:

bn+1 ≤ C̆1

a(n)

(c(n))2
+

(a(n))2

(c(n))2

[
−C̆1� +(4K0+2K1)

√
C̆1(
√
�1 +

A

2

√
��2)+ 2K1�1 + d�2 +2K2

1�
4

]
.

(30)

Now, if we can show that for some finite positive constant C̆1,

−�C̆1 +(4K0+2K1)(
√
�1 +

A

2

√
��2)

√
C̆1 +2K1�1 + d�2 +2K2

1�
4 ≤ 0, (31)

then the induction proof would be complete. Viewing this as a quadratic in
√
C̆1, we first observe

that the leading coefficient is negative, by (29). It follows that this quadratic admits a solution, in

particular, solving for the positive root and using
√
a+ b≤√a+

√
b, we have bn+1 ≤ C̆1a

(n)/(c(n))2

for all n≥ n′
0 with any choice of C̆1 satisfying

C̆1 ≥max

⎧
⎨
⎩

[
(4K0+2K1)(

√
�1 +

A
2

√
��2)

�
+

√
2K1�1 + d�2 +2K2

1�
4

�

]2
,
(c(n

′

0))2

a(n′

0
)
Bn′

0
+1

⎫
⎬
⎭ . (32)

Finally let us modify the constant C̆1 so that the result holds for all n≥ 1. This requires a simple

modification in (32). In particular, using the fact that bn ≤Bn it can be done by setting

C̆1 =max

⎧
⎨
⎩

[
(4K0+2K1)(

√
�1 +

A
2

√
��2)

�
+

√
2K1�1 + d�2 +2K2

1�
4

�

]2
, max
1≤n≤n′

0

{
(c(n))2

a(n)
Bn+1

}⎫⎬
⎭ .

(33)

Case (ii): Suppose (c(n))4/a(n) ≥ �2, for all n≥ 1. Using similar steps to those in the proof of case

(i), we will first show that bn+1 ≤ C̆2(c
(n))2 for all n≥ n′

0 for some finite positive constant C̆2. First,

for n= n′
0 suppose C̆2 is chosen large enough to assure C̆2 ≥Bn′

0
+1/(c

(n′

0))2 ≥ bn′

0
+1/(c

(n′

0))2. Now

suppose we have bk+1 ≤ C̆2(c
(k))2 for all n′

0 ≤ k ≤ n− 1. We need to prove bn+1 ≤ C̆2(c
(n))2. Using

inequality (27) and the induction hypothesis we have

bn+1 ≤
(
1− 2a(n)K0+2K2

1 (a
(n))2

)
C̆2(c

(n−1))2 +(4K0 +2K1)a
(n)c(n)

√
C̆2c

(n−1)
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+ 2K1a
(n)(c(n))2 +(a(n))2

(
d�2

(c(n))2
+2K2

1 (c
(n))2

)

≤ C̆2(c
(n))2(1+Aa(n))− 2K0C̆2a

(n)(c(n))2(1+Aa(n))+ 2K2
1 C̆2(a

(n))2(c(n))2(1+Aa(n))

+ (4K0+2K1)a
(n)(c(n))2

√
C̆2

(
1+

A

2
a(n)

)
+2K1a

(n)(c(n))2 +(a(n))2
(

d�2

(c(n))2
+2K2

1(c
(n))2

)
,

where for the second inequality we have used (S2) with the inequality
√
1+Aa(n) ≤ 1 +Aa(n)/2.

Rearranging terms we get

bn+1 ≤ C̆2(c
(n))2+ a(n)(c(n))2

{
C̆2[A− 2K0 +(2K2

1 − 2K0A)a
(n) +2K2

1A(a
(n))2]

+

√
C̆2(4K0+2K1)

(
1+

A

2
a(n)

)
+2K1 + d�2 a(n)

(c(n))4
+2K2

1a
(n)
}
.

Using a(n) ≤ �, (29) and the assumption that a(n)/(c(n))4≤ 1/�2, we get

bn+1 ≤ C̆2(c
(n))2+ a(n)(c(n))2

[
−C̆2� +

√
C̆2(4K0+2K1)

(
1+

A�

2

)
+2K1+

d�2

�2
+2K2

1�

]
. (34)

Similar to the first case, we need

−C̆2� +

√
C̆2(4K0+2K1)

(
1+

A�

2

)
+2K1 +

d�2

�2
+2K2

1� ≤ 0,

for a suitable choice of C̆2. Using the same argument as before, we have bn+1 ≤ C̆2(c
(n))2 for all

n≥ n′
0 with any C̆2 satisfying

C̆2 ≥max

⎧
⎨
⎩

⎡
⎣(4K0+2K1)

(
1+ A�

2

)

�
+

√
2K1 +

d�2

�2
+2K2

1�

�

⎤
⎦

2

,
1

(c(n
′

0
))2

Bn′

0
+1

⎫
⎬
⎭

. (35)

Setting

C̆2 =max

⎧
⎨
⎩

⎡
⎣(4K0+2K1)

(
1+ A�

2

)

�
+

√
2K1 +

d�2

�2
+2K2

1�

�

⎤
⎦

2

, max
1≤n≤n′

0

{
1

(c(n))2
Bn+1

}
⎫
⎬
⎭

. (36)

we get the result for all n≥ 1 and this completes the proof.
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3.3. Bounds on the SPSA Algorithm

The induction-based proof technique that was introduced in the proofs of the main theoretical

results can be used to establish upper bounds on the MSE of various other stochastic approxi-

mation algorithms; some of these extensions were indicated in Section 2. As further illustration,

in this section, we use the same proof technique to establish upper bounds on the MSE of the

SPSA algorithm introduced by Spall (1992); this is a representative example of a general class

of multidimensional KW-type algorithms with randomized directions used in the finite-difference

approximation of the gradient. These upper bounds are expressed directly in terms of the tuning

sequences {a(n)} and {c(n)}, as before. We establish convergence of the iterates to the true point

of optimum x∗ under more relaxed assumptions than the ones in Spall (1992) and to the best of

our knowledge, under the most general assumptions found in related literature. As a reminder, for

a d-dimensional stochastic approximation problem, the SPSA recursion is of the following form:

X
(n+1)
k =X

(n)
k + a(n)

(
f̃(X(n) +Δ(n)c(n))− f̃(X(n)−Δ(n)c(n))

Δ
(n)
k c(n)

)
, (37)

for k = 1, . . . , d. Here X
(n)
k denotes the ktℎ coordinate of the ntℎ iterate, f̃(x) denotes the noisy

observation of the true function value, f(x) = E[f̃(x)], and the sequences {a(n)} and {c(n)} are

one-dimensional deterministic sequences as before. The sequences {Δ(n)
k }, k= 1, . . . , d are i.i.d. for

each n, bounded and symmetrically distributed around zero. As in Spall (1992), we assume that

the observation noise is additive, i.e., f̃(x) = f(x) + " for all x ∈R
d, where " is independent of x

and

�2 := sup
x∈Rd

Var
(
f̃(x+ cΔ)− f̃(x− cΔ)∣Δ

)
(38)

which allows for common random numbers in the two function evaluations required to estimate

the gradient.

The assumptions on the perturbation sequence, Δ(n) := (Δ
(n)
1 , . . . ,Δ

(n)
d )T , are same as those in

Spall (1992). Defining Δ(n) = (1/Δ
(n)
1 , . . . ,1/Δ

(n)
d )T , we assume

E

(
Δ

(n)
i

)
= 0,

∣∣∣Δ(n)
i

∣∣∣≤ �1 for all i=1, . . . , d and E∥Δ(n)∥2 ≤ �22 (39)
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for all n≥ 1, where �1 and �2 are finite positive numbers.

For the underlying function, we relax the assumption Ef(X(n)± c(n)Δ(n))2≤ �1 of Spall (1992).

We also only assume that second derivatives exist and are bounded instead of the bounded third

derivative assumption of Spall (1992). So the assumptions on the function are the following:

(F1’) (x−x∗)Tf ′(x)≤−K0∥x−x∗∥2

(F2’) f(⋅) is twice differentiable with ∣∂2f(⋅)/∂xi∂xj ∣ ≤K1 for all i, j = 1, . . . , d

for some finite positive constants K1 >K0.

As in Theorem 1, we prove the following theorem under assumptions (S1)-(S4) on the tuning

sequences. So, we also relax the condition
∑

(a(n)/c(n))2 <∞ assumed by Spall (1992).

Theorem 3. Let {X(n)} be generated by the the recursion given in (37) using {a(n)} and {c(n)}

satisfying (S1)-(S4) with A< 2K0. Then under assumptions (F1’), (F2’), (38) and (39),

E(X(n+1)−x∗)2≤
{
C ′′

1 a
(n)/(c(n))2 if (c(n))4≤ �1a

(n)

C ′′
2 (c

(n))2 if (c(n))4≥ �2a
(n)

for all n≥ 1, where C ′′
1 and C ′′

2 are finite positive constants.

Extension of the scaling and shifting ideas to the multidimensional setting is treated in a separate

paper (Broadie et al. (2010)) which also contains numerical results on a set of realistic test problems

spanning various fields.

Proof of Theorem 3 Fix n and consider iterate X(n). First we define

∇̂f(X(n)) :=

(
f(X(n)+Δ(n)c(n))− f(X(n)−Δ(n)c(n))

c(n)

)
Δ(n)

Using Taylor expansion, for some diagonal matrices T± ∈Rd×d with all diagonal elements in (0,1)

and points X
(n)
± on the line segment between X(n) and X(n)± c(n)Δ(n) we have,

∇̂f(X(n)) = (Δ(n))Tf ′(X(n))Δ(n) +
c(n)

2

{
(Δ(n))T

[
f ′′
(
X(n)

+

)
− f ′′

(
X(n)

−

)]
Δ(n)

}
Δ(n)

≤ (Δ(n))Tf ′(X(n))Δ(n) +K1d
2�21c

(n)∣Δ(n)∣ (40)

where f ′(x) is the gradient vector and f ′′(x) is the Hessian matrix at point x. Here the second

inequality follows since, by assumption (F2”) and (39),

(Δ(n))T
[
f ′′
(
X

(n)
+

)
− f ′′

(
X

(n)
−

)]
Δ(n) ≤ 2K1d

2�21 .
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Using (40), we have

(X(n)−x∗)T ∇̂f(X(n)) ≤
d∑

i=1

(X
(n)
i −x∗

i )

∑d

j=1Δ
(n)
j f ′

j(X
(n))

Δ
(n)
i

+ K1d
2�21c

(n)∥X(n)−x∗∥∥Δ(n)∥. (41)

Taking expectations conditioned on X(n) in (41), we get

E

(
(X(n)−x∗)T ∇̂f(X(n))∣X(n)

)
≤ (X(n)−x∗)Tf ′(X(n))+K1d

2�21c
(n)∥X(n)−x∗∥E∥Δ(n)∥

≤ −K0∥X(n)−x∗∥2 +K1d
2�21�2c

(n)∥X(n)−x∗∥ (42)

where the first inequality holds since EΔ
(n)
i = 0 and the second follows using (F1’) and the fact

that (39) implies E∥Δ(n)∥ ≤ �2.

Using ∥a+ b∥2 ≤ 2∥a∥2 +2∥b∥2 with (40) we get,

∥∇̂f(X(n))∥2 ≤ 2∥(Δ(n))Tf ′(X(n))Δ(n)∥2 +2K2
1d

4�41(c
(n))2∥Δ(n)∥2

≤ 2d�21∥f ′(X(n))∥2∥Δ(n)∥2 +2K2
1d

4�41(c
(n))2∥Δ(n)∥2

≤ 2K2
1d�

2
1∥X(n)−x∗∥2∥Δ(n)∥2 +2K2

1d
4�41(c

(n))2∥Δ(n)∥2

where we use (39) for the second inequality and (F1’) for the last one. Now, taking expectations

conditioned on X(n) and using E∥Δ(n)∥2 ≤ �22 we get

E

(
∥∇̂f(X(n))∥2∣X(n)

)
≤ 2K2

1d�
2
1�

2
2∥X(n)−x∗∥2 +2K2

1d
4�41�

2
2(c

(n))2 (43)

Using the recursion (37), we have

Z(n+1) := ∥X(n+1)−x∗∥2

=

∥∥∥∥∥X
(n)−x∗ + a(n)

(
f(X(n) +Δ(n)c(n))+ "(n)1 − f(X(n)−Δ(n)c(n))− "(n)2

c(n)

)
Δ(n)

∥∥∥∥∥

= Z(n) +2a(n)(X(n)−x∗)T
(
∇̂f(X(n))+

"(n)

c(n)
Δ(n)

)

+ (a(n))2
∥∥∥∥∇̂f(X

(n))+
"(n)

c(n)
Δ(n)

∥∥∥∥
2

(44)

where "(n) = "(n)1 − "(n)2 .



Broadie, Cicek, and Zeevi: General Bounds and Finite Time Improvement for KW Stoch. Approx. Alg.
Article submitted to Operations Research; manuscript no. OPRE-2009-02-058.R4 19

Taking conditional expectations of (44) and using (38) with E"(n) = 0, we have

E[Z(n+1)∣X(n),Δ(n)] ≤ Z(n) +2a(n)(X(n)−x∗)T ∇̂f(X(n))

+ 2(a(n))2
∥∥∥∇̂f(X(n))

∥∥∥
2

+2
(a(n))2

(c(n))2
�2∥Δ(n)∥2. (45)

If we take expectations (with respect to Δ(n)) of both sides above, using (39) we get

E[Z(n+1)∣X(n)] ≤ Z(n) +2a(n)
E

[
(X(n)−x∗)T ∇̂f(X(n))∣X(n)

]

+ 2(a(n))2E
(
∥∇̂f(X(n))∥2∣X(n)

)
+2�22�

2 (a
(n))2

(c(n))2

≤ Z(n)− 2K0a
(n)Z(n) +2K1d

2�21�2a
(n)c(n)

√
Z(n)

+ 4K2
1d�

2
1�

2
2(a

(n))2Z(n) +4K2
1d

4�41�
2
2(a

(n))2(c(n))2 +2�22�
2 (a

(n))2

(c(n))2

where we have used (42) and (43) for the second inequality.

Finally, taking expectations again, using the inequality E(
√
Zn) ≤

√
E(Zn), and setting bn :=

E(Zn), we get the following recursion:

bn+1 ≤
(
1− 2K0a

(n) +4K2
1d�

2
1�

2
2(a

(n))2
)
bn +2K1d

2�21�2a
(n)c(n)

√
bn

+ 4K2
1d

4�41�
2
2(a

(n))2(c(n))2 +2�22�
2 (a

(n))2

(c(n))2
. (46)

We now note that, the recursion given in (46) is of the same form as inequality (14) in the proof

of Theorem 1, so the rest of the proof is step-by-step replication of the proof of Theorem 1.


