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Tropical forests store an estimated 500–1,000 Pg of carbon in 
biomass and soils1,2, making this biome the most important 
component of the terrestrial carbon cycle. Whether intact trop-

ical forests will be sinks or sources of carbon in the future remains a 

critical question1,3 that will fundamentally depend on how different 
forest species respond to climate change4. The high species diversity 
of tropical forests may either buffer stands from shifts in standing 
biomass or promote changes due to the characteristics of the species 
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that best tolerate novel climate conditions. Forest carbon volume 
depends exponentially on the annual rate of tree survival, and tree 
survival rates in turn depend on climate5 and a given species toler-
ance of climate variation. Most forests include short-lived species 
that die within decades to long-lived species that retain carbon for 
centuries. Species may be differentially vulnerable to novel climate 
variation or new regimes of extreme episodic events (for example, 
droughts and storms). Resulting changes in forest composition may 
cause large and rapid changes in the terrestrial carbon balance that 
could potentially persist for centuries. Climate-driven impacts on 
tree survival are potentially more important than impacts on for-
est productivity (that is, photosynthesis and allocation to growth), 
which has a relatively constrained and slower influence on forest 
carbon dynamics6–9.

For species to coexist in diverse forests, they must have roughly 
equivalent fitness over long time periods10,11, yet differences in 
achieving that fitness can influence compositional shifts under novel 
long-term ecological changes. Tree species have evolved resource 
allocation strategies that, over the course of their life-history, vari-
ously emphasize investment in metabolic maintenance or in tis-
sues that provide structural, defensive and reproductive functions. 
Diversity in resource allocation therefore scales up to variation in 
demographic rates (that is, survival, growth and reproduction). The 
survival rates that emerge from allocation to maintenance, defence 
and structure can then determine observed population distribu-
tions across space12, size and age structures13. Allocation to tissues 
that increase survival are typically negatively correlated (or exhibit 
trade-off) with allocation to tissues involved in other demographic 
rates14. For example, using resources to build defensive structures 
reduces the resources available for growth. Conversely, allocation 
to tissues for increased growth can lead to distinct vulnerability to 
agents of mortality, such as pathogens15, pests, storms, drought or 
extreme temperatures16. Trade-offs among life-history strategies 
should be reflected in variations in plant functional traits, which 
provide one way of classifying species into groups. Tolerance of 
various climate stressors may vary with allocation strategies, result-
ing in important implications for forest biodiversity and stocks. A 
greater understanding of how demographic rates vary with size 
should increase our ability to predict how diverse forests cycle car-
bon and provide insights into potential shifts in those cycles.

Here, we analyse variations in tree survival to provide a deeper 
understanding of basic ecological and evolutionary features of trop-
ical forests. Using an exemplary dataset of more than 2 million trees 
across the tropics, we developed statistical models of size-depen-
dent survival. Using a cluster analysis, we aggregated the results of 
these models into groups of similar survival strategies that we call 
‘survival modes’ and analyse their relation to functional traits and 
climate and their ecological significance. First, we investigated how 
survival modes contribute to carbon fluxes through differences in 
growth rates and biomass turnover. Then we examined whether 
the modes of survival that emerge from the demographic data are 
related to the commonly collected plant traits of wood density, leaf 
mass per area (LMA) and seed mass. We also tested whether the rel-
ative abundance of these survival modes relate to climate variables 
and tested the ability of survival mode relative abundance to predict 
observed biomass dynamics at each site through time.

Results
Survival models were fit for 1,781 species from 14 pan-tropical 
large-area forest dynamics plots that are all part of the ForestGEO 
network17 (ranging from 2 to 52 ha, each with 371 ha in total in 
which all stems ≥ 1 cm diameter at breast height are recorded; 
Supplementary Table 1). The parameters from these models were 
included in a principal component analysis (PCA) (Fig. 1 details the 
workflow; Supplementary Table  2 summarizes the survival curve 
parameters). The PCA revealed axes of evolved life-history variation  

(Supplementary Figs.  1,2). For example, PCA axis one defined a 
continuum characterized by relatively stable survival probability, 
either high or low survival, across the life-cycle at one extreme and 
at the other extreme by increases and decreases in survival prob-
ability with size at small and large sizes. That is, species with more 
extreme thinning due to competition for resources when relatively 
small, or mortality causes related to large size and exposure to agents 
of mortality in the other direction18. Axis two differentiated species 
based on maximum survival rate (that is, the upper asymptote of the 
survival curve; Fig. 2).

Species survival curve parameters were hierarchically clustered 
by loadings of the PCA analysis, which creates a dendrogram from 
a similarity matrix, to find groups of species that were similar in 
size-dependent survival rates. An optimizing analysis across the 
dendrogram resolved four survival modes (Fig. 2; Methods). To test 
the robustness of our survival modes, we bootstrapped the Jaccard 
similarity index for all clusters that were substantially above the 0.75 
threshold19, which indicates stable clustering for our size-dependent 
survival modes (Supplementary Table  2). We utilized these four 
survival modes in subsequent analyses of traits, climate and carbon 
dynamics in tropical forests.

Although annual survival probability across much of the life cycle 
was high for most species (> 0.95), there were species with much 
lower maximum survival rates (< 0.78; Supplementary Table  2). 
Furthermore, the degree of small stature mortality varied between 
modes, indicating differences in the strength of mortality mecha-
nisms in small sizes across the four modes. Finally, there were also 
clear differences in the maximum sizes; that is, the diameter beyond 
which species showed increased mortality, indicating important 
mode-dependent life expectancies (Fig. 2).

The four survival modes clustered along multiple principal com-
ponent axes. However, species within clusters tended to have similar 
life forms; that is, the size at which mortality occurred was similar. 
Understory species are characterized by small maximum diameters, 
with an across-site mean 99th percentile diameter of 9.8 ±  2.4 cm 
(mean ±  1 s.d.). Transient species were distinguished by their very 
low overall survival with an across-site mean maximum-survival 
rate of 78% per year and an across-site mean 99th percentile diam-
eter of 14.3 ±  9.4 cm. There were two groups of large stature tree 
species or species capable of reaching canopy sizes. Canopy spe-
cies were the group with low small-diameter survival rates, inter-
mediate maximum size and an across-site mean 99th percentile 
diameter of 27.8 ±  7.0 cm. Large Canopy species have relatively 
higher survival at smaller diameters and larger maximum diameter 
(68.4 ±  18.5 cm). Our analysis had an abundance threshold of 200 
individuals; species with lower abundance were not included and 
are therefore Unclassified. However, we cannot exclude the possi-
bility that some of them displayed other survival modes too rare to 
describe statistically.

Survival modes varied in abundance (Fig. 3) and diversity among 
forested plots (Fig. 3). The species included in the cluster analysis 
represented 76.7% (range, 46.9–97.0%) of the biomass on average 
across the plots (Supplementary Table 3; Supplementary Fig. 3). The 
Canopy mode was typically the most species-rich, followed by the 
Understory and Large Canopy modes (Supplementary Table 4).

We calculated carbon lost to mortality at each site to understand 
the influence of these survival modes on carbon residence times. Total 
carbon loss from tree mortality ranged from 0.14 Mg C ha−1 yr−1 at the 
dry tropical forest Palamanui plot in Hawaii to 5.6 Mg C ha−1 yr−1 at 
Lambir, Malaysia, with a mean of 2.28 Mg C ha−1 yr−1 for all survival 
modes, including Unclassified (Fig. 3). Surprisingly, the plots that 
are commonly struck by typhoons and hurricanes (Fushan, Luquillo 
and Palanan) had intermediate rates of carbon loss due to mortality 
even though the plots experienced storms during sampled intervals. 
This result demonstrates that species at these sites have potentially 
been selected to tolerate disturbances instead of recover from them. 
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The overall proportion of carbon lost to mortality varied greatly 
among these forests, although on average, Indo-Malaysian forests 
had the highest rates of absolute carbon loss (Fig. 3). Conversely, 
relative to total biomass, neo-tropical forests lost slightly more bio-
mass (Supplementary Table 3). Relative proportions of biomass lost 
to mortality ranged from 0.02 to 9.5% for Understory mode species, 
0 to 0.4% for Transient mode species, 1.3 to 85.2% for Canopy mode 
species and 1.6–61.8% for Large Canopy species.

Commonly measured plant functional traits had only limited 
ability to predict survival modes, which is due to the diversity 
among species within given survival modes in these traits. Across all 
sites, the Transient mode species had significantly less dense wood 
than the other survival modes (F =  9.65, P <  0.001 (analysis of vari-
ance (ANOVA)); Fig. 4a). When we limited the analysis to sites (7 of 
14) that had locally collected wood density values, the Large Canopy 
and the Transient groups both had significantly lower wood density 
than the Understory and Canopy survival modes (Supplementary 
Fig.  4). In parallel with wood density, the Transient and Large 
Canopy species had significantly lower LMA than the Understory 
and Canopy species (F =  7.28, P <  0.001 (ANOVA); Fig.  4b). Seed 
mass did not differ significantly among survival modes (F =  2.26 for 
log-transformed data, P =  0.086 (ANOVA); Fig. 4c). These analyses 
were constrained by the limited availability of functional trait data, 
whereby LMA was only available for 40.4% and seed mass for only 
8.1% of species.

We related mean annual temperature (MAT), mean annual 
precipitation (MAP) and cumulative water deficit (CWD) at 
each forest to the relative percentage biomass of survival modes 
(Supplementary Fig.  5) to understand whether there were cli-
mate dependencies in survival mode composition. Multiple lin-
ear Tobit regression indicated that Large Canopy biomass relative 
abundance had a negative relation to MAT, a positive relation to 
CWD and no relation to MAP (P =  0.000083, McFadden’s20 pseudo 
R2 =  0.24; note that this is not the same as ordinary least squares 
R2, and a model with a statistically good fit to the data will have 
McFadden’s pseudo R2 value between 0.2 and 0.4). The relative 
percentage biomass of Canopy and Large Canopy survival modes 
were strongly inversely related (Supplementary Fig. 3). Transient 
survival mode biomass was negligible and was not modelled. The 
Understory mode relative biomass was positively related to MAT 
(P =  0.031, McFadden’s pseudo R2 =  0.12), but lacked any signifi-
cant relation to CWD or MAP.

To clarify how survival and growth interact to affect the pro-
gression of individuals through their life cycle, we calculated mean 
growth rates by survival mode. Growth rates significantly differed 
among survival modes, whereby the Large Canopy survival mode 
had the largest mean annual diameter growth rate 2.18 mm yr−1. 

Conversely, the Understory survival mode was the slowest growing 
at 0.52 mm yr−1 (Fig. 5). A similar pattern was found when growth 
was expressed in terms of biomass accumulation (Supplementary 
Fig.  6). The Canopy mode has nearly half the growth rate of the 
Large Canopy mode, suggesting that carbon residence times of 
these two groups may be similar, but the Large Canopy mode would 
sequester more carbon in a similar time frame.

We tested the ability of survival mode composition to predict 
whole-forest biomass in simulations. We found a strong correla-
tion (marginal R2 =  0.97) between the observed biomass in each 
survival mode and the biomass predicted from an individual based 
model (IBM) run at each site, in which individuals were classified 
only by their survival mode (Fig. 6). Biomass was relatively small 
and changed little across census intervals for the Understory and 
Transient survival modes. The accuracy of predictions of biomass 
varied for the Large Canopy and Canopy modes. Predicted biomass 
was underestimated for the Large Canopy mode at Lambir and 
Laupahoehoe by 47.68 and 42.15 Mg ha−1, respectively. In contrast, 
expected biomass was overestimated by the IBM for the Canopy and 
Large Canopy modes at Barro Colorado Island (BCI) by 14.45 and 
26.62 Mg ha−1, respectively.

Discussion
Our results provide objective and quantitative descriptions of 
global size-dependent tropical tree survival that reflect some of the 
classical descriptors of tree species demographics21. We discovered 
groups of species that differ in how they survive as they grow and 
that the probability of survival at small sizes varied among the sur-
vival modes. This result was derived from our classification of size-
dependent survival curves and are likely to reflect the trade-offs 
inherent in competition for limited resources (for example, light) 
in the understory22 or to susceptibility to pests23 and pathogens24,25. 
We also found that survival modes varied in large-sized mortality, 
in which causes of mortality are likely to be driven by the real-
location of resources from resistance to or tolerance of structural 
damage26, water limitation16 and accumulation of pathogens27 and 
other factors18. Our contention that this difference in survival at 
large sizes is a life-history strategy and not simply a product of a 
lower average survival rate for earlier senescing modes. This con-
tention is supported by the fact that three of the four modes had 
very similar maximum survival rates, but differed remarkably in 
their size at senescence.

Past studies have indicated that tree survival under environmental 
stress can depend on tree size16,28. We discovered that climatic fac-
tors correlated well with the relative biomass of survival modes across 
forests, indicating that climatic factors may influence forest com-
position. Because the climate correlates with different proportions  
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Fig. 1 | Schematic of the workflow for this analysis. Processes that were used to go from raw plot data to testing the implications of emergent survival modes.
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of survival modes suggests that there are differences in carbon resi-
dence times and forest structure with climate. Higher relative bio-
mass in the Large Canopy survival mode was observed in forests 
with lower MAT and longer dry seasons and less Canopy species bio-
mass. Considering that larger individuals can be more susceptible to 
drought16, the CWD result seems counter-intuitive at first. However, 
drought and seasonally dry climate differ in their effects on large 
trees, with large trees in seasonally dry climates being adapted to dry 
seasons29. Additionally, the prevalence of the Large Canopy mode 
may be influenced by environmental factors not considered here, 
such as soils or biogeographical history. Differences in the domi-
nance of survival modes among tropical forests are likely to be driven 

by many mechanisms, and understanding the drivers is an important 
next step towards accurately forecasting the fate of forests18.

Widely collected plant traits explained some of the differences in 
size-dependent survival modes in our analysis. Wood density has 
been recognized as a significant predictor of tree survival30,31 and of 
growth survival trade-off in saplings32, but variation in size-depen-
dent survival was not explicitly considered in the studies. We found 
that a clear difference between wood density means and survival 
modes for the Transient mode, which is likely to describe aggressive 
light-dependent pioneering species. Lower LMA in the Transient 
and Large Canopy modes combined with higher mean growth rates 
suggests that the species in these survival modes probably have 
higher metabolic costs, potentially higher leaf nitrogen concentra-
tions and shorter life leaf-span33. Variation in seed mass may reflect 
a suite of strategies independent from allocation to size-dependent 
survival at the sizes we examined. Seed mass might correlate bet-
ter with individual growth rates or with different the reproduction 
life-history strategies of species34. Alternatively, seed mass may cor-
relate with survival in individuals < 1 cm diameter at breast height 
(DBH), which was not measured in our analysis. The variation in 
traits observed within survival modes suggests that survival is a key 
demographic axis to examine because trait variation is one condi-
tion for the coexistence of diverse species35. Overall, our results sug-
gest that a greater variety of traits and measurement of traits in each 
forest could advance our understanding of the links between tree 
performance and tree functional traits.

Our IBM model predictions provided a good fit to the observed 
forest biomass. Despite large amounts of demographic data being 
available globally, few studies have moved beyond descriptions of 
mortality averaged over species or coarse size classes. Models in 
which survival probability changes as a continuous function of size 
are necessary to accurately represent the variation in the way that 
individuals of different species move through the life cycle. Such 
models will therefore allow more biologically nuanced forward pro-
jection of populations and communities. Even when combined with 
a relatively simple growth model, the average parameters from our 
survival modes were able to capture the change in biomass at each 
site attributed to each survival mode.

The IBM projections demonstrated that our survival modes can 
provide benchmarks for biome models that simulate forest dynam-
ics at a global scale (for example, terrestrial biome models (TBMs) 
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or dynamic global vegetation models (DGVMs)), whereby vegeta-
tion is coupled with climate. Attempts at modelling carbon fluxes 
in DGVMs have led to very divergent results due to the potential 
response of forests, both in estimates of future atmospheric car-
bon36 and in terrestrial vegetation carbon stocks6. The evolutionary 
strategies of tree survival, integrated within the ecological models of 
environmental conditions, might provide a better pathway towards 
forecasting these diverse systems6,37. To do so, however, requires 
integration of field data, statistical models and size-structured 
TBMs that can accept demographic data as inputs. In a post hoc 
analysis, we compared the observed mortality rates from our plot 
data with mortality rates from one size-structured DGVM, func-
tionally assembled terrestrial ecosystem simulator (FATES), using 
simulation results of one tropical broadleaf evergreen plant func-
tional type and climate drivers from a one degree area of the Amazon  

(E. C. Massoud et al., manuscript in preparation). We found that 
FATES underestimated small-diameter tree survival but overes-
timated large-diameter tree survival compared with our results. 
Specifically, the annual mortality rate of trees larger than 70 cm 
DBH in FATES was 1.47%, while the observed mean annual mor-
tality rate from ForestGEO plots for the same size class was 2.85% 
(Supplementary Fig. 7), which could result in overestimation of car-
bon storage in the FATES model. This deviation from the FATES 
model is not a large difference; however, mortality rates compound 
annually, and this almost twofold underestimate of annual mortal-
ity reflects a significant mismatch in the pace of forest dynamics 
over decades. Although this is only a simple comparison with one 
model, it indicates a way in which demographic data can be aggre-
gated into life-history strategies, which in turn can provide bench-
marks to assess vegetation model performance. Incorporation of 
size-dependent survival constraints, for example, could improve 
how we assess, and perhaps how we model, mortality for the suite of 
DGVMs that are able to incorporate size-based survival38.

Despite the large range of species diversity and biomass turn-
over represented in our analysis, we found consistent patterns of  
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Fushan). c, Natural log-transformed seed mass and survival modes at 
Luquillo, Laupahoehoe, Palamanui and BCI where there were no significant 
differences between survival modes. Whiskers on boxes indicate the 
range of the data out to 1.5 times the length of the box. Letters represent 
significant differences among survival modes in traits at alpha =  0.05 by 
Tukey HSD test.
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Fig. 5 | Average annual individual growth rate by survival mode. Plot-
level average annual individual growth rate by survival mode boxplots 
with the width scaled to the square-root of the number of species that 
make up the survival mode for all forest plots. Whiskers on boxes indicate 
the range of the data out to 1.5 times the length of the box. Significant 
differences (n =  14, alpha =  0.5, Tukey HSD test) are denoted by letters 
above survival mode.
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Fig. 6 | Observed versus predicted biomass. Observed biomass by 
survival mode versus predicted biomass from an individual based model 
at each site (marginal R2 =  0.9735). The line between points traces 
census interval typically diverging from the broken line, which represents 
the 1:1 line, with time.
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size-dependent survival (Supplementary Fig. 8) that are not strongly 
tied to commonly collected plant traits. The relative abundance of 
different survival modes varied with temperature and water deficit, 
which has implications for community composition, dynamics and 
carbon storage. If the temperature–survival mode relation is mecha-
nistically driven, then forests would shift from dominance by Large 
Canopy mode species to Canopy mode species as temperature rise, 
resulting in less carbon sequestered. Future work based on our find-
ings should investigate how trade-offs in growth and survival affect 
the survival modes identified, and how forecasting tropical carbon 
stocks could be improved by explicitly considering large-tree sur-
vival mechanism to constrain terrestrial carbon dynamics.

Methods
We used a global dataset of tree demography to build models of survival probability 
as a function of size. We used data from 14 plots that follow the same methodology: 
all woody stems ≥ 1 cm DBH have been identified to species, mapped and 
measured every 5 years (following that of a previous study39 and summarized in 
Supplementary Table 1). All species with > 200 observations across the censuses 
were included in the following analyses, comprising a total sample of over 2 million 
individuals in 1,781 species. All analyses were conducted in R package40.

We estimated size-dependent survival by fitting a functional form to the data for 
every species in each census interval (see Fig.1 for a workflow diagram). We used a 
Bayesian framework (see Supplementary Table 5 for details of model fitting) and fit 
the model in R using Stan41, a platform for statistical modelling. The basic form of the 
survival function allows for variations in the classic U-shaped mortality curve13,42–44 
(ours is inverted to survival). Because the data are heavily weighted to small 
individuals and the mechanisms that cause mortality across size can vary significantly, 
we combined two logistical functions to describe tree survival across size: one function 
to describe survival at small sizes and one for larger sizes45 (see Supplementary Fig. 8 
for examples of the species-specific fits and Supplementary Fig. 9 for sites). The 
probability of survival is therefore given by the following equation:
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where S is survival probability across the census interval, K, r and p are the upper 
asymptote, the rate of change and the inflection point of the survival curve, 
respectively, x is size (DBH in mm), t is the time in years between censuses, and 
thresh is the size threshold at which the two functions meet. The threshold was 
set at the median DBH size (see Supplementary Fig. 8) to ensure that each species 
had an equal number of observations informing each of the two curves. Subscripts 
1 and 2 denote parameters for the curves describing survival in individuals below 
and above the size threshold, respectively.

The parameters in these functions hold distinct meanings across tree life-
history. K determines the maximum annual survival probability and usually 
remains constant over most of the life history of a tree. Mortality of small 
individuals, often due to thinning in the understory, is determined by r1 and p1. 
Their complementary parameters for the large function r2 and p2 define survival at 
the largest sizes and may indicate the maximum size observed for a species.

The five parameters from the joint survival functions (K, r1, p1, r2 and p2) for 
each species in each census interval were included in a PCA to remove correlations 
among parameters and to find the orthogonal axes of variation in survival 
strategies throughout the life cycle, with all parameters standardized to unit scale. 
To ensure that species from each site carried equivalent information in the PCA, 
species were weighted equal to the inverse of the number of census intervals over 
which they were modelled.

In order to group species into survival strategies, we derived survival modes based 
on species position in the PCA space that describe the greatest variation in species 
survival through the life cycle. We selected clusters based on the following three 
criteria: the statistical metric that identified significant separation of groups of species 
in PCA space; a qualitative meaning to these clusters that could be mapped to survival 
strategies known to exist among forest tree species; and survival modes that could 
inform forest dynamics based on their contribution to different forest types.

Hierarchical cluster analysis was performed on the first five dimensions of the 
PCA using the hierarchical clustering on principal components (HCPC) function 
from the R package FactoMineR46. The HCPC function builds a dendrogram of 
species survival similarity from a similarity matrix. It then calculates the within- 
and between-group sum of squares (also termed inertia) for a range of potential 
cluster numbers and selects the number of clusters for which the change in between 
group variance is minimized47. Four clusters were selected using this algorithm, and 
we tested the robustness of the recommended clusters with the Jaccard similarity 

index produced via the bootstrapping function clusterboot in the fpc package19. 
Along with being statistically robust, these clusters describe observed life-history 
strategies. That is, the mean survival curve for each mode matches the observed size-
dependent survival patterns (Fig. 2 and Supplementary Fig. 8). We used the mean 
values of parameter sets within each cluster (from the survival function fits) and their 
covariances to randomly draw 1,000 simulated survival curves. At each millimetre 
increment, from one to the maximum size, we then selected the mean, 50% and 90% 
quantile values. We also plotted the survival function corresponding to the most 
representative species of each mode (Supplementary Fig. 9); that is, the species from 
each cluster closest to the centroid.

In calculations of biomass or carbon loss due to mortality for each survival 
mode, biomass was calculated for the main stem of each tree using general tropical 
allometries for trees without height measurements48, as tree height measurements 
are not part of the ForestGEO monitoring protocol. These allometries estimate 
height based on the diameter of the stem and an environmental index to estimate 
biomass. For each survival mode, annual carbon loss (half of biomass loss) due to 
mortality was based on the tree diameter at the beginning of the census interval 
and made to be annual by dividing by the mean census interval time (typically 
~5 years). We, also report mean mortality rate by survival mode at each site for 
comparability to other studies (Supplementary Fig. 10). Absolute annual diameter 
growth rates were calculated for each survival mode by subtracting diameters at the 
beginning of the census interval from the ending diameter and dividing by the time 
between censuses for each tree.

We tested the correlation between survival modes and the following three 
common functional traits: wood density, LMA and seed mass. Trait values for 
wood density (n =  1,781, some species were assigned genus or family level values 
when species-specific values were not available) were obtained from compiled 
databases49–51, and half of the plots had locally collected wood density values. 
LMA (n =  719) and seed mass (n =  144) data were collected locally32,52 (Sack et al., 
unpublished observations, and Sack and Yoshinaga, unpublished observations). 
Differences between trait means among survival modes were compared using 
ANOVA with Tukey HSD tests for multiple comparisons.

To test associations between survival modes and climate variables, we 
calculated the MAT17 (MAT), the MAP17 and mean CWD for each plot (1901–
2013)17. As a metric of aridity, annual CWD (mm yr−1) was calculated as the sum 
of monthly deficit values, which is the difference between potential and actual 
evapotranspiration48,53. Because the response variable, the relative abundance of the 
survival mode on a plot, was a percentage bounded at 0 and 100, multiple Tobit 
regression models were run with backwards selection using the vglm function 
in the VGAM package54 in R on MAT, MAP and CWD. Residual diagnostics 
indicated that the Palamanui plot data was an outlier and was subsequently 
removed from the analysis of climate relations; none of the remaining plots data 
had undue leverage on the regression. The best fit model by Akaike Information 
Criterion (AIC) corrected for the small sample size of plots (AICc) contained MAT 
and CWD as significant predictors (Supplemental Table 6).

We compared observed changes in biomass at each plot with changes predicted 
from projecting each survival mode forward using an IBM parameterized with mean 
and 95% parameters for each survival mode. For example, stems were assigned a 
survival mode and each year grew and survived with probabilities corresponding to 
the 95th percentile growth rate and the size-dependent survival curve of that mode. 
Each survival mode population in the IBM was initialized with the size distribution 
in the first census at the respective site and then projected forward in time for the 
length of the census interval at each site. At the end of the projection, we calculated 
the biomass in each survival mode based on the mean wood density of each mode. We 
used the 95th percentile of growth rates by survival mode in the model to best capture 
canopy tree growth rates that are the greatest contributors to biomass. We also present 
the results using mean growth rate for comparison (Supplementary Fig. 11). Biomass 
was calculated as above using the mean wood density of each survival mode rather 
than species-specific values.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability. The data supporting the findings of this study are available from 
https://forestgeo.si.edu/climate-sensitive-size-dependent-survival-tropical-trees.
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