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Theories developed to explain the processes that govern the
assembly and composition of natural plant communities can be
divided into two broad categories. Niche-based theories propose
that coevolutionary changes among species lead to character
divergence (displacement), which allows for coexistence by parti-
tioning resources among species. In contrast, ecological-drift
theories propose that species diversity results from a balance of
migration, speciation, and extinction, with little microevolutionary
change. We use a game-theory model to reconcile drift and niche
perspectives by developing a theory of species ‘‘marriage.’’ Ini-
tially, ecological drift may determine which species encounter each
other in a competitive arena. Once species come into contact,
historical niche development as a result of prior coevolutionary
molding of competitive ability determines which species may
coexist. The model shows that only species that display the
well-known tradeoff between seed size and competitive ability as
a result of past competitive histories comply with the requisite for
mutual evolutionary stability. Mutual evolutionary stability of
competitive ability tends to make reproductive outputs more
similar between species, increasing the chances of ecological equi-
librium, i.e., the coexistence of species competing for a single
resource. Moreover, mutual evolutionary stability guarantees that
such an ecological equilibrium will be stable. The species-marriage
model predicts that two or more plant species will coexist indef-
initely (i.e., ‘‘marry’’) when their difference in seed size, their
densities, and the resource availability obey a specific quantitative
relation. For example, when resource availability is high, married
species should be characterized by a greater asymmetry in seed
size than when resource availability is low. Thus, in the species-
marriage model, competition can shape the detailed properties of
communities without violating the postulates of ecological-drift
theory.

Natural communities often contain a staggering diversity of
plant species, but the processes that govern the assembly

and composition of these communities are poorly understood.
Plant resource requirements, namely water, nutrients, and light,
are similar for all species (1, 2). Traditional niche-assembly
(equilibrium) theories assert that divergence in resource require-
ments or temporal and spatial separation in resource acquisition
is necessary to prevent the competitive exclusion of inferior
competitors (3–7). In contrast, dispersal-assembly (nonequilib-
rium) perspectives propose that species richness and abundance
are determined by a dynamic balance among speciation, extinc-
tion, and dispersal, together generating an ‘‘ecological drift’’
(i.e., demographic stochasticity; refs. 8–13). In niche-assembly
theories, microevolutionary changes within species lead to char-
acter divergence (displacement), which maintains species coex-
istence; in dispersal-assembly theories, on the other hand, there
is no true equilibrium, but the distribution of species can remain
relatively constant, i.e., a steady state emerges despite continual
turnover of species through extinction and speciation.

In a recent book, Hubbell (13) developed a neutral model
of community assembly that highlights the schism between
dispersal- and niche-assembly theories. Hubbell’s model assumes
that all individuals of all species are ecological equivalents, i.e.,
they have identical probabilities of birth, death, migration, and

speciation, a patently incorrect assumption. Surprisingly, the
model produces patterns of species richness and relative abun-
dance indistinguishable from those observed in natural commu-
nities. Hubbell argues that the model succeeds in explaining
observed patterns because in saturated communities that follow
zero-sum dynamics, (i.e., increases in one species always imply a
matching decrease in the abundance of the remaining species),
different tradeoff combinations of life-history traits confer co-
existing species equivalent per capita relative fitnesses (14).

We propose a game-theory model of community assembly, the
species-marriage model, that predicts that microevolutionary
changes can stabilize species coexistence without coevolutionary
niche partitioning among the coexisting species (in contrast to
predictions of niche-assembly theories). Moreover, the end
result of such microevolutionary changes will be a near-
equalization of the reproductive rates of competing species, as
assumed (but not explained) by ecological-drift theories. Thus,
our theory not only can account for cases of stable species
coexistence and the long-term patterns of species distributions,
but it can also quantitatively predict both the nature of the
life-history tradeoffs underlying species coexistence and the
magnitudes of species differences in these life-history traits. As
such, it provides a rich quantitative theory of character displace-
ment (15).

Our model assumes that traits that confer competitive ability
are subject to evolutionary change. Certainly, plant species
display great genetic variation in fitness under competition
(15–25). Some empirical evidence has also demonstrated that
plants can specialize and evolve adaptations to particular com-
petitive environments (26–32). Phenotypic expression of such
adaptations hinges on resource availability (32) and on the
degree of overlap in competitors’ resource requirements (30).

Model
Our model considers both intraspecific and heterospecific com-
petition between plants. Two species may come into contact
through a drift process (e.g., breakdown of geographical barriers
accompanied by colonization, speciation event accompanied by
polyploidy, etc.). Once the two species are in contact, an
individual plant must choose the optimal amount of energy m 5
m* to invest in its ability to compete with neighboring plants,
which may be either conspecifics or heterospecifics of a second
species. (Alternatively, m might refer to the amount of some
limiting resource instead of energy.)

Each plant is assumed to be in an arena of competition with
a total of n1 plants of species 1 and with n2 plants of species 2.
The amount of energy (or limiting resource) gained by each plant
in the face of competition is assumed to vary directly with the
ratio of its energetic investment m in competitiveness to the
appropriately weighted sum of the competitive investments of all
of the plants in the same competition arena. Superior compet-
itors may possess one or more traits such as high photosynthetic
rates, early or rapid germination time, plastic interpetiolar
length, high root-to-shoot allocation, and deep root system (33).
In addition, we assume that species 1 produces smaller seeds,
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each of energy content e, than does species 2, which produces
seeds each having energy content e 1 x, with x . 0. We further
assume that a seed’s energy content additively supplements its
energy in competitive ability, as larger seeds enable faster growth
of small seedlings and thus should confer a greater ability to
compete for resources (34, 35). Thus, if we assume that a rare
mutant plant of species 1 invests an amount m1 in competitive-
ness, in a population in which most plants of its species invest m91
in competitiveness and plants of species 2 invest an amount m92
in competitiveness, then the total (gross) amount of energy or
limiting resource R1 obtained by the mutant plant of species 1 is
equal to

R1 5
~m1 1 ae1!v

~m1 1 ae1! 1 ~m91 1 ae1!~n1 2 1! 1 n2@m92 1 a~e1 1 x!#
,

[1]

where v is the total amount of energy (or limiting resource)
available to the plants in the competition arena, and a is a
constant that converts seed energy into competitive investment.
The corresponding amount of resource R2 obtained for a rare
mutant of species 2 is

R2 5
@m2 1 a~e1 1 x!#v

@m2 1 a~e1 1 x!# 1 @m92 1 a~e1 1 x!#~n2 2 1!
1 n1~m91 1 ae1!

.

[2]

These components of a plant’s fitness are frequency-
dependent, and the associated evolutionary game is a ‘‘game
against the field’’ (36). In this case, the ‘‘field’’ consists of
members of both its own and the other species. That is, a plant’s
fitness depends not only on its own competitive decision but also
on those of both its conspecific and heterospecific neighbors.
Thus, the evolutionary games played by each species are inevi-
tably coupled.

We assume that the plant’s fitness is directly related to the net
amount of energy (or limiting resource) that it obtains in the face
of intra- and heterospecific competition. A species 1 plant’s net
amount of energy is equal to the amount of energy it acquires
through competition minus the amount it invests in competi-
tiveness. Thus, the mean fitness, w1(m1; m91, m92) 5 w1 of a rare
species 1 mutant investing m1 in a population in which conspe-
cifics invest m91 in competitiveness and heterospecifics invest m92
in competitiveness is equal to R1 2 m1 and the corresponding
fitness w2(m2; m91, m92) 5 w2 for species 2 is equal to R2 2 m2.

The evolutionary stable investments m*1 and m*2 are found by
simultaneously solving the two equations

F w1

m1
G

m15m915m*1, m925m*2

5 0

Fw2

m2
G

m25m925m*2, m915m*1

5 0.
[3]

These equations mathematically express the requirement that
the evolutionary stable investments must maximize the fitness of
a rare mutant in mixed populations of both species of plants
exhibiting those same investments (36). Solving Eqs. 3 yields

m*1 5
v~n1 1 n2 2 1!

~n1 1 n2!
2 2 ae1

m*2 5
v~n1 1 n2 2 1!

~n1 1 n2!
2 2 a~e1 1 x!.

[4]

That the solutions in (Eqs. 4) refer to stable investments is
verified by the conditions

F2w1

m1
2G

m15m915m*1, m925m*2

, 0,

F2w2

m2
2G

m25m925m*2, m915m*1

, 0
[5]

at m1 5 m*1 and m2 5 m*2. The equilibrium competitive invest-
ments, m*1 and m*2, may reflect a number of traits that confer
superior competitive ability (33).

Mutual evolutionary stability of the competitive investments
requires that m*1 . m*2 because e1 , (e1 1 x). The solutions in
Eqs. 4 immediately imply that seed size and competitive ability
(e.g., rate of growth in competition for light) will be negatively
correlated. A tradeoff between seed size and relative growth rate
(RGR) has been reported across a broad range of species (37,
35). As detailed below, the latter tradeoff increases the possi-
bility that two species will be able to coexist ecologically by
bringing the fitness of the two competitors closer together. This
conclusion generalizes to the N-species case, as the competitive
investment of the ith species is equal to 2aei 1 v[((nj 2 1)]y((nj)2,
where the sums are over all species. It is important to note that
competing species need not have originally evolved their com-
petitive abilities in response to each other, but perhaps to other
species (Fig. 1). These other species may have been encountered
sequentially or simultaneously in combination, or a mix of both,
as in ‘‘diffuse competition’’ (38, 39). When they then encounter
each other in a competitive arena, selection will maintain their
relative competitive abilities (because each is doing its best given
the response of the other) and thus generate the potential for
ecological stability.

The evolutionarily stable investments described by Eqs. 4 do
not necessarily imply that the two-species mixed population is
ecologically stable, i.e., that the relative numbers of each species
will remain the same over ecological time scales. That is,
mutually evolutionarily stable investments are necessary but not
sufficient for an enduring, unchanging association between the
two species (they are necessary because if the two species are not
matched according to Eqs. 4, their competitive characteristics
will change because of subsequent coevolution, provided one
does not competitively exclude the other). When competitively
matched species encounter each other in a competitive arena
through an ecological drift process, there are two possible
outcomes: (i) some species will be inevitably lost because,
although the two species are competitively matched, the popu-
lation of one will grow at the expense of the other; or (ii) some
species will have the potential for ecological coexistence (Fig. 1),
such coexistence requiring that an additional condition be
obeyed (see below). Notably, we will show that competitive
matching itself generates two mechanisms that facilitate ecolog-
ical stability. In other words, ecological drift will determine
which species encounter each other in a competitive arena.
Microevolutionary changes (niche development) resulting from
the species’ evolutionary prior competitive histories will influ-
ence whether species can coexist in an ecological sense.

Given that competitively matched species will not induce
evolutionary changes in each other, what are the conditions for
ecological coexistence? Species may coexist in ecological time
only if small perturbations on their relative densities result in a
differential spread of the species whose density has been re-
duced. To develop this ecological stability criterion, we must
determine both the number of seeds produced by individual
plants of each species and the probability that their seeds will
produce successful seedlings. The ‘‘competitive-matching’’ con-
ditions given by Eqs. 4 will be seen to automatically generate an
ecological stabilizing force.
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The number of seeds produced by an individual plant of
species 1 is equal to its net acquired energy, w1(m*1; m*1, m*2),
divided by the energy content per seed, e1. Plugging the solutions
from Eqs. 4 into the latter expression and dividing by e1 reveals
that the number of seeds produced by an individual of species 1
is a 1 vye1(n1 1 n2)2. Similarly, the number of seeds produced
by an individual of species 2 is a 1 vy(e1 1 x)(n1 1 n2)2. Note
that species 1 produces more seeds because of its smaller seed
size. However, mutual evolutionary stability entails that the two
species will be have more similar seed output than if they had not
been competitively matched. For example, if each species had
exhibited the evolutionarily stable competitive investments only
for intraspecific competition, the solutions in Eqs. 4 would have
predicted that the number of seeds produced by an individual of
species 1 would be a 1 vye1(n1)2 and the number of seeds
produced by an individual of species 2 would be a 1 vy(e1 1
x)(n2)2, which are likely to be more unequal because the number
of seeds produced by both species more closely approaches a
single value, a, as the squared total number of competitors in the
denominator of the second term increases. The convergence of
the seed outputs of both species to the same value under the
mutual evolutionary stability of competitive investments makes
ecological equilibrium more likely (Fig. 2). Moreover, the
smaller seed size of species 1 means that an individual of species
1 will increase its seed output more than will an individual of
species 2 if there is an increase in the amount of resource v. The

latter effect is made possible by the negative relationship be-
tween seed size and the evolutionarily stable level of competitive
investment, and provides another ecological stabilizing force
(see Appendix). [This argument also applies in the general
N-species case, in which the number of seeds of the ith species
equals a 1 vyej((nj)2.]

In accordance with empirical data (34), we assume that plants
from larger seeds prevent nearby plants from smaller seeds from
becoming established as viable plants, because of seed-stage
competition. In particular, we assume that the probability of seed
survival for a seed of species 1 is equal to 1 2 bxn2, relative to
a value of 1 for a seed of species 2, where b is a small constant.
This assumption is equivalent to the idea that a species 1 seed has
no chance itself of becoming established if it lands in the vicinity
of a larger species 2 seed that becomes successfully established.
The area of the restricted ‘‘vicinity’’ is incorporated into the
product bx, which increases as the seed-size difference x in-
creases. Thus, the relative probability of seed survival of a
species 1 seed will be inversely related to the density of species
2 and the seed-size difference.

To develop a model of ecological stability, we need to know
the population growth rates for each species, given that there are
two life stages: seed and adult. In such a two-stage model,
suppose that seeds survive with probability p and each adult
produces S seeds. The projection matrix P appropriate for
deriving the population growth rate for each species is

P 5 S 0 S
p 0D [6]

The dominant eigenvalue of this matrix, i.e., the population
growth rate, is =pS (40). For species 1, p 5 u(1 2 bxn2), where

Fig. 2. Mutual evolutionary stability of competitive ability and ecological
equilibrium in married species. Mutual evolutionary stability makes stable
ecological equilibrium more likely by (i) causing the population growth rates
of the two species to become more similar and (ii) causing the equilibrium
(where the growth rates are equal) to be stable.

Fig. 1. The species-marriage model. In classical coevolution (Upper) two
spatially contiguous or overlapping species coevolve until they reach a mutu-
ally evolutionarily stable state. The species’ competitive characteristics are
encoded in the shapes of the distinct icons representing each species. In species
matching with drift (Lower), species come together through random drift
processes and have already acquired their distinctive competitive character-
istics (shapes) through prior coevolutionary interactions (for example, the top
species may have acquired its characteristics through classical coevolution as
shown in Upper). When species come together, regardless of their histories,
they coexist and remain unchanged indefinitely (i.e., ‘‘marry’’) only if (i) their
competitive investments happen to be mutually evolutionarily stable and (ii)
they are ecologically stable. x, the exclusion of a competitively mismatched
species. In either the Upper or the Lower scenario, species marriage results
only if both evolutionary and ecological stability are achieved.
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u is the probability of seed survival in the absence of seed
competition, and S 5 a 1 vye1(n1 1 n2)2. Thus, the finite rate
of increase for species 1 is

z1 5 ÎFa 1
v

e1~n1 1 n2!
2Gu~1 2 bxn2! [7]

and that for species 2 is

z2 5 ÎFa 1
v

~e1 1 x!~n1 1 n2!
2Gu. [8]

Interestingly, when there is no seed-stage competition, i.e., b 5 0,
species 1, which has the smaller seeds, always spreads at the
expense of species 2 (z1 . z2). However, when there is seed-stage
competition, an ecological equilibrium can be attained.

Ecological equilibrium results when z1 2 z2 > 0. Using Eq. 7
and Eq. 8, we see that this occurs when the difference in seed size
is equal to the critical value x*:

x* 5
v

bn2@ae1~n1 1 n2!
2 1 v#

2 e1. [9]

It might be thought that the equilibrium described by Eq. 9 is
unstable, because a reduction in the density of species 2 would
seem to increase the relative population growth rate of species
1. Remarkably, however, when the two species are at the
equilibrium described by Eq. 9, this equilibrium will be always be
stable (see Appendix). In other words, the ecological equilibrium
is restored because the reduction in the density of species 1
relative to that of species 2 increases the number of established
propagules produced by an individual of species 1 relative to that
produced by an individual of species 2. This result occurs because
reduction of the relative density of species 1 increases the
available resource, and an increased resource augments the seed
production of species 1 plants more than that of species 2 plants
(see above). A similar argument applies for the general case of
N competing species (see above general results), even though all
species are competing for a single resource. Thus, evolutionary-
competition games can promote ecological stability regardless of
the number of competing species.

Thus, coexistence of two plant species can persist indefinitely
when the difference in seed size, the species densities, and the
resource availability obey the relation given by Eq. 9. When this
relation is not obeyed, the species will be in a state of ecological
f lux. The important conclusion is that mutual evolutionary
stability of the competitive investments of a group of competing
species can create permissive conditions under which all species
can coexist, despite the fact that they are competing for a single
resource. The presence of two interlocking phases of competi-
tion, one between seedlings and one between mature plants,
appears pivotal in yielding stable coexistence under these
conditions.

The stable equilibrium given by Eq. 9 can be used to predict
the features of evolutionarily and ecologically stable communi-
ties (henceforth referred to as doubly stable communities). For
example, x* increases as the resource availability v increasesy
(x*yv . 0). Thus, when resource availability is high, a doubly
stable community should be characterized by a greater asym-
metry in seed size than when resource availability is low (Fig. 3).
In addition, x* decreases as the seed-stage competition intensity
b increases (x*yb , 0). Thus, a doubly stable community
should be characterized by a lesser asymmetry in seed size when
seed-stage competition is mild. Variation in seed mass within
natural plant communities covers five to six orders of magnitude
(41). Yet, the factors that drive this striking variation are poorly
understood. The contribution of resource availability to asym-
metry in seed size can be tested by using existing data. Data on

seed-size variation from five temperate floras compiled by
Leishman et al. (41) would provide an excellent test of the theory
on a broad geographical scale. Moreover, model predictions
could be tested by using the long-term response of herbaceous
communities to experimental manipulations in resource avail-
ability (37).

Previous theoretical work has shown that tradeoffs between
dispersal and competitive ability (37, 42–44) or between survival
and fecundity (45, 46) can allow the coexistence of several
species competing for the same resource. Empirical evidence for
a tradeoff between seed size and relative growth rate, a measure
of competitive ability for light exists for a broad range of species
(35). Our model confirms these findings and identifies selection
for competitive ability as one of the potential evolutionary
mechanism allowing coexistence. In addition, our model links
abiotic processes (e.g., resource availability) to the evolutionary
mechanism that promotes coexistence. Eq. 9 reveals that re-
source availability is crucial in determining the strength of the
tradeoff and thus the degree of potential character displacement

Fig. 3. Seed-size difference versus species densities in doubly (evolutionarily
and ecologically) stable communities (see Eq. 9), both when resources are plen-
tiful (Upper) and when resources are scarce (Lower). a 5 1, b 5 0.1, and e1 5 1.
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(limiting similarity) in a stable community (Fig. 3). Undoubtedly,
other factors such as environmental perturbations or spatial
variation in resource availability will play a role in determining
life-history traits of coexisting species. For instance, frequent,
severe disturbance may tend to favor species with high colonizing
ability and thus, numerous small seeds (35, 37). Nevertheless,
disturbance typically influences resource availability and thus
alters the potential range of seed asymmetry in the community
at the relevant temporal scale. Similarly, spatial variation in
resource availability within a community would tend to favor a
particular combination of species at the relevant spatial scale.
Thus, such variability enters our model and affects the outcomes
through the parameters describing resource availability and
seed-size differences.

Our model can be thought of as a theory of ‘‘species marriage’’
that has the potential to reconcile ecological drift and niche
based theories. Initially, ecological drift (sensu Hubbell) deter-
mines which species encounter each other in a competitive
arena. Once the species start competing for the same resource,
historical-niche development as a result of past microevolution
of competitive ability determines if species are ‘‘matched’’ in
such a way as to prevent induction of subsequent coevolutionary
changes, such matching also facilitating ecological stability by
making the reproductive outputs of the species more similar. It
appears that only species that display the appropriate tradeoff
between competitive ability and dispersal comply with the
requirements for evolutionary stability. However, these fitness
tradeoffs do not guarantee that species will be in ecological
equilibrium. Equilibrium will occur only when coexisting species
exhibit identical rates of population growth. Thus, fitness
tradeoffs per se do not guarantee equivalent per capita relative
fitnesses, but make stable ecological equilibria more likely by
reducing the difference in reproductive rates and providing a
mechanism to stabilize the equilibrium (Fig. 2).

Our species-marriage model is reminiscent of the ‘‘taxon
cycle’’ idea introduced by Wilson (39) and the ‘‘coevolution-
invasion turnover’’ hypothesis proposed by Roughgarden (38).
The idea of a coevolutionary period working in conjunction with
drift (i.e., extinction) is already present in these models. Our
model adds to existing theory by predicting the conditions under
which ‘‘marriage’’ (i.e., evolutionary and ecological coexistence)
will occur in natural plant communities.

Appendix: Stability of the Ecological Equilibrium
Attained by Species Exhibiting Evolutionarily
Stable Competitive Investments
To determine the ecological equilibrium, we must examine how
the difference between the growth rate of species 1 and that of
species 2 changes as the number of species 1 plants is decreased
(and number of species 2 plants correspondingly increased) by a
small number y. Because the time scale of such an ecological
perturbation should be much shorter than an evolutionary time
scale, we assume that the species 1 and 2 plants continue to

exhibit the evolutionarily stable competitive investments given
by Eqs. 4 during both the perturbation and the ecological
response to it.

If the number of species 1 plants per competition arena is
reduced by y (and species 2 plants increased by y), the resource
levels will be affected because individuals of the two species of
plants use different amounts of resource. At an ecological
equilibrium, a species 1 plant consumes a total amount w1(m*1;
m*1, m*2) 1 m*1 of energy, whereas a species 2 plant consumes a
total amount w2(m*2; m*2, m*1) 1 m*2. From the solutions in Eqs.
4, it follows that a species 1 plant consumes exactly an amount
ax more energy than does a species 2 plant. Thus, removing y
species 1 plants and adding y species 2 plants increases the total
amount of resource in the competition arena from v to v 1 yax.

Now we can calculate the number of established propagules
(P) produced by species 1 plants after y species 1 plants are
removed as w1(m1; m91, m92), with (i) n1 2 y substituted for n1;
(ii) n2 1 y substituted for n2; (iii) v 1 yax substituted for v; and
(iv) m*1 substituted for m1 and m91, and m*2 substituted for m92. The
population growth rate for species 1 then, after simplification
becomes

z1 5 ÎHv 1 a~n1 1 n2!@e1~n1 1 n2! 1 xy#

~n1 1 n2!
2 JuS1 2 bxn2

e1
D .

[10]

Similarly, population growth rate for species 2 becomes

z2 5 ÎHv 1 a~n1 1 n2!@~e1 1 x!~n1 1 n2! 1 xy#

~n1 1 n2!
2 Juy~e1 1 x!.

[11]

At the ecological equilibrium (see Eq. 9), the population
growth rate of species 1 increases relative to the population
growth rate of species 2 as the density of species 1 decreases if
(z1

2 2 z2
2)yy . 0 (note: it is mathematically more convenient to

take the derivative of the difference in the squares of the growth
rates rather than of the raw difference in the growth rates, and
this transformation does not affect the conclusions). Indeed,

~z1
2 2 z2

2!

y

5
a2~n1 1 n2!$v 2 be1n2@ae1~n1 1 n2!

2 1 v#%2

bn2v@ae1~n1 1 n2!
2 1 v#

. 0

at x 5 x*. [12]

Therefore, the ecological equilibrium is stable.
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