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Review
The use of DNA barcodes, which are short gene
sequences taken from a standardized portion of the
genome and used to identify species, is entering a
new phase of application as more and more investiga-
tions employ these genetic markers to address ques-
tions relating to the ecology and evolution of natural
systems. The suite of DNA barcode markers now applied
to specific taxonomic groups of organisms are proving
invaluable for understanding species boundaries, com-
munity ecology, functional trait evolution, trophic inter-
actions, and the conservation of biodiversity. The
application of next-generation sequencing (NGS) tech-
nology will greatly expand the versatility of DNA bar-
codes across the Tree of Life, habitats, and geographies
as new methodologies are explored and developed.

DNA barcodes: what, why, and how
In reference to the universal coded labels found on com-
mercial products, the term ‘DNA barcode’ is now commonly
applied by biologists to a standardized short sequence of
DNA that can be recovered and characterized as a unique
identification marker for all species on the planet [1] (see
Glossary). For many users of DNA barcodes, identification
of an unknown sample by correctly matching a specific
genetic marker to a reference sequence library is the
primary goal (Box 1). However, DNA barcodes can also
be applied as tools for addressing fundamental questions in
ecology, evolution, and conservation biology, such as: how
are species assembled in communities? What multispecies
interactions occur in previously poorly known environ-
ments (e.g., soils)? And, where are the most evolutionarily
rich habitats to be targeted for protection? These uses of
DNA barcodes, which have only recently been considered
and offer some of the most exciting prospects for using this
new taxonomic tool, are the primary focus of this paper.

A DNA barcode, in its simplest definition, is one or few
relatively short gene sequences taken from a standardized
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portion of the genome and used to identify species. The use
of DNA sequences for biological identifications is not new
[2], but the concept of a ‘DNA barcode’ for quick and reliable
species-level identifications across all forms of life, includ-
ing animals, plants, fungi, and microorganisms, was first
proposed just over a decade ago [3]. A short DNA sequence
of 600 base pairs (bp) in the mitochondrial gene encoding
cytochrome c oxidase subunit 1 (CO1; [3]) has been accept-
ed as a practical, standardized, species-level DNA barcode
for many groups of animals (Figure 1). Given that CO1 does
not work as a DNA barcode in plants [4] and fungi [5], a
concerted search was required for more effective gene
regions for these major groups of organism (Figure 1).
The DNA barcode loci now most commonly used for plants
[a combination of plastid rbcL, matK, and trnH-psbA with
nuclear internal transcribed spacer (ITS)] and fungi (nu-
clear ITS) may never be as efficient and successful in
identification as CO1 in animals. However, even for some
groups of animals (e.g., some invertebrates [6], amphi-
bians, and reptiles [7]), CO1 works poorly and other gene
regions are being used as DNA barcodes (Figure 1).

The introduction of any new method of analysis in
science often brings some controversy and concern, which
has been the case with DNA barcoding, especially in the
field of taxonomy (e.g., [8]). In some taxa, DNA barcode
markers were not as effective as first proposed (e.g., [9]).
Plants, which have inherently lower rates of nucleotide
substitution in mtDNA compared with animals [10], were
especially problematic during the early stages of develop-
ing DNA barcodes. In addition, the concern that DNA
barcodes will give poor results or faulty identifications
because of the complications of ancestral polymorphisms,
hybridization, and/or introgression certainly applies to
both plants and animals [10,11]. These complications
can be particularly acute in some groups of plant in which
hybridization is widespread and pseudogenes in the nucle-
ar genome are common [12]. More concerted work is need-
ed on taxa with extensive hybridization to verify whether
DNA barcodes can successfully provide accurate identifi-
cations across all species.

However, it may also be true that poor species resolution
with DNA markers is due in part to our imperfect and
variable definition of species across the major lineages of
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Glossary

Alpha and beta species diversity: alpha diversity is calculated as the total

species diversity in any single site or unit. Beta diversity quantifies site-to-site

variability in community composition.

Community assembly: ecological communities are created through the arrival,

reproduction, and local extinction of individual species. Community assembly

processes drive colonization and extinction dynamics, and range from entirely

stochastic to entirely deterministic (e.g., competition or environmental

filtering).

Community phylogeny: an evolutionary framework for co-occurring species in

a community that is based on historical relations among the member taxa.

Cryptic species: a complex of species in which members are reproductively

isolated from each other yet morphologically indistinguishable.

DNA barcode: in the strict sense, a DNA barcode is one or more short gene

sequences taken from a standardized portion of the genome and used to

identify species. In a broad sense, a DNA barcode is any DNA sequence used

for identification at any taxonomic level.

DNA barcode library: a set of DNA barcode sequences compiled from species

of known taxonomic origin used to compare and identify DNA barcode

sequences recovered from unknown samples.

DNA metabarcoding: the use of NGS to identify multiple species in a sample

using DNA barcodes.

Ecological forensics: a specialized version of DNA metabarcoding in which

trophic or network interactions among species are resolved by genotyping

complex mixtures of individuals. These mixtures may take the form of an

individual organism in which parasites, mutualists, diet items, and symbionts

are recovered and sequenced, or complex mixtures of propagules, such as

pollen grains and seeds.

Functional trait: a measurable property, phenotype, or characteristics of an

organism that may influence its fitness (i.e., survival, growth, reproduction, or

dispersal).

Habitat filtering: the process where only species that carry a specific trait are

able to successfully colonize a habitat.

Mini-barcode: a portion of a standard DNA barcode that is targeted for use in

ancient or degraded samples in which the complete DNA barcode sequence

may be unable to be recovered.

Morphospecies: species recognized by taxonomists based on their morphol-

ogy, but not yet classified or named as novel species or varieties.

Next-generation sequencing (NGS; or massive parallel sequencing): sequen-

cing methods that differ from Sanger sequencing in the ability to sequence

thousands to millions of small DNA fragments simultaneously. Several related

but distinct technologies are referred to as NGS, including Illumina, Roche454,

and Ion Torrent, among others whose unifying similarity is that they are not

based on the Sanger Di-Deoxy method.

Niche differentiation: the process by which different resource use or different

niches allows the co-occurrence of phenotypically different species.

PCR: a method to target and copy a segment of DNA from among many

sequences in a genome or sample. The result is billions of copies of the target

sequence, which may then be analyzed to infer the exact nucleotide sequence.

Phylogenetic diversity: the sum of genetic distances connecting all taxa in a

dated or molecular-clock scaled phylogeny. It focuses on the overall

evolutionary divergence among taxa rather than species number (Simpsons

Diversity) alone in a community or habitat.

Tree of Life: a phylogenetic reconstruction of living organisms that demon-

strates the shared evolutionary origins and divergences of the included

lineages.

Trophic interactions: a network of interactions among autotrophs, predators,

and their prey.

Box 1. Building the DNA barcode library using Sanger

sequencing

The workflow for generating DNA barcodes for individual species

entails two basic steps: (i) building the DNA barcode library of

known species; and (ii) matching the DNA barcode sequence of an

unknown sample against the barcode library for identification

(Figure I).

The DNA barcode library is a collection of DNA sequences

associated with verified taxonomic identification and ideally with

voucher specimens. A comprehensive DNA barcode library, which

will be the most useful for multiple applications, is a recognized

limiting factor because of the overwhelming number of species of

plants, animals, and fungi already described by taxonomists. In this

respect, museum specimens are a critical source of tissue for

generating DNA barcodes with known vouchers. Nearest neighbor

algorithms are usually used to assign an unknown sample to a

known species by finding the closest database sequence to the

sample sequence [76]. Basic Local Alignment Search Tool (BLAST)

is a common matching tool, provided through NCBI, that searches

for correspondence between a query sequence and a sequence

library [77].
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Figure I. Basic workflow for generating DNA barcodes using Sanger

sequencing.
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life. Even those who profess little confidence in DNA
barcoding accept that our species concepts are not univer-
sal and often inconsistent among taxonomists [8]. In some
taxa, the numbers of species recognized by different tax-
onomists may vary by up to 50% [8]. Although we have no
comparative evidence across phyla that indicates that all
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Figure 1. DNA barcodes are becoming a standard tool to discover, describe, and understand biodiversity, specifically to identify species in understudied, microscopic, and

highly diverse lineages. DNA barcodes in conjunction with morphological, biochemical, and ecological information are revealing an outstanding diversity of species

previously unrecognized through the analysis of morphological variation alone. During the first 8 months of 2014, the Web of Science recorded 310 publications in which

DNA barcoding was used in discovering and describing new species, including algae [78], ferns [79], fungi [80], nematodes [81,82], arthropods [83,84], mollusks [85], fish

[25], birds [86], and mammals [87]. Early on, it was expected that a single genetic marker would serve as a universal DNA barcode to identify species across the eukaryotic

Tree of Life. In practice, different regions of DNA are necessary to provide adequate species identification across lineages. The plastid and nuclear loci indicated here are the

most broadly used DNA barcodes for major groups of organisms, including algae [88], land plants [4,89], fungi [5], invertebrates [6], amphibians [7], fish [90], birds [70], and

mammals [87,91]. Abbreviations: COI, cytochrome oxidase I; ITS, internal transcribed spacer.
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species should be genetically parallel, the variation in
success of DNA barcodes across lineages suggests that
rates of evolution and the processes of speciation are not
uniform.

The primary application of DNA barcodes will continue
to be the identification of unknown samples. With the
adoption of NGS technologies in many DNA barcode inves-
tigations (e.g., metagenomic applications [13]), uses are
already being expanded to answer both applied and basic
biological questions. Even if DNA barcodes are not uni-
formly successful for unambiguous identifications across
the entire Tree of Life, ecologists, evolutionary biologists,
and conservationists are already adopting DNA barcodes
as a tool in their respective fields (e.g., [14,15]).

Current evolutionary, ecological, and conservation
research with DNA barcodes
Taxonomy, systematics, and species discovery

A primary goal of evolutionary biologists and ecologists is
to understand the origin of species and the factors caus-
ing the disparity in species richness in different biomes
across the globe. In many cases, the full diversity of
species in a given region is still unknown, especially in
the most biodiverse habitats [16]. DNA barcodes have
been particularly useful in the discovery of cryptic and
previously unrecognized species of animals [17]. For
insects, it has been demonstrated that new species can
be revealed through a combination of ecological field
observations and DNA barcode markers [18,19]. For ex-
ample, a single species of common skipper butterfly found
throughout Central America defined by morphological
features of the adults in fact comprises numerous species
that are clearly delineated by DNA barcode sequences in
congruence with diets and features of the larvae [20]
(Box 2). Similarly, cryptic species of hispine beetles
and larval stages that were identified through a DNA
barcode survey of plant–herbivore interactions in Costa
Rica linked the adults with the larvae found on the host
plants [21] (Box 2). An extensive DNA barcode study on
Microgastrinae wasps demonstrated significant insights
into their taxonomy and species discovery [22]. Such
cryptic diversity has been uncovered using DNA barcodes
in other animal taxa, including crustaceans, diatoms, and
fish [23–25]. The use of DNA barcodes for the discovery of
new species is emerging as a powerful tool to clarify
species boundaries and to quantify species diversity
[26]. In many cases, these genetic markers serve as the
starting point for the discovery of new taxa (Figure 1).
3



Box 2. Discovering new species, cryptic life stages, and ecological interactions in natural populations

DNA barcodes are a valuable genetic tool to reveal cryptic species

previously unrecognized through the analysis of standard morpholo-

gical variation. When combined with ecological data, the DNA

barcodes provide additional evidence for determining species

boundaries (Figure I). The Astraptes fulgerator species complex is a

classic example of the use of DNA barcodes as a tool to discover

cryptic biodiversity. In the Guanacaste Conservation Area (Costa

Rica), DNA barcodes, combined with host plant records and larval

morphology, demonstrated that one species of skipper (A. fulgerator),

was in fact a complex of ten different species [20].

Another challenge for taxonomists is to associate immature life

stages with their adult forms (Figure II). It is becoming routine to use

DNA barcodes to easily associate different life-history stages with

ontogenetically different morphologies, such as eggs, larvae, and

adults, in insects [92]. In this example from a tropical premontane forest

in Costa Rica, a comprehensive DNA barcode library containing

sequences of all species from a community of Cephaloleia and

Chelobasis beetles was assembled from tissue of adults. This reference

library was then used to quickly identify the species of immature stages.

Discovery of cryp�c species

“Astraptes fulgerator”complex
(Lepidoptera: Hesperiidae)
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Figure I. DNA barcodes provide evidence to define species boundaries.

Reproduced from [20].
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Figure II. DNA barcodes link life-history stages of insect species. Reproduced

from [21].
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Likewise, the potential exists for new plant species to be
discovered and described as a result of genetic inventories
based on both plastid and nuclear DNA barcode markers.
For example, in the complex tropical plant family Laur-
aceae, the community phylogeny generated for the tree
species on Barro Colorado Island with DNA barcode se-
quence data supported the recognition of a previously
undescribed, but suspected, new species of Nectandra
[27]. Furthermore, an ongoing DNA barcode survey of
the trees in a forest dynamics plot located in the heart
of the Amazon near Manaus, Brazil, suggested that many
of the ‘morphospecies’ recognized by local taxonomists that
do not currently have scientific names may have congruent
support from the DNA barcode sequence data (Kress et al.,
unpublished, 2014). This hyperdiverse research plot in the
Amazon with over 1400 species of trees will be a test case
for the utility of DNA barcodes in identifying potentially
new species in a poorly known flora.

Community ecology and phylogeny

Over a decade ago, Webb [28] introduced a new set of
methods and metrics to evaluate processes affecting com-
munity assembly in a phylogenetic context. This work
demonstrated how phylogenetic relations among species
4

within a community can be analyzed to infer processes
such as competition, environmental filtering, and trait
evolution. Subsequent studies have been fruitful in mining
phylogenetically structured community data to investigate
alpha and beta species diversity [29,30], the linkage be-
tween phylogenetic diversity and dispersion [31,32], and
the role of functional traits and evolutionary history in
structuring communities [33,34] (Figures 2 and 3). One
constraint on the use of phylogenetic data in community
ecology has been the availability of phylogenies that accu-
rately reflected the evolutionary relations among commu-
nity members, particularly at lower taxonomic scales.
Given that standard phylogenetic analyses are taxon driv-
en, inclusion of all members of a specific community is rare.
Thus, the availability of highly resolved phylogenetic trees
that contain all members of a community has been criti-
cally lacking. The ability of DNA barcode data to help
reconstruct evolutionary relations within targeted commu-
nities is helping to resolve this problem [27].

The first application of DNA barcodes in plant communi-
ty phylogenetics was the reconstruction of the relationships
of 281 tree species found in the Barro Colorado Island Forest
Dynamics Plot in Panama [27]. That study demonstrated
how the multilocus plant DNA barcode could robustly
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Figure 2. Sequence data from DNA barcodes can be used to reconstruct phylogenetic relations among the species of a community, especially in plants. The phylogeny

resulting from the analyses of DNA barcode sequence data from 281 species of trees in the forest dynamics plot on Barro Colorado Island, Panama (A) was highly congruent

with the broadly accepted phylogeny of flowering plants (B) and provided exceptional levels of species resolution at the tips of the phylogenetic branches. The phylogeny

was estimated through alignment of all rbcL and matK sequences using back translation; at the same time, the highly variable trnH-psbA locus was aligned within families

and then each alignment block was concatenated to the globally aligned rbcL and matK. These alignments produced a highly sparse supermatrix, with over 95% missing

data. However, the globally aligned rbcL and matK allowed for estimation of deeper nodes, while the trnH-psbA marker was able to better resolve the tips of the tree. The

phylogeny was constructed using maximum likelihood with the program GARLI. This highly resolved phylogeny became the keystone for several studies of community

assembly in this tropical forest [93,94]. Reproduced from [27].
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reconstruct evolutionary relations among phylogenetically
disparate community members (Figure 2). The Panama
study also showed that a DNA barcode-based community
phylogeny has greatly improved topological resolution rela-
tive to super-tree methods that had been adopted previous-
ly. The improvement of topological resolution through
incorporation of DNA barcode data for all or most species
in the community improves the power of evolutionary-based
hypothesis testing in an ecological framework. Since that
first DNA barcode-based community phylogeny, similar
investigations have focused on other forests in the tropics
[27,35].

A major challenge of reconstructing a phylogenetic tree
using DNA barcode sequence data is to capture the proper
evolutionary relations among both highly divergent as
well as closely related species. Given the DNA barcode
requirement for relative short genetic markers (less than
1500 bp in total for plants), resolving phylogenetic rela-
tions among the basal branches and the tips of the
branches is difficult. In this sense, one can regard these
community phylogenies as a small part of a Tree of Life
project, which seeks to assemble and reconstruct species
relations. It has been shown that, despite limited nucleo-
tide content, taxon relations can be well estimated when
species density is high [36]. As more DNA barcode data are
assembled, an increased number of taxa will be woven into
increasingly larger phylogenies. This approach results in
more well-supported phylogenetic reconstructions of the
constituent species from which individual community
phylogenies may be pruned out for targeted analysis
[35]. Furthermore, the use of a constraint tree derived
from existing Tree of Life studies will enforce topological
relations at deeper phylogenetic levels, where the limited
signal from the small amount of nucleotide data provided
by the DNA barcode markers is most problematic
(Figure 3) [27]. The DNA barcode data are then relied
upon to primarily resolve generic- and species-level rela-
tions towards the tips of the evolutionary branches.

Species assembly and functional trait evolution

The rapid increase in phylogenetic information based on
DNA barcode sequence data [27] coupled with advances in
functional trait-based community ecology [37,38] have
been used to address questions of community assembly
and diversity [39,40]. This merging of evolutionary and
ecological perspectives has led to new insights into the role
of ecological, biogeographical, and evolutionary processes
in the distribution of biodiversity [41] (Figure 3).

Despite these advances, several conceptual and meth-
odological challenges remain. One of the most salient
issues is the difficulty of dynamically linking biophysical
processes and species interactions that unfold over vastly
different spatial and temporal scales (R. Muscarella et al.,
unpublished, 2014). Most empirical studies that have
5
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Figure 3. Well-resolved phylogenies derived from DNA barcodes coupled with functional trait data of the same species provide new insights into the processes of

community assembly. In the Luquillo Forest Dynamics Plot in Puerto Rico, phylogenetic analyses based on DNA barcode sequence data [95] used a constraint tree to

reconstruct the evolutionary history of the trees in this tropical forest community. A constraint tree derived from APGIII was implemented to take advantage of the prior

knowledge and data used to estimate familial relations [96]; the phylogenetic constraint comprised the APG III phylogeny applied to all taxa in the study, but with the

constraint truncated to a polytomy at the ordinal level. Therefore, the DNA barcode data only needed to resolve relations within each taxonomic order. The phylogenetic

data combined with information on functional traits mapped onto the community phylogeny (such as seed size and wood density) helped to elucidate the importance of

several community assembly processes (e.g., niche partitioning and competitive hierarchies) in this forest (e.g., [32,34]). several powerful programs are available within the

R programming language that facilitate the joint analysis of phylogenetic and trait data (e.g., Picante; [97]). Reproduced from [34].
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simultaneously investigated phylogenetic and functional
community structure as a means to provide insights into
community assembly processes have been focused at either
the local (e.g., [29]) or global scales (e.g., [42]) rather than at
intermediate (i.e., regional) scales, where local and global
factors interact. Global-scale studies have examined the
role of historical biogeography on community assembly
without much attention to ecological processes. By con-
trast, local-scale studies have generally focused on disen-
tangling the influence of habitat filtering and niche
differentiation on community composition (e.g., [29]) or
demographic rates (e.g., [34]). In most of these local stud-
ies, the use of phylogenies has been ‘corrective’, that is,
largely limited to quantifying how the assumption of phy-
logenetic dependence between species [43] might influence
results.

A greater emphasis on intermediate scales (i.e., beta
diversity) that reflect how historical and local processes
unfold over environmental gradients in space is likely to
yield deeper insights into the role of evolutionary processes
on community assembly. Recent efforts are moving in this
direction (e.g., [44]). Several approaches have been intro-
duced to characterize the relations between particular
traits, evolutionary lineages, and variation in environmen-
tal conditions across sites (e.g., [44–46]). For instance,
Pavoine [47] developed a novel method to identify the
association of trait states and phylogenetic trees with
6

spatially variable environmental factors. At coarse spatial
scales, the association of phylogenies with space, but not
with environmental factors indicates that historical pro-
cesses (e.g., colonization) predominate over environmental
factors in explaining community composition. Advancing
our understanding of the processes that structure beta
diversity will require data on species performance and
community composition collected across environmental
gradients (e.g., soil or precipitation) and at multiple spatial
and temporal scales. The relative ease of generating uni-
versal DNA barcode data for plants in a community will
facilitate these broad spatial comparisons and is currently
being carried out across forest dynamics plots around the
globe [35].

Diet analyses, trophic interactions, and ecological

forensics

DNA barcodes represent a unique opportunity to under-
stand trophic interactions among organisms, especially in
habitats that are difficult to access, such as the forest
canopy or underground zones. On Barro Colorado Island,
a tropical rain forest in Panama, DNA barcodes were used
to identify the species of roots collected from soil cores
[48]. By combining DNA barcode-based root identifications
with spatial records of individual trees from a mapped
vegetation plot, the relation between belowground and
aboveground diversity was assessed in a diverse plant
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community [48]. A similar study among plant species in a
Canadian grassland also demonstrated success in recon-
structing root interactions among species [49].

DNA barcodes can also assist in determining the diets of
invertebrates, frugivorous birds, and elusive large mam-
mals in the wild [50,51]. The first step in this DNA barcode
approach to diet analyses is the collection of DNA tissue
samples of the prey or host taxa under investigation (Box
1). For invertebrate herbivores, once the library is com-
plete, DNA of host species is isolated directly from the gut
contents of the animals [52]. By contrast, analyses of
vertebrate diets are not invasive and are based on DNA
extracted from scats [53,54]. The barcode markers utilized
for amplification will depend on the diet of the organism
[55]. The standard DNA barcode loci used to investigate
herbivore diets differ markedly in their ability to identify
plants at different taxonomic levels because of varying
base-pair substitution rates across taxa. The plant DNA
barcode markers rbcL and trn-L-intron, although easy to
amplify from gut contents and scats, are usually only
useful to identify plant tissues to the level of taxonomic
family or genus (Figure 1) [52]. The DNA barcode loci ITS2,
matK, and the noncoding intergenic spacer trnH-psbA are
able to identify diet items to genus and species [52]. Unfor-
tunately, the amplification of these DNA regions can be
challenging or even impossible for some plant groups
[52]. For animal prey, the most broadly used DNA barcode
marker to identify diets is mitochondrial COI (Figure 1)
and when employed with host-specific blocking primers,
can enable identification of extensive prey diversity [56].

DNA sequences recovered from gut contents and scats
are usually short (�100–400 bp) and of low quality as a
consequence of DNA degradation during digestion
[57,58]. The implementation of extraction techniques orig-
inally developed for ancient and antique DNA may
improve the quality of the resultant DNA sequences
[52]. However, DNA degradation during digestion is still
a major limiting factor in diet analyses. When the DNA
recovered is degraded, a mini-barcode version of the full
DNA barcode marker [52] or a DNA barcode with more
forensic applications [59] is required, both of which can not
only improve amplification success, but also reduce rates of
species-level identification.

The DNA sequencing approach to be used depends on
the diet breadth of the consumer. For species that feed on
one or only a few species during each feeding bout, it is
possible to use traditional Sanger sequencing techniques
(Box 1). For polyphagous species in which all diet items are
more difficult to identify, it is now possible to accurately
determine all consumed species using NGS methodology
[60] (Box 3).

The most efficient method to identify the taxa consumed
by a particular animal or group of animals is to compare
DNA sequences extracted from gut contents and scats
directly to a reference DNA barcode library of the food
items (Box 4). The quality of identifications will depend on
the completeness and the accuracy of the sequences includ-
ed in the reference library. Researchers should be cautious
when using public DNA sequence repositories, such as
GenBank, because of their incompleteness. When DNA
sequences for potential food items are missing in the
database, the contents of guts and scats can be misidenti-
fied. The error rate may also increase because of faulty
taxonomic identifications and lack of verifiable taxonomic
voucher specimens [57]. However, the scope of these taxo-
nomic errors in open-source databases has not been quan-
tified.

A solution proposed by recent studies is to generate a
priori a comprehensive and well-curated DNA barcode
library of potential diet items [21,50,52]. By generating
complete DNA reference libraries for food plants, diet
identifications can be accurate, even to the species level,
and the error rate will be reduced or even eliminated [52]
(Box 4). As NGS technologies become more accessible and
cost-effective, more researchers will rely on these techni-
ques to investigate and understand the complexity of
trophic interactions in nature.

Conservation biology: quantifying species richness and

evolutionary diversity within and among communities

The level of biological diversity present in an environment
can be quantified by either enumerating numbers of spe-
cies (e.g., Simpson’s diversity) or estimated evolutionary
divergences among species in which genetic distances have
been calculated [28]. Although most measures of alpha and
beta diversity across plant communities are based on
numbers of species, DNA sequence data, if available, will
provide an evolutionary dimension to diversity estimates
that incorporate genetic distance among species (i.e., phy-
logenetic branch lengths). Evolutionary diversity, also
called phylogenetic diversity [61,62], is correlated with,
but not equivalent to, species richness. For example, geo-
graphic areas that harbor relatively few species may have
high phylogenetic diversity if the species present are
broadly dispersed across the Tree of Life. It has also been
shown that a discontinuity between species richness and
evolutionary diversity occurs when there are concentra-
tions of closely related species in an environment [63].

DNA barcodes can provide a universal marker across
species in a community or a region by which genetic
distance, hence phylogenetic diversity, can be quantified
within and across ecological communities at varying geo-
graphic scales [64]. When compared with species richness
in the same communities, these genetic measures can also
be used to evaluate species boundaries, can serve as clues
to assist in documenting new species, and can identify
targeted habitats for conservation [61,65]. In geographic
regions known for their especially unique lineages of plants
and animals, such as northeast Queensland in Australia
and South Africa, phylogenetic diversity defined with DNA
barcode sequence data may be the most important mea-
sure for comparing diversity and establishing protected
areas across the landscape (A. Shapcott et al., unpublished,
2014). As the DNA barcode library becomes populated with
species across the globe, comparative measures of phylo-
genetic diversity will become standard metrics for conser-
vation assessment.

In addition to the assessment of biodiversity hotspots
for conservation, DNA barcodes are now also being used for
the reliable identification and detection of illegally traded
and often endangered species [66]. Similarly, genetic iden-
tifications using DNA barcodes for wild-collected medicinal
7
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plants [67], market adulterants in certified natural and
commercial products [68], and genetically modified crops
[69] are becoming more common. These applied uses of
DNA barcodes for conservation and commercial purposes
will undoubtedly increase in the future, especially as se-
quencing technology becomes simpler and less expensive.

Concluding remarks and future contributions of DNA
barcodes
Here, we have focused mainly on the basic scientific appli-
cations of DNA barcodes to increase our understanding of
species relations and boundaries, community ecological
processes and networks, and the assessment of biodiversi-
ty for effective conservation. In addition, the forensic use of
DNA barcodes for identification of endangered species and
commercially useful plants and animals is being expanded
by local, state, and national governments. DNA barcodes
are proving useful as evidence in criminal cases and inves-
tigations of natural and manmade disasters. For example,
a library of CO1 markers for birds is now routinely used to
identify avian species involved in airplane strikes
[70]. These applications are only in their infancy, but
may eventually be a major source of data for the growing
DNA barcode library.

The most significant advance in DNA barcoding in the
near future will be the application of new technologies for
generating and analyzing DNA barcode sequences. Several
studies [71,72] and reviews [72,73] have addressed the
marriage of DNA barcoding and NGS, especially with
regards to environmental sampling. In general, NGS plat-
forms are not used for collecting and constructing DNA
barcode reference libraries for a specific set of taxa. Rather,
NGS will enable the capture of all representative
sequences present in a complex mixture of species and
Box 3. DNA metabarcoding and environmental samples

Complex environmental samples containing multiple organisms

now can be identified using metabarcoding (Figure I). These

techniques are based on NGS technologies. DNA sequences from

complex mixtures of organisms representing different species are

obtained through NGS that localizes and simultaneously recovers

sequence data from all individuals in a sample. A major challenge in

DNA metabarcoding analyses is to translate the resulting millions of

sequences into a list of taxonomic units. Several bioinformatics

tools are now available to identify taxa from these large data sets.

One option is to identify taxa from these samples by grouping DNA

sequences into molecular operational taxonomy units (MOTUs) and

then comparing consensus sequences from each MOTU to a

reference library.

For DNA metabarcoding, many of the methods rely on PCR coupled

with NGS to recover those sequences that were successfully

amplified from the mixture. This reliance on PCR points to one of

the two main challenges associated with DNA meta-barcoding when

applied to complex mixtures of sequences. PCR bias in amplification

may result in skewed recovery of sequences from the environmental

mixture [98]. In this case, the problem is that the large amount of data

generated might not include sequences that are representative of all

species in the pool of organisms in the original mixture [99]. The

second challenge is sequencing mistakes that are due to the high

error rates in both PCR and NGS platforms. These errors can in turn

affect assignment of sequences to the correct species in a reference

database. However, solutions to both of these problems are likely in

the near future through both advancements in bioinformatics and

improved molecular techniques.

Species identification
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Figure I. Workflow for using DNA metabarcodes and NGS for identifying

environmental samples.
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then the mapping of those sequences to a reference DNA
barcode database [72]. These complex mixtures can be
environmental samples of water or soil used for biodiver-
sity assessment [74], or the mixtures can be targeted
samples, such as animal scats or pollen loads on pollina-
tors, for examining diet choice or pollinator foraging be-
havior (Box 3) [73,75]. This application of DNA barcoding
to identify component species of an environmental mixture
is termed ‘DNA metabarcoding’ [75]. As is true in other
fields, the application of NGS to DNA barcoding will lead to
tremendous growth in available sequence data, which
themselves will require new tools for analysis as well as
new systems for information storage.

Over the past 10 years, DNA barcoding has become an
invaluable addition to our suite of tools to better under-
stand nature and the environment. As the DNA barcode
library expands across the Tree of Life, habitats, and



Box 4. Understanding ecological interactions in complex networks of species

Novel molecular techniques based on DNA barcodes can reconstruct

interactions in complex networks of species in communities, includ-

ing antagonistic and mutualistic plant-animal interactions. At La Selva

Biological Station (Costa Rica), interactions between plants in the

order Zingiberales and associated herbivores (chrysomelid rolled-leaf

beetles) were determined by combining field records and DNA

barcode analyses (Figure I). Here, each black rectangle represents a

plant or insect herbivore species. Lines represent single and multiple

plant–herbivore associations. These molecular techniques have the

potential to become a standard methodology for a detailed under-

standing of plant–herbivore interactions.

At the Garrapilos Mediterranean lowland forest in Spain, seed

dispersal by birds was determined using a novel DNA barcode

technique (Figure II). After assembling a comprehensive DNA barcode

library (using COI), mini-barcodes were developed to amplify degraded

DNA for this particular bird assemblage. The bird species responsible

for dispersing seeds were then identified by amplifying bird DNA

obtained from the defecated propagules. The identification of interact-

ing species represents a unique opportunity to understand the process

of fruit selection by frugivores and the contribution of each frugivorous

species to seed dispersal to different microsites [50]. These techniques

have the potential to connect frugivory with seed dispersal in ways

previously unattainable through traditional field techniques.
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Figure I. DNA barcodes enable matching of host plants to their herbivores.

Reproduced from [52].
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Figure II. DNA barcodes enable matching of seeds and fruits to their bird

dispersers. Reproduced from [50].
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geographies, new and more expansive applications will be
explored and developed. We are only at the beginning of
applying DNA barcodes to the fields of species discovery,
ecology, evolution, and the conservation of biodiversity.
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