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Rapid advances in computing in the past 20 years

have lead to an explosion in the development and

adoption of new statistical modeling tools (Gelman and

Hill 2006, Clark 2007, Bolker 2008, Cressie et al. 2009).

These innovations have occurred in parallel with a

tremendous increase in the availability of ecological

data. The latter has been fueled both by new tools that

have facilitated data collection and management efforts

(e.g., remote sensing, database management software,

and so on) and by increased ease of data sharing

through computers and the World Wide Web. The

impending implementation of the National Ecological

Observatory Network (NEON) will further boost data

availability. These rapid advances in the ability of

ecologists to collect data have not been matched by

application of modern statistical tools. Given the critical

questions ecology is facing (e.g., climate change, species

extinctions, spread of invasives, irreversible losses of

ecosystem services) and the benefits that can be gained

from connecting existing data to models in a sophisti-

cated inferential framework (Clark et al. 2001, Pielke

and Connant 2003), it is important to understand why

this mismatch exists. Such an understanding would

point to the issues that must be addressed if ecologists

are to make useful inferences from these new data and

tools and contribute in substantial ways to management

and decision making.

Encouraging the adoption of modern statistical

methods such as hierarchical Bayesian (HB) models

requires that we consider three distinct questions: (1)

What are the benefits of using these methods relative to

existing, widely used approaches? (2) What are the

barriers to their adoption? (3) What approaches would

be most effective in promoting their use? The first

question has to do with motivation, that is, why does

one build a complex statistical model? Like Cressie et al.

(2009) we argue that while the goal of a model may be

estimation, prediction, forecasting, explanation, or

simplification, the purpose of modeling is the synthesis

of information. However, HB methods are not the only

tools available for synthesis (Hobbs and Hilborn 2006).

So the question needs to be refined to address the

specific benefits to be derived from HB models relative
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to more traditional statistical approaches vis-a-vis

specific user goals. The second question deals primarily

with education, which we believe to be the main barrier

to the widespread adoption of these methods. Lastly,

answers to the third question build on the answers of

questions 1 and 2 to propose a series of actions that

would lead to a wider use of HB methods in ecology.

1. What are the benefits to be derived from HB models

relative to other statistical tools?.—Statistical modeling

in general and HB modeling in particular, are powerful

means to synthesize diverse sources of information.

With respect to other statistical means of synthesis,

hierarchical models have the advantage of allowing us to

coherently model processes at multiple levels. Consider,

for example, how we might answer the question of the

extent to which 10 species growth rates differ and

whether differences between tree species in growth rates

are correlated to some species trait, ST. One option

might be to first fit separate models using growth data

for each individual species together with important

covariates (e.g., individual level measurements), and

then use the results to fit a regression of the mean

growth of each species versus their mean ST values.

Another option might be to fit all the data at once and

include the ST repeated for all individuals in the plot.

Although each of these approaches might work ad-

equately, consider now that you have 100 species with

unequal sample sizes. With hierarchical models we could

include predictors at both the species and individual

levels and allow for partial pooling to improve

inferences on rarer species in a way that does not ignore

the initial uncertainty in the species growth estimates

when estimating the effect of ST across species.

Although the above statistical model could be fit using

non-Bayesian hierarchical models, HB becomes a

superior choice as we try to incorporate more of our

understanding of a process into a model. Returning to

the example above, consider the case in which there is

spatial autocorrelation between individuals sampled in

the same area and we realized that growth was measured

with error. Both are real concerns that we might

typically ignore or deal with in some ad hoc way;

however in a HB framework these sources of error could

easily be included an estimated as long as we had an

adequate data set.

In addition to their value for synthesis, and of far

more pragmatic significance, is the value of HB as a tool

for inference, particularly through the process of model

checking. The majority of ecologists seek to use data to

infer which processes are key in structuring populations,

communities and ecosystems. Inference is at the heart of

our discipline and therefore attaining the statistical

literacy necessary to use HB models can be extremely

rewarding, since such models allow us to incorporate the

complex variance structures inherent in most biological

systems. By working with simulated data derived from

HB models, rather than simple point estimates (with

associated confidence intervals), we can capture infer-

ential uncertainty and propagate it into predictions in a

straightforward manner (Gelman and Hill 2006). The

ability to not only make predictions from models but

also to quantify the uncertainty in our predictions, is

imperative for providing sound scientific advice for

management and policy decision makers.

For biologists interested solely in basic, rather than

applied questions, prediction serves as an important tool

for inference. If we approach a problem with an open

mind and the understanding that models are always an

approximation of reality, then comparison of the actual

data to replicate observations drawn from the posterior

predictive distribution (i.e., simulated observations

based on our model) becomes a learning exercise rather

than an effort to formalize what we already know or

believe. Although Cressie et al. (2009) argue that model

checking is necessary, but tedious, we see it not only as

the key to inference but also as one of the strongest

selling points of HB models. Prediction using traditional

statistical tools is limited, allowing only for a very

limited representation of the true complexity of eco-

logical data. In this context, model checking is an

opportunity to truly understand what the models are

saying, learn which parts of reality are not captured

adequately and suggest future steps. In particular, if

simulated data sets do not match the original data sets

adequately it leads directly to further model develop-

ment, reexamination of our interpretation of prior

studies, or alterations in experimental design for

collection of additional data (Fig. 1).

That model development typically follows model

checking illustrates that actual modeling of complex

data sets is typically an iterative process. Multiple

simpler models are fitted before attempts at the full

hierarchical model that we may have had in mind all

along or that may have evolved as we critically evaluate

the process we are trying to model and better understand

the data. Published studies typically emphasized final

models but understanding the iterative process of model

checking and model development is a key to demystify-

ing modeling to an audience of beginners, who are often

supplied only with unfamiliar technical descriptions of

models in the methods and little discussion of model fit

or misfit. Although standard statistical models caution

against extensive model checking because it can lead to

overfitting (data dredging), in a simulation framework

checks are means of understanding the limits of the

models’ applicability in realistic replications rather than

a reason for accepting or rejecting a model.

From a conceptual perspective, HB models offer a

consistent framework that allows the user to apply a

large, flexible number of models with complex variance

structures (e.g., repeated-measures models, time series

analysis, simultaneous consideration of observation and

process error, and so on). This is important not only

because we can tackle more complex problems but also

because it offers a way to educate students and

practitioners in a more self-consistent and coherent
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approach to statistical analysis that gets away from what

has termed a ‘‘field-key’’ approach to statistics, where

students collect statistical tools and techniques but fail

to see any connections among them at a deep level

(Clark 2005, Hobbs and Hilborn 2006).

2. What are the main barriers to the adoption of HB

methods?.—Using HB methods is not easy. There are

considerable conceptual and computational barriers to

overcome. Conceptually, students must move from a

descriptive, test-based statistical framework to an

inferential, estimation-based, complex one. Learning to

use HB methods requires a larger initial investment to

gain a holistic understanding of statistical inference, as

opposed to the short term solutions of finding a test for

the question at hand or restricting oneself to questions

that can be answered with the tests we already know.

HB methods may not always be the best tool for

answering a particular question, and often simpler

methods may be adequate. Nonetheless, learning HB

opens up the possibility of addressing a range of

previously intractable questions that more accurately

encompass the complexity of biological systems. As

ecologists accrue larger datasets, much of it based on

remotely gathered data with multiple sources of error,

the potential benefits of adopting more complex models

increase, moving the curve in Fig. 1 further to the right.

Often, students will not see the need for the initial

investment in learning HB methods because they lack an

understanding of its potential benefits and they perceive

modeling as a skill rather than as a tool that anyone can

pick up. Thus, ignorance begets indifference, or worst,

fear. If they see a paper in say, Ecological Applications

exhorting the benefits of HB models, they are likely to

turn the page and dismiss it as just another modeling

paper or simply over their heads. Even if a student or

practitioner is interested, the barriers may seem insur-

mountable without at least some knowledge of either

programming or advanced statistical methods.

Indeed, such knowledge is a prerequisite for learning

HB methods. One way to acquire these skills is through

formal graduate-level courses. Curricula that connect

models and quantitative thinking to important questions

in ecology have proven to both ignite students’ interest

in modeling and to convey the relevance and usefulness

FIG. 1. The model fitting process often consists of fitting progressively more complex models (e.g., A, then B) and/or trying and
failing at fitting more complex models (e.g., G, then F) and working backward until one finds a more simplified model that can be
fit with the data available (e.g., E). The exact location of the cutoff between E and F will depend on the nature of the data at hand.
Knowing which part of reality to allow back into the model by relaxing assumptions or partitioning uncertainty is dependent both
on an understanding of the ecological question, the data, and one’s statistical literacy. As model complexity increases, one can more
closely approximate reality, include more substantial outside (prior) knowledge/intuition, and gain more confidence in the model
output and associated uncertainty; however, added complexity only helps if ecological understanding is properly translated into the
model structure (the daggers in the figure indicate this caveat).

In the example, Cressie et al. (2009) address a number of models of differing complexity. Model A might correspond to a simple
linear regression of numbers vs. time. Such unrealistically simplified models could potentially lead to estimates with tight confidence
intervals and low P values, but unreliable inference. Model B might correspond to a generalized linear model with Poisson
distributed errors, whereas model C might correspond to the simplest model considered by Cressie et al. (2009), a generalized linear
mixed model with multiple explanatory variables. In this context, model C has the advantage that it is no longer assumed that all
sites are the same, something we know is false. Partitioning uncertainty into all its potential components and adding site-specific
parameters may lead to a model F that cannot be fit with the data at hand, while adding in the assumption that site parameters are
related and come from a distribution may result in model D.
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of models. However, many ecology and evolution

programs still rely on statistics departments to train

their students and only a few offer advanced statistical

methods courses within their department. Farming out

ecology students to be trained in statistics departments is

far from ideal because courses are likely to be developed

to address the needs of statistics students rather than

those of other areas of science. If students fail to see the

relevance of the methods to their own discipline,

motivation will decline.

Although there are a number of open, short-term

courses available (Duke University summer course in

ecological forecasting, one-day workshop in Bayesian

methods at the Ecological Society of America annual

meetings), these offerings are limited, unpredictable, and

costly. Moreover, short courses education in HB models

often requires not only some programming skills but a

complete conceptual overhaul of the students’ existing

conceptual statistical framework. Although short

courses may offer an entry into HB models, the tension

between a focus on tools (e.g., WinBUGS) and concepts

is very real when time is limited.

A second way to learn HB is through self-teaching.

Although a few books have appeared in the last couple

of years that make self-teaching possible (Woodworth

2004, Gelman and Hill 2006, Clark 2007, McCarthy

2007), it is still a daunting task to learn these methods on

your own without a support network. Fortunately,

cyber-communities are becoming an increasingly im-

portant form of scientific exchange, and considerable

progress can be made in this way (e.g., contributions and

exchanges around the development and use of R and

WinBUGS Statistical freeware). Auto-didactic ap-

proaches are powerful means to learn but they often

leave behind major lacunas in knowledge because they

tend to focus on the mechanics of carrying out complex

statistical analysis with little attention paid to the

foundations of underlying statistical inference (e.g.,

Taper and Lele 2004).

Another barrier to the adoption of HB is the lack of

consensus in many of the details of implementation. HB

methods are relatively new and there seems to be a lack

of consensus on what are the best non-informative

priors to use, how best to assess convergence, the utility

of deviance information criterion (DIC), etc. This is a

major barrier to biologists who are trying to learn and

implement these methods, since there is often no clear

path to follow. Many ecologists will choose those

methods that they know well despite their shortcomings.

3. What approaches would be most effective in

promoting their use?.—Although there are a small

number of graduate ecology programs that train some

students in modern statistics including HB methods, an

impediment to widespread training teaching in these

methods is the availability of ecology faculty with

statistical background sufficient to offer such courses.

Faculty members need efficient and relevant ways to get

training in modern statistical modeling and the neces-

sary tools and materials to teach them effectively. Given

the time demands placed on faculty, self-education

approaches may be unrealistic. One potential solution

is to offer one-semester sabbatical leaves that interested

faculty could use to attend existing courses at univer-

sities where such courses are offered. Better yet, these

leaves could be structured around the development of

intensive courses that brought together a small group of

expert teachers and student-faculty. The advantages of

this approach are threefold. First, the burden of

teaching could be shared among a small group of

experts. Second, the students would be exposed to a

variety of viewpoints. Third, participating faculty would

gain not only technical and conceptual skills but also a

support network to carry the newly acquired skills back

to their home institutions. This approach would

probably work best with faculty who are already

teaching statistics or use modeling in their research, or

with postdoctoral researchers who have the time and

motivation to learn and use the methods. Costs could be

shared by interested institutions and funding agencies.

In institutions that lack faculty trained in modern

statistical methods, ecology departments could also

work with faculty in the statistics department to develop

advanced courses or at least to discuss statistical issues

and problems as they arise. The advantage of this

approach is that students would be exposed to both the

rigor of statistics and disciplinary applications. The

shortcomings are generating faculty interest and the

considerable investments required to develop a course

with multiple instructors from different disciplines and

departments. Existing or new collaborations between

statisticians and ecologists within the same institution

could be leveraged to this end. Educators in ecology and

other fields that depend on statistics departments for

introductory courses could also initiate a dialog with

their statistical colleagues about restructuring ‘‘service’’

courses to cover basic concepts that are at the heart of

modern statistical methods such as distributional theory.

University administrators could also be approached to

offer faculty incentives for the development of courses

that cross disciplinary boundaries.

Students can also act as catalysts in the adoption of

modern statistics in ecology. Although we caution

against the perils of unabashedly using graduate

students as a means to improve existing programs, both

students and faculty have much to gain from judicious

small-scale efforts. Graduate students are often looking

for teaching opportunities that give them some experi-

ence in curriculum development and allow flexible

didactic approaches. At the same time, faculty members

are also searching for means to increase students’

engagement. One way to address the goals of these

two groups is to allow graduate students to structure

parts of existing course or to have them offer workshops

that provide an introduction to the tools and techniques

that will facilitate self-teaching for other students. For

instance, a short course in R, or structuring labs in
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existing statistics courses in R software rather than a
commercial package, will provide students with some

familiarity with programming and open the door to a
large cyber community with which they can engage. This
approach would require some thought on the part of the

faculty and students but could potentially be very
powerful because students readily accept new knowledge
and methods from their peers.

Cyber courses can also be a means to bring statistical
literacy to ecologists. This approach could make a
number of existing graduate courses in modern statis-

tical methods accessible to ecologists. These courses
include among others Ecological Models and Data at
the University of Florida, Ecological Theory and Data
at Duke University, Modeling for Conservation of

Populations at the University of Washington, and
Systems Ecology at Colorado State University. With
relatively minor investments, these courses could be

broadcasted to other graduate program in the United
States and abroad. Although interactions between
students and teaching faculty would be limited, this

approach would provide students with a foundation to
pursue further education in statistics either through self-
teaching or collaboration with statistics faculty at their

home institutions. To encourage use and discussion, the
cyber courses could be structured around student–
faculty groups at the receiving institutions.
Ultimately the widespread adoption of modern

statistical methods will require a mix of approaches.
What makes sense for individual institutions will depend
on the availability of faculty and on motivations to

develop offerings in this area. Funding agencies can help

by providing incentives to institutions and individual

faculty. To the degree that faculty and students are

interested and willing, statistical literacy can be devel-

oped.
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