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Abstract

Spatial processes underlie major species coexistence mechanisms. A range of
spatial analysis techniques are increasingly applied to data of fully mapped
communities to quantify spatial structures in species and phylogenetic and
functional diversity at some given spatial scale with the goal of gaining
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insights into processes of community assembly and dynamics. We review these techniques, in-
cluding spatial point pattern analysis, quadrat-based analyses, and individual-based neighborhood
models, and provide a practical roadmap for ecologists in the analysis of local spatial structures
in species and phylogenetic and functional diversity. We show how scale-dependent metrics of
spatial diversity can be used in concert with ecological null models, statistical models, and dy-
namic community simulation models to detect spatial patterns, reveal the influence of the biotic
neighborhood on plant performance, and quantify the relative contribution of species interactions,
habitat heterogeneity, and stochastic processes to community assembly across scale. Future works
should integrate these approaches into a dynamic spatiotemporal framework.

1. INTRODUCTION

Modern ecology is driven by an interest in processes that are inherently spatial. This has not always
been the case. Until the mid-1980s most ecological research avoided the explicit consideration of
space (Legendre & Fortin 1989), but during the last three decades ecology reached a point where it
became necessary to adopt a spatially explicit perspective to advance the science (e.g., Levin 1992,
Tilman & Kareiva 1997). Current ecological theories provide increasing evidence that spatial
pattern and process play an important role in the assembly, dynamics, and functioning of ecological
communities across scales (Chesson 2000, Bolker et al. 2003, Leibold et al. 2004, McIntire &
Fajardo 2009). For example, plants interact mostly with their nearest neighbors (Canham &
Uriarte 2006), plant performance depends on the species composition of their neighborhood
(Uriarte et al. 2010a) as well as their abiotic neighborhood (i.e., habitat filtering, in which species
arrive at a site but fail to persist owing to the abiotic conditions; van der Valk 1981, Kraft et al.
2015a), and dispersal limitation can generate patchy species distributions that reduce encounters
with competitively dominant species and slow down competitive exclusion (Pacala & Levin 1997).
These processes operate over somewhat different spatial scales (McGill 2010a): For example, in
plant communities, microclimatic conditions and species interactions can vary over the scale of
centimeters to meters, whereas dispersal in some species can drive patterns at tens to thousands
of meters. These insights suggest that many of the key ecological processes individual plants are
subjected to have the potential to generate spatial patterns but most likely at different spatial scales
(McGill 2010a), thereby retaining signatures of the underlying processes.

In addition to the increasing consideration of spatial pattern and process in ecological studies,
the consideration of phylogenetic and functional relationships among species has advanced our
understanding of coexistence and assembly mechanisms in ecological communities (e.g., Webb
et al. 2002, Cavender-Bares et al. 2004, Kraft et al. 2008, Uriarte et al. 2010a, Fortunel et al. 2016).
For example, statistical neighborhood analysis has revealed that survival and growth of plants often
depend on functional and evolutionary relationships with neighbors (e.g., Webb et al. 2006, Metz
et al. 2010, Uriarte et al. 2010a, Lasky et al. 2014), and community assembly theory predicts
that deterministic processes such as habitat filtering and competition that act on niche differences
between species can generate contrasting spatial patterns such as phylogenetic clustering (i.e.,
local co-occurrence of more closely related species than expected by chance) or overdispersion
(i.e., local co-occurrence of less closely related species) (Webb et al. 2002, Kraft & Ackerly 2014),
though the specifics of these predictions can be complex (e.g., Mayfield & Levine 2010).

The increasing interest in spatial processes has gone hand in hand with efforts to map the
spatial position of organisms within ecological communities. For example, starting in 1981 with
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a plot at Barro Colorado Island, the Smithsonian ForestGeo network now comprises numerous
forest dynamics plots for which a complete census is taken every five years using standardized
protocols (Condit 1998, Anderson-Teixeira et al. 2015). Such spatially explicit multivariate data
(a.k.a. fully mapped plots) that comprise information on the location, size, and species identity
of all free-standing plants within the plot—often together with spatially explicit environmental
information—contain invaluable information for detecting underlying spatial processes.

With the integration of a spatial component into studies of community ecology, it has become
necessary to develop tools required for characterizing and analyzing spatial patterns and their
relationships with spatial processes. Earlier analyses of fully mapped plots applied essentially
nonspatial methods developed in community ecology, biogeography, and conservation ecology
(e.g., Connor & Simberloff 1979, Gotelli 2000, Webb 2000) to detect phylogenetic clustering
or overdispersion (e.g., Kembel & Hubbell 2006). One of our objectives here is to describe two
emerging perspectives that take a more nuanced approach to spatial analyses on diversity metrics:
point pattern analyses (Wiegand & Moloney 2014, Velázquez et al. 2016) and regression-based
statistical neighborhood models (Canham & Uriarte 2006). The recent point pattern framework
of diversity metrics integrates the spatially explicit perspective with information on functional and
phylogenetic relationships (Shen et al. 2013; Wiegand & Moloney 2014; Pélissier & Goreaud
2015; Wang et al. 2015, 2016) to quantify functional or phylogenetic spatial structures in the
neighborhood of individual plants as a function of spatial scale. An example is the analysis of
changes in functional or phylogenetic dissimilarity of local communities with spatial distance
(Wang et al. 2015). Statistical neighborhood models relate the performance of individual plants
(i.e., recruitment, growth, and survival) to their biotic and abiotic neighborhood with a spatial
scale defined a priori or estimated (e.g., Hubbell et al. 2001; Uriarte et al. 2004a, 2010a; Stoll &
Newbery 2005). We define a neighborhood as the distances over which the ecological mechanisms
of interest operate. For example, dispersal limitation in trees may occur at scales up to a few hundred
meters (Morlon et al. 2008, Wang et al. 2015), whereas the neighborhood relevant for competitive
interactions among trees typically ranges over 1–30 m (Uriarte et al. 2004b, Wiegand et al. 2007).

The ultimate goal of most approaches to analyzing fully mapped plots is to provide insights into
the mechanisms underlying the assembly and dynamics of the community by exploring the link
between (spatial) pattern and process. Existence of such a link is a source of long-lasting dispute
in ecology (Wiens 1989, Gotelli & Graves 1996). Early refutations of the pattern–process link
argue that various processes can create the same patterns or that multiple processes acting together
can effectively erase the spatial signatures of individual processes (e.g., Colwell & Winkler 1984).
However, McIntire & Fajardo (2009) have cogently argued that prior studies questioning the
spatial pattern–process link may, in part, suffer from limitations such as (a) imprecise quantification
of patterns and focus on single patterns, (b) imprecise biological hypothesis on spatial patterns, and
(c) lack of a priori alternative hypotheses. Imprecise quantification of patterns especially includes
the misuse of metrics that are unable to dissect diversity patterns as a function of spatial scale.
Application of spatially explicit, scale-dependent metrics may reveal that different processes create
a similar pattern, but at different spatial scales (McGill 2010a), and that opposing processes may
cancel each other out only if scale is ignored. Although the link between spatial pattern and process
is not always straightforward, we argue that spatial patterns retain signatures of the underlying
processes to be uncovered with recent methods of spatial analysis (McIntire & Fajardo 2009,
Wiegand & Moloney 2014).

Our objectives here are to summarize techniques that allow for precise quantification of a
variety of spatial diversity patterns in fully mapped communities and to highlight advances in ad-
dressing key ecological questions. We explain how spatially explicit and scale-dependent diversity
metrics can be used in concert with spatially explicit null models, statistical models, and dynamic
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Table 1 Summary of key biological questions that can be addressed using multivariate spatial point pattern methods,
quadrat-based analysis, and statistical neighborhood analysis

Main task Key objectives Methods

(A) Detection of spatial
patterns in diversity

Spatial scales at which functional or phylogenetic
clustering occurs (A1)

Spatial scales at which functional or phylogenetic
overdispersion occurs (A2)

Quadrat-based analysis (Webb 2000, Kembel &
Hubbell 2006, Hardy 2008, Miller et al. 2017)
or point pattern analysis (Shen et al. 2013,
Parmentier et al. 2014) using dissimilarity matrix

How species are embedded into (or how they
impact) their biotic neighborhood (A3)

Local dominance of species (A4)

Multivariate point pattern analysis using
dissimilarity matrix (Wiegand et al. 2007, Wang
et al. 2016)

Conspecific versus heterospecific negative density
dependence in plant performance (A5)

Statistical neighborhood analysis (Comita et al.
2010, Paine et al. 2012)

(B) The contribution of
different features of
species patterns in
explaining spatial
diversity patterns

The species area relationship (B1)
The distance decay of similarity (B2)
Phylogenetic or functional diversity–area
relationships (B3)

Phylogenetic or functional beta diversity (B4)

Multivariate point pattern analysis using
dissimilarity matrix (Shen et al. 2009; Wang
et al. 2011, 2013, 2015; Yang et al. 2013)

(C) Indirect inference on
processes (same as A and
B, but with additional
biological assumptions
and hypotheses)

The relative importance of habitat filtering and
species interactions in explaining phylogenetic
or functional clustering or overdispersion (C1)

The relative importance of ecological mechanism
in explaining spatial diversity patterns (C2)

Quadrat-based analysis (Webb 2000, Kembel &
Hubbell 2006, Hardy 2008, Miller et al. 2017)
or point pattern analysis (Shen et al. 2013,
Parmentier et al. 2014) using dissimilarity matrix

Multivariate phylogenetic point pattern analysis
using dissimilarity matrix (Shen et al. 2009;
Wang et al. 2011, 2013, 2015)

(D) Direct inference on
processes based on spatial
diversity patterns

Influence of the biotic/abiotic neighborhood of
plants and its traits on recruitment, growth, and
survival (D1); for example:

� Species equivalence hypotheses
� Trait or phylogenetic similarity hypothesis
� Trait hierarchy hypothesis

Statistical neighborhood analysis (Canham &
Uriarte 2006; Uriarte et al. 2004a, 2010a;
Kunstler et al. 2012)

Multivariate point pattern metrics and
individual-based, spatially explicit simulation
models (May et al. 2015, 2016; Brown et al.
2016)Relative importance of ecological mechanism in

shaping community assembly and species
coexistence (D2)

Test of spatial coexistence mechanism (D3)

community simulation models to provide insights into the mechanisms underlying assembly and
dynamics of natural communities. In addition, we integrate this spatially explicit perspective with
information on functional and phylogenetic relationships among species. Because quadrat-based
approaches have been reviewed elsewhere (e.g., Miller et al. 2017 and references therein) and dis-
card important spatial information within quadrats, we focus on multivariate spatial point pattern
methods and individual-based neighborhood statistical models. In this review, we first provide a
summary of key biological questions that can be addressed using spatial analysis (Table 1). We
then summarize the analytical methods that underlie these approaches and outline how they can
be used to address these key biological questions. Finally, we conclude with prospects for future
research in this area.

Our focus is on fully mapped multivariate data sets (i.e., multiple units of analyses, be it species,
functional traits, or clades). We exclude methods that simply analyze the topology of phylogenetic
trees and focus instead on measures that use a matrix δij

P to describe some metric of ecological
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dissimilarity between species i and j. This approach allows for a unified analytical treatment
of the different types of ecological dissimilarities considered here. For simplicity, we focus our
descriptions below on phylogenetic dissimilarity measures, though functional similarity or any
other measure of ecological dissimilarity can be substituted with no additional modifications. We
also exclude variation partitioning because it does not rely on the explicit location of individuals
and is covered elsewhere (e.g., Anderson et al. 2011, Dray et al. 2012). As a final note, our review
targets the local neighborhood scale, and therefore we do not consider biodiversity maintenance
processes that occur primarily at the regional scale, such as immigration or source–sink dynamics.

2. KEY QUESTIONS TO BE ADDRESSED WITH SPATIAL ANALYSIS

We divide the objectives that can be addressed with spatial analyses of fully mapped plots into
four general tasks (Table 1): (A) detection of scale-dependent diversity patterns, (B) determining
the relative importance of different features of species distribution patterns in explaining spatial
diversity patterns, and (C) indirect and (D) direct inference on processes. Tasks A and B can be
mostly addressed by combining scale-dependent diversity metrics with null model approaches.
Indirect inference is based on pattern detection but requires additional assumptions and appro-
priate hypothesis (McIntire & Fajardo 2009), whereas direct inference uses methods of statistical
inference teamed with statistical (Uriarte et al. 2004a) or stochastic simulation models (Grimm
et al. 2005, May et al. 2015).

A number of spatial, scale-dependent diversity patterns are involved in—or emerge from—
spatial mechanisms of community assembly. Because fully mapped data are complex, have many
dimensions, and can be viewed over a range of spatial scales and phylogenetic depths, detecting
patterns in such data is a highly nontrivial task (objectives A1–A5 for task A, Table 1). A common
example is detection of patterns of phylogenetic or functional clustering in ecological communi-
ties. A wealth of methods aim to infer the action of community assembly processes on the basis of
patterns (e.g., Webb et al. 2002, Cornwell et al. 2006, Helmus et al. 2007, Kembel et al. 2010). In
the context of this review, we focus on the detection of local-scale correlations in the ecological
dissimilarity of neighboring individuals (i.e., neighborhood phylogenetic clustering and overdis-
persion) and the determination of the spatial scales and/or phylogenetic depths over which these
patterns occur (objectives A1 and A2) (Shen et al. 2013, Parmentier et al. 2014). For example,
Parmentier et al. (2014) studied phylogenetic turnover in a fully mapped African rain forest up to
scales of several hundreds of meters to find evidence for habitat filtering.

The neighborhood perspective focuses on analyzing how plants of a given focal species are
spatially embedded into their biotic or abiotic neighborhood or how they impact their neighbors
(objective A3). Typical analyses focus either on the role that focal species play in increasing
or decreasing local diversity (e.g., Wiegand et al. 2007, Punchi-Manage et al. 2015, Chacón-
Labella et al. 2016, Perry et al. 2017) or on the functional and phylogenetic diversity of the biotic
neighborhood of a focal species (Wang et al. 2016). The neighborhood scales investigated in this
type of analysis depend on the size of the plants and range up to 50 m for forests (Wiegand et al.
2007, Punchi-Manage et al. 2015, Wang et al. 2016), up to 6 m in the shrubland (Perry et al. 2017),
and up to 50 cm in the Mediterranean dwarf shrubland (Chacón-Labella et al. 2016). Insights
into the mechanism of coexistence can be provided by detecting patterns of local dominance of
species (Wang et al. 2016) (objective A4) that increase the frequency of intraspecific interactions
(relative to interspecific) and delay competitive exclusion (Stoll & Prati 2001). Finally, the search
for evidence for stabilizing mechanisms (sensu Chesson 2000) in species-rich communities has
focused on detection of patterns consistent with negative density dependence (Comita et al. 2010,
Uriarte et al. 2010a, Paine et al. 2012) (objective A5).
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Fully mapped community data contain numerous features (e.g., species aggregation, pair-
wise co-occurrences, or spatial phylogenetic clustering), and null model randomization-based
approaches that keep certain features of the data constant can be used to detect the main features
that explain spatial diversity patterns such as species area relationships or distance decay of sim-
ilarity (Morlon et al. 2008, Shen et al. 2009) (objectives B1–B4 for task B). Given appropriate
assumptions, this approach allows for the indirect inference of the relative importance of pro-
cesses such as dispersal limitation, habitat filtering, species interactions, and stochastic variation
in explaining biodiversity patterns (e.g., Shen et al. 2009; Wang et al. 2011, 2015) (objectives C1
and C2).

Direct inference of processes of community assembly and dynamics can be accomplished in
two different ways. First, spatially explicit statistical neighborhood approaches (Canham & Uriarte
2006) relate key demographic processes of individual plants to features of its biotic and abiotic
neighborhoods (objective D1) by using inference based on likelihood methods, information theory,
or hierarchical Bayesian approaches (Lasky et al. 2014, Fortunel et al. 2016, Uriarte et al. 2016).
Second, individual-based simulation models (Grimm et al. 2005; May et al. 2015, 2016) include
dynamic representations of alternative hypotheses on processes, and use of recent techniques
of statistical inference for stochastic simulation models (Hartig et al. 2011) allows for model
selection and inference on the hypothesis that is most compatible with the data (objectives D2 and
D3).

3. POINT PATTERN DIVERSITY METRICS

3.1. General Framework for Point Pattern Diversity Metrics

We generalize the two basic diversity indices, species richness S and the Simpson index D,
toward spatially explicit metrics of species diversity, functional diversity, and phylogenetic di-
versity. Point pattern extensions of S and D consider properties of pairs of individuals within
an observation window W that are a given distance r apart (for metrics of beta diversity) or
that are a smaller distance than r apart (for metrics of alpha diversity) (Figure 1a) (Shimatani
2001, Wiegand & Moloney 2014, Pélissier & Goreaud 2015). Thus, the point pattern met-
rics quantify spatial structures in the neighborhood of individual plants as a function of spatial
scale.

Our general framework results in eight metric families that arise by crossing the level of
analysis (community versus species level) with the diversity metric (S versus D) with alpha versus
beta diversity (see Supplemental Appendix 1 and Supplemental Table 1 therein for details).
The metrics of the framework are implemented in the software Programita (Wiegand & Moloney
2014).

3.2. Beta Diversity at the Community Level

The Simpson index D = ∑S
i=1

∑S
j=1 δi j fi f j is the probability that two randomly selected indi-

viduals in the observation window W are heterospecific (Simpson 1949), where fi is the relative
abundances of species i in W, S is the total number of species in W, and δij = 1 for heterospecifics
and δij = 0 for conspecifics. Supplemental Figure 5 (Supplemental Appendix 1) shows a
summary scheme of the Simpson index family. The Simpson index can be generalized to take a
continuous measure of ecological dissimilarity δij

P between species i and j into account (Clarke
& Warwick 1998). The resulting metric DP = ∑S

i , j=1 δP
i j fi f j is the mean pairwise dissimilarity

between individuals in W (Rao 1982). To remove some of the overt dependence of DP on species
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Local community in W

Quadrat-based methods

b Q1 Q2

QN

fqs

f1 f2… fS

Regional pool phylogeny

S1

δijP

2…

Multivariate point pattern

a

Neighborhood analysis

c

Figure 1
Scheme to allocate different methods to analyze multivariate data sets of fully mapped individuals within an observation window W (i.e.,
a local community). Pairwise species dissimilarities δij

P can be based on measures of phylogenetic, functional, or any other ecological
distance between species. Nonspatial phylogenetic analysis tests if community members in W show an even or clustered distribution on
the regional pool phylogeny (phylogenetic community structure) or if abundant species are randomly distributed across the phylogeny
(abundance phylogenetic structure). Filled circles indicate the positions of local community members on the phylogeny, fi is the relative
abundance of species i in W, and S is the species richness of the regional pool. (a) Point pattern analysis tests for scale-dependent
correlations in the ecological dissimilarity of neighboring individuals in W. (b) Quadrat-based methods divide W into quadrats Qq and
reduce the full spatially explicit information to the abundance (or presence/absence) fqs of species s in quadrat q. (c) Statistical
neighborhood analysis relates the performance of individual plants to features of their biotic and abiotic neighborhood.

abundances, Clarke & Warwick (1998) normalized with D

c d = DP

D
=

∑
i , j δP

i j fi f j∑
i , j δi j fi f j

= Rao
Simpson

= MPD 1.

and obtained the mean pairwise dissimilarity cd between all heterospecific individuals in W, which
is identical to the abundance weighted mean pairwise dissimilarity (MPD) used in quadrat-based
phylogenetic analyses (de Bello et al. 2016) to address objectives A1 and A2 (Table 1).

To make the Simpson index spatially explicit and scale dependent to represent beta diversity,
Shimatani (2001) looked at pairs of individuals in W that are distance r apart. This condition allows
for precise detection of spatial patterns in taxonomic turnover and its strength over different spatial
scales (Wiegand & Moloney 2014). This condition is implemented by using the mark connection
function pij(r) = fi fj gij(r)/g(r), which gives the conditional probability that of two randomly
selected individuals distance r apart, the first belongs to species i and the second to species j (Illian
et al. 2008). The gij(r) is the partial pair correlation function of the species pair i-j, and g(r) is that
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of all individuals within W. The spatially explicit Simpson index (Shimatani 2001),

βS(r) =
S∑

i=1

S∑

j=1

δi j pi j (r) =
S∑

i=1

S∑

j=1

δi j fi f j
gi j (r)
g(r)

, 2.

is therefore the probability that two randomly selected individuals in W that are distance r apart
are heterospecifics. This is a metric of spatial species turnover between locations distance r apart
and directly related to the distance decay of species similarity (Condit et al. 2002).

When using a continuous measure δij
P of pairwise species dissimilarity, we obtain the phylo-

genetic spatially explicit Simpson index (Shen et al. 2013, Wang et al. 2015):

βphy(r) =
S∑

i=1

S∑

j=1

δP
i j pi j (r) =

S∑

i=1

S∑

j=1

δP
i j fi f j

gi j (r)
g(r)

, 3.

the expected dissimilarity between two randomly selected individuals in W that are distance r
apart. Equation 3 shows how species abundances ( fifj), co-occurrence [gij(r)/g(r)], and species
dissimilarity (δij

P) jointly produce patterns of phylogenetic beta diversity. The metrics βS(r) and
βphy(r) are therefore especially useful to address objectives B2, B4, and C2.

To describe spatial phylogenetic turnover relative to spatial species turnover, Shen et al. (2013)
divided βphy(r) by βS(r) and normalized with the nonspatial expectation cd (Equation 1). The
resulting phylogenetic mark correlation function is given by:

kd(r) = 1
MPD

βphy(r)
βS(r)

= 1
MPD

c d(r), 4.

where cd(r) = βphy(r)/βS(r) is the expected dissimilarity between two randomly selected het-
erospecifics in W that are distance r apart. The value of kd(r) = 1 serves as a dividing line between
spatial phylogenetic clustering [kd(r) < 1] and spatial phylogenetic overdispersion [kd(r) > 1] (Shen
et al. 2013; objective C1). We find kd(r) = 1 if the local community is not spatially structured
[i.e., gij(r)/g(r) = 1] and if all heterospecific dissimilarities are the same (i.e., δij

P ∝ δij).
To assess which spatial scales and phylogenetic depths produce phylogenetic patterns,

Parmentier et al. (2014) analyzed the spatial co-occurrence of species with dissimilarities within
interval I P = (δP

min, δP
max]. We translate this idea into point pattern terminology by defining the

phylogenetic co-occurrence function cphy(r, IP) as the probability that two heterospecifics distance
r apart have dissimilarities within interval IP:

c phy(r , I P) =
∑S

i=1
∑S

j=1 1[δP
i j ∈ I P]pi j (r)

∑S
i=1

∑S
j=1 δi j pi j (r)

, 5.

where the indicator function 1[.] has value of one if δP
i j ∈ I P and a value of zero otherwise. Note that

cphy(r, IP) = 1 if interval IP covers all dissimilarities in δij
P. The phylogenetic co-occurrence func-

tion precisely reveals the phylogenetic (δij
P) distances that contribute to phylogenetic clustering

or overdispersion at spatial distances r.

3.3. How Are Species Embedded Into Their Biotic Neighborhood?

To make species richness S spatially explicit we determine the number of further species that
surround an individual of the target (or focal) species t on average. Using point pattern statistics, this
metric, the individual species area relationship (ISAR), can be expressed by using the probability
Dti(r) that the nearest species i neighbor of an individual of the target species t is located within
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distance r (Wiegand et al. 2007):

I SARt(r) =
S∑

i=1

δti Dti (r). 6.

Supplemental Figure 2 (Supplemental Appendix 1) shows a summary scheme of the ISAR
index family. The ISAR function can be used to address objective A3 by assessing if and at which
spatial neighborhoods a given target species is mostly located in areas of locally higher (or lower)
than expected species richness.

To obtain a metric analogous to the phylogenetic mark correlation function kd(r) (Equation 4),
we first replace δti with δP

ti to obtain the phylogenetic ISAR function (PISAR) as PISARt(r) =∑S
i=1 δP

ti Dti (r) (cf. Equation 2). To remove the effect of the underlying species richness pattern
we then divide the PISAR with the ISAR and normalize with the corresponding nonspatial metric
�P

t = 1
S−1

∑S
i=1 δP

ti (the analog to MPD in Equation 1; Webb et al. 2006) and obtain the rISAR
function:

r I SARt(r) = 1
�P

t

P I SARt(r)
I SARt(r)

, 7.

the mean pairwise dissimilarity between the individuals of the target species and all other species
in a neighborhood with radius r, normalized with �t

P. The rISAR function can be used to address
objective A3 by assessing if and at which spatial neighborhoods a given target species is surrounded
on average by more ecologically similar or dissimilar than expected species (see Section 5.3).

4. QUADRAT-BASED ANALYSIS

Many important reviews have been published and methodological studies have been done on
quadrat-based community analysis, including Colwell & Winkler (1984), Webb et al. (2002),
Hardy & Senterre (2007), Kraft et al. (2007), Kembel (2009), Swenson (2011), Miller et al. (2017),
and Tucker et al. (2017). Following early work by Kembel & Hubbell (2006), these methods are
also often applied to fully mapped plots. To this end, the community in W is divided into a grid of
quadrats q (Figure 1b) and the full spatially explicit information is reduced into a species–quadrat
community matrix fqs, representing the relative abundance of species s in quadrat q. The arbitrary
quadrats cause edge effects (Peters 2003). The species present in W then usually form the regional
pool, and the analysis uses standard metric–null model combinations of phylogenetic analysis to test
if species co-occurring in a quadrat are more (or less) related than expected (objectives A1 and A2)
(Hardy 2008, Miller et al. 2017). Because these methods are exhaustively described in the literature
and discard local within-quadrat spatial structure that can be essential to understanding the process,
we do not consider them here in detail (for more details, see Supplemental Appendix 2).

5. SPATIALLY EXPLICIT NULL MODELS AND DYNAMIC
SIMULATION MODELS

The fully mapped data considered here allow for two types of null models, those that randomize
the dissimilarity matrix δij

P and those that randomize the locations of the individuals in W. The
methods to randomize δij

P are those of standard phylogenetic analysis (e.g., Hardy 2008); however,
for randomization of the locations of individuals, we can take advantage of abundant techniques
of point process modeling (Shen et al. 2009, Wiegand & Moloney 2014, Baddeley et al. 2016,
Wang et al. 2015). In principle, all point pattern null models can also be applied together with
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quadrat-based metrics (e.g., the toroidal shift null communities in Kraft et al. 2008) instead of
conventional matrix shuffle null models.

5.1. Detection of Phylogenetic Spatial Structure

This task involves detection of small-scale spatial correlations in the dissimilarities of neigh-
bored individuals, independent of the overall functional or phylogenetic community structure
represented by MPD (Equation 1). The phylogenetic mark correlation function kd(r) is especially
suitable for this task because it is normalized with MPD (Equation 4) (Shen et al. 2013).

Two null models represent the null hypothesis of no small-scale spatial correlations in
the dissimilarities of neighbored individuals. The first null model (termed the 1s null model
in Hardy 2008) randomly shuffles species names in the dissimilarity matrix δij

P (for species with
abundances >0). However, if abundant species are nonrandomly distributed across the phylogeny,
this can lead to bias if this null model is used with quadrat-based metrics (Hardy 2008). The second
null model is the pairwise species independence null model that randomizes each species pattern to
remove (smaller and larger scale) co-occurrence patterns but conserves univariate structures (e.g.,
aggregation among conspecifics). This approach can be implemented by random toroidal shifts of
species patterns (Wiegand & Moloney 2014), but refined methods involve pattern reconstruction
(Wiegand et al. 2013, Wang et al. 2015).

Our power test, based on the communities of Miller et al. (2017), revealed excellent performance
of the phylogenetic mark correlation function kd(r) over the 1–30 m distance interval for both null
models with the exact type I error rate (α = 0.05) and very low type II error rates (Figure 2a,c).

c   Toroidal shift
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0.0 0.3 0.6 0.9

Random
Dispersal limitation
Filtering
Competition
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Dispersal limitation
Filtering
Competition
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k d
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Figure 2
Power test of several point pattern null model–metric combinations based on 1,000 random, habitat filtering, and competition
communities used in Miller et al. (2017). Additionally, to represent dispersal limitation we included a community in which species are
independently superposed and each species follows a Thomas cluster process with parameters σ = 5 m (radius 10 m) and ρ =
0.0002/m2 (20 clusters) (Wiegand & Moloney 2014). The metrics include the phylogenetic mark–correlation function kd(r) (Equation
4), the cumulative version Cd(r) of the non-normalized cd(r) (Equation 4), and the community-level r I SAR(r). (a–c) Type I and type II
errors based on a global envelope test (Velázquez et al. 2016) over the 1–30 m distance interval. The random (red ) and dispersal
limitation (magenta) communities do not contain spatial phylogenetic structure (used for assessment of type I errors), and habitat
filtering (blue) and competition ( yellow) communities show phylogenetic overdispersion and clustering, respectively (used for assessment
of type II error rates). The significance level was α = 0.05. (d ) Scale-dependent assessment of significant effects for the competition
communities. The curves show the number of replicates for which the observed metric was outside the simulation envelopes of the null
models ( gray curve, null model 1s; red curve, random labeling null model; green curve, toroidal shift null model). Negative departures are
indicated by negative values.
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The toroidal shift null model also showed excellent performance with the community averaged
rISAR function and the cumulative version of the non-normalized cd(r) (Figure 2c). However,
maintenance of species aggregation in the null model is essential to avoid type I error. To show this,
we assembled dispersal limitation communities with strong species clustering but no phylogenetic
structure and tested the type I error of the random labeling null model that randomly shuffles the
species identities among all individuals. This randomization maintains local density but removes
species aggregation. Indeed, random labeling showed high type I error rates for the dispersal
limitation communities but performed well for the other three community types (i.e., random,
filtering, and competition) (Figure 2b). Note that random labeling approximates the regional null
model of Miller et al. (2017) that randomly assigns each individual in W a species identity taken
randomly from a predefined regional pool (e.g., composed of all individuals in W). In quadrat-
based analyses, this null model shows mostly high type I error rates for the dispersal limitation
communities (Supplemental Figures 1 and 2 in Supplemental Appendix 3).

5.2. Example for Detection of Scales of Spatial Phylogenetic Structure

A special strength of point pattern techniques is the ability to precisely reveal spatial scales of clus-
tering or overdispersion. To demonstrate this ability, we apply the phylogenetic mark correlation
function kd(r) to the competition communities by Miller et al. (2017) that show scale-dependent
spatial structures (Figures 2d and 3a). To mimic competition, they considered an interaction
range of 20 m and repeatedly removed one of two closely related individuals within this distance
and replaced it by a randomly located individual from the pool. Analysis with the kd(r)–toroidal
shift combination reveals phylogenetic overdispersion for distances up to 20 m and a weak signal
of phylogenetic clustering at distances of approximately 33 m (Figure 3a). Phylogenetic cluster-
ing arises because two neighbors B and C, located at the edge of the zone of influence of a focal
individual A, will tend to be ecologically similar because AB and AC are dissimilar, as depicted by
kd(r).

Application of the phylogenetic co-occurrence function cphy(r, IP) (Equation 5) showed that
closely related species were segregated within the competition range (i.e., distances less than 20 m)
(Figure 3b), and species pairs with the largest phylogenetic distance (63.05 Ma) showed attraction
at short distances (r < 10 m) (Figure 3d ). This produced the overall pattern of phylogenetic
overdispersion. More complicated situations arise if different processes cause phylogenetic clus-
tering and overdispersion simultaneously. However, such effects likely occur at different spatial
scales or phylogenetic depths (Parmentier et al. 2014) that can be detected using the phylogenetic
co-occurrence functions.

5.3. Point Pattern Null Models Randomizing the Species Locations

To find out if the assemblages surrounding the target species show nonrandom spatial diversity
patterns (objective A3), the observed ISAR and rISAR functions are compared with those of a
stochastic null model. Two features in species distribution patterns can be manipulated in null
models: the observed first-order structure of the pattern (i.e., variation in local point density, mostly
driven by the environment) and the observed second-order structure (i.e., small-scale correlation
structures among conspecific individuals, driven by demographic processes such as dispersal or
plant interactions). Maintaining or removing first- or second-order structures results in four types
of null models (Shen et al. 2009, Wang et al. 2013, Wiegand & Moloney 2014):

(i) homogeneous Poisson processes (i.e., no first- or second-order structures),

www.annualreviews.org • Spatially Explicit Metrics of Diversity 339

Supplemental Material

A
nn

u.
 R

ev
. E

co
l. 

E
vo

l. 
Sy

st
. 2

01
7.

48
:3

29
-3

51
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
ol

um
bi

a 
U

ni
ve

rs
ity

 o
n 

11
/1

5/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 

http://www.annualreviews.org/doi/suppl/10.1146/annurev-ecolsys-110316-022936


ES48CH15_Wiegand ARI 26 September 2017 20:9

Distance r (m)

0 60453015

b   (0, 20]

c p
hy

(r
,I

P )

0.024

0.028

0.032

0.036

Distance r (m)

a

k d
(r

)

0.99

0 60453015

1.00

1.01

1.02

d   (63, 64]

0.48

0.50

0.52

0.54

c p
hy

(r
,I

P )

Distance r (m)

0 60453015

Distance r (m)

0 60453015

c   (20, 63]

0.46

0.48

0.50

0.52

c p
hy

(r
,I

P )

Figure 3
Results of the (a) phylogenetic mark correlation function kd(r) and (b–d ) the phylogenetic co-occurrence
function cphy(r, IP) for different phylogenetic intervals IP for a competition community of Miller et al.
(2017). The kd(r) is the (normalized) expected dissimilarity between two randomly selected heterospecifics
that are distance r apart, and the cphy(r, IP) is the probability that two heterospecifics distance r apart have
dissimilarities within interval IP, which is provided on top of panels b–c. Note that the lower endpoint of the
interval IP is excluded (e.g., the value 0 in panel b) but the higher endpoint is included (e.g., the value 20 in
panel b). Blue circles indicate observed functions, and gray shaded areas indicate simulation envelopes of the
toroidal shift null model, which are the fifth lowest and highest values of the 199 null model simulations.

(ii) heterogeneous Poisson processes (i.e., only a first-order structure),
(iii) null models with only a second-order structure (e.g., homogeneous Thomas cluster point

processes), and
(iv) null models with first- and second-order structures (e.g., inhomogeneous Thomas cluster

point processes and pattern reconstruction null models).
Maintenance of second-order structure is important to avoid type I error, and inference on

processes typically requires the assumption of separation of scales (i.e., species interactions occur
over shorter spatial scales than habitat filtering; Wiegand & Moloney 2014). Null model iv reveals
selectively interspecific species interactions (because the effect of habitat filtering is accounted
for), whereas larger-scale departures from null model iii can be attributed to habitat filtering.
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5.4. Point Pattern Null Communities

Point pattern null communities are constructed by independently superposing one realization of a
given null model for each species present in the community (Plotkin et al. 2000, Shen et al. 2009).
They therefore assume absence of interspecific interactions (McGill 2010b). The null communities
based on null model type i correspond to the random placement hypothesis, the point of reference
without any spatial structure. By progressively adding first- and/or second-order effects, their
relative importance in explaining spatially explicit diversity patterns can be studied (objectives
B1–B4). Together with additional hypotheses, this allows for inference on the relative strength of
different processes at different spatial scales in generating species and phylogenetic or functional
alpha and beta diversity (objectives C1 and C2; e.g., Shen et al. 2009; Wang et al. 2011, 2013, 2015).

Communities based on null model type ii correspond to the habitat filtering hypothesis in which
species distribution patterns are only driven by local habitat suitability, and communities based on
null model type iii correspond to the dispersal limitation hypothesis because only intrinsic demo-
graphic factors such as dispersal limitation (or conspecific negative density dependence) govern
the species patterns. Finally, null model type iv generates null communities that are expected in
the absence of smaller-scale interspecific species interactions (independent placement hypothesis;
Wang et al. 2015) because both first- and second-order effects in the patterns are conserved but
the different species patterns are independently superimposed.

5.5. Dynamic Simulation Models

Ultimately even refined point pattern null community approaches are limited in detecting pro-
cesses because they are static and do not describe the underlying dynamical (spatial) mechanisms
and processes directly. An alternative is given by recent reconciliation of dynamic and individual-
based community simulation models with methods of statistical inference for stochastic simulation
models (e.g., Hartig et al. 2011, Lehmann & Huth 2015).

The simulation models include representations of the most important processes hypothesized
to affect the fate of individuals during their lifetime (e.g., reproduction, competition, survival,
dispersal, migration from a metacommunity) and how they may depend on species traits and,
possibly, on environmental covariates (May et al. 2015, 2016; Brown et al. 2016). Usually, a
suite of alternative models that represent competing hypotheses on the underlying processes is
developed (e.g., May et al. 2016), and the task is to assess which hypothesis is most likely, given
multiple summary statistics (e.g., spatial diversity metrics) extracted from a fully mapped data set
(Hartig et al. 2011). This approach is only in its emerging phase, but it can already be foreseen
that dynamics simulation models of community assembly and trait or phylogenetic structure,
in concert with the diversity metrics presented here, may ultimately prove more powerful for
detecting specific community assembly processes than null model approaches.

6. STATISTICAL NEIGHBORHOOD ANALYSIS

The overall goal of individual-based neighborhood analysis is to relate plant performance (i.e.,
growth, mortality, and reproduction) to its biotic and abiotic neighborhood (Figure 1c) (Canham
& Uriarte 2006). We define a neighborhood as the distance over which interactions among species
(and traits or clades) or between species and their physical environment affect demographic pro-
cesses of a target individual (Figure 1c). For trees, the neighborhood typically ranges between 10
and 20 m (Uriarte et al. 2004b). Using this approach, statistical models are built in which the ef-
fect of neighborhood interactions (e.g., competition, facilitation, dispersal) on the performance of
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individual plants is expressed as a function of species identity, stem size, and spatial configuration
of individuals (Canham & Uriarte 2006). These models also provide the tool for synthesizing these
processes into spatial and temporal predictions of system dynamics (Phillips et al. 2003, Uriarte
et al. 2009).

Neighborhood analysis answers fundamental questions for species coexistence—for example, if
neighborhood interactions are independent of species identity or are different for conspecifics ver-
sus heterospecifics (Uriarte et al. 2004b), how quickly they decline with distance, or how functional
traits or phylogenetic relationships influence the strength of neighborhood effects (Uriarte et al.
2010a, 2016; Kunstler et al. 2012; Lasky et al. 2014; Fortunel et al. 2016). Thus, in contrast to the
point pattern or quadrat-based methods that target the emerging average spatial community pat-
terns, statistical neighborhood analysis aims to model the impact of the variation of neighborhood
patterns among individuals on tree-scale demographic rates and ecological processes.

6.1. Spatial Diversity Metrics Used in Statistical Neighborhood Analysis

Neighborhood analysis overcomes limitations of quadrat-based analysis (e.g., Connell et al. 1984,
Wills et al. 1997) in which the use of arbitrary quadrat size may introduce errors into the analyses
(Peters 2003). The applications of neighborhood analysis include studies modeling effects of
conspecific versus heterospecific neighborhood crowding on growth and survival of individual
trees by adopting neighborhood competition indices (e.g., Hubbell et al. 2001; Peters 2003; Uriarte
et al. 2004a,b) and generalized linear mixed-effects models for testing density-dependence effects
(e.g., Metz et al. 2010).

Canham et al. (2004) and Uriarte et al. (2004a) generalized the use of neighborhood competition
indices (NCI) to specify the competitive effect of all neighbors within a given distance R of a target
individuals t of a focal species f. An example for such an index is:

NCIt =
s∑

i=1

λi f

ni∑

j=1

(dbhi j )α f

rβ f
i j

, 8.

where dbhij is the diameter at breast height (dbh) of the jth neighbor of species i, and rij is its distance
to the target individual t. Thus, competition increases with increasing dbh and decreasing distance.
The λif is a species-specific competition coefficient describing the impact of species i on the focal
species f, and αf, and β f are species-specific model parameters. Neighborhood effects are then
translated into actual growth by using, for example, a negative exponential function of the NCI
(Uriarte et al. 2004a).

When identifying λif with functional or phylogenetic similarity (Uriarte et al. 2010a), the NCI
becomes similar to the species-centered version of the phylogenetic or functional diversity metric
DP (Equation 1), where DP

t = ∑
j d P

t j f j is the mean dissimilarity of the focal individual to all
neighbors within distance r, but each neighbor is weighted with its size and distance to the target
individual. These neighborhood models can also embed the strong size asymmetries in pairwise
plant interactions by adding an additional term to Equation 8 (Uriarte et al. 2004a).

6.2. Inference on Processes with Statistical Neighborhood Analysis

The competition coefficients λif in Equation 8 can be used in different ways to infer about the
mechanism underlying plant performance. For example, Kunstler et al. (2012) fitted the λif values
for all species pairs and correlated them with the corresponding trait and/or phylogenetic distances
δP

if. An alternative is to make specific assumptions about the structure of the λif values and to
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compare the statistical support for the resulting alternative models (objective D1; Uriarte et al.
2004a, 2010a). For example, the null model of no species-specific effects on plant performance
(Uriarte et al. 2010a), the ecological equivalence hypothesis (Connell 1980, Hubbell & Foster
1986, Hubbell 2006), can be implemented by λif = 1. Additionally, assuming two different values
of λif, they can be used to test if plant performance responds differently to conspecific versus
heterospecific neighbors (Uriarte et al. 2004b).

The competition coefficients λif in Equation 8 can also be used to formulate hypotheses on the
impact of functional or phylogenetic dissimilarity on plant performance. For example, assuming
that functional traits are good predictors of shared resource use or defenses, functionally similar
species should compete more intensely or share more natural enemies than functionally dissimilar
species (the trait similarity hypothesis; Uriarte et al. 2010a). This can be implemented as λif =
1 − |Ff − Fi|, where Fi is the average functional trait value of species i, normalized between zero
and one (Uriarte et al. 2010a). If functional traits are phylogenetically conserved, the phylogenetic
similarity hypothesis can be tested by using phylogenetic dissimilarity δP

if instead of |Ff − Fi|
(Uriarte et al. 2010a).

However, competition may also work in a hierarchical asymmetric way (Lasky et al. 2014), and
a trait hierarchy hypothesis can be implemented as λif = 1 − (Ff − Fi). This hypothesis predicts
that competition results in functional clustering because more competitive species will be favored
under a given environment (Mayfield & Levine 2010). In contrast, the trait similarity hypothesis
predicts that competition or natural enemies lead to functional or phylogenetic overdispersion,
whereas environmental filtering leads to clustering (Kunstler et al. 2012).

Neighborhood models can also be used to assess the importance of dispersal limitation in
communities. In this case, equations similar to Equation 8 are parameterized with spatially explicit
data on the distribution of potential seed sources and seed or flower data collected in baskets, and
the equations can then be used to make predictions about seed dispersal limitation (objective D2)
(Muller-Landau et al. 2002, Uriarte et al. 2010b). These dispersal and neighborhood models can
then be used to simulate community dynamics (Uriarte et al. 2016) or to assess the importance of
dispersal or establishment limitation (Uriarte et al. 2010b).

7. DISCUSSION

Spatial dependency in ecological data was once viewed as a nuisance that complicates the analysis
by violating the assumption of independence in biotic responses. It took ecologists a while to
recognize that there is a great deal of biology buried in spatial patterns and to adopt a research
agenda that strives for measuring, understanding, and modeling spatial patterns in biotic responses
as a critical aspect of the ecology of organisms and communities (Legendre 1993, McIntire &
Fajardo 2009). In this review, we focus on fully mapped plots of plant communities and argue that
analysis of spatial structures in species diversity, phylogenetic diversity, and functional diversity
can provide important insights into the processes that drive community assembly and dynamics.

7.1. Pattern Detection

The multivariate data structures considered here are an extension and generalization of the point
pattern analysis framework introduced by Ripley (1977). Point pattern analysis was designed to
extract the maximum information from mapped point data to infer distribution across spatial scales
to overcome a drawback of quadrat methods, “their inability to test for interactions at different
scales simultaneously” (Ripley 1977, p. 172). Our generalized framework shares the same main
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motivation of the original spatial analyses: Infer underlying processes by quantifying the spatial
scales at which nonrandom spatial patterns occur.

The analytical tools presented here overcome or alleviate two fundamental problems of pattern–
process inference outlined by McIntire & Fajardo (2009): imprecise quantification of patterns and
imprecise biological (null) hypothesis on spatial patterns. Associated with the first problem, a
major methodological issue of earlier nonspatial approaches is that the signatures of opposing
processes may cancel out each other (Colwell & Winkler 1984, Parmentier et al. 2014). Our
approach provides a solution to this issue because point pattern metrics such as the phylogenetic
mark correlation or co-occurrence functions (Equations 4 and 5) can decompose community
patterns at different scales and therefore distinguish processes operating at different spatial scales
and phylogenetic depths (e.g., Figure 3) (Shen et al. 2013, Parmentier et al. 2014). For the
second problem, our analysis framework allows for construction of null models with intuitive
interpretation, direct links to biological processes, and deep roots in point process theory.

7.2. Macroecological Patterns

Multivariate point pattern analysis of ecological communities takes advantage of powerful point
process theory and formulates analytical relationships such as those in Equation 3, which show
how the spatial scaling of diversity patterns depends on the key variables: species abundances
( fi fj), species dissimilarities (dij

P), and the spatial scaling of species co-occurrence [gij(r)/g(r)].
Such formulas can be used as a theoretical yardstick to evaluate the relative strength of different
mechanisms of community dynamics in generating species and phylogenetic (or functional) beta
diversity. Combinations of this approach with null communities (Shen et al. 2009, Wang et al.
2015) can reveal deep insight on the scale dependency of community assembly. For example,
Wang et al. (2015) showed that habitat filtering (i.e., conserving first-order structures in the
species patterns) was required in two temperate forests to match the observed levels of species and
functional and phylogenetic beta diversity at scales above 150 m, whereas keeping the second-
order species structures (e.g., due to dispersal limitation) was required to match the observed
levels of beta diversity at the 20–150 m scale. Their analysis also showed that interspecific species
interactions contributed only slightly to beta diversity at distances less than 20 m.

7.3. Neighborhood Interactions

Coexistence theory outlines the importance of deterministic biotic and abiotic mechanisms in
maintaining community assemblages. Individuals arriving at a site might fail to colonize owing to
an inability to tolerate the abiotic conditions or they might be outcompeted by neighbors. This
implies that the remaining individuals form nonrandom local assemblages. Collective efforts to
quantify how the local biotic neighborhood influences plant performance (objective D1) and how
species are embedded into their local neighborhoods (objective A3) have produced interesting new
insight into the mechanism of species assembly. Recent neighborhood models have showed that
species niche similarities associated with traits influence neighborhood interactions in forests in a
variety of settings (Uriarte et al. 2010a, Kunstler et al. 2012, Lasky et al. 2014, Fortunel et al. 2016).
However, in species-rich forests this seems to apply only to the most abundant species. Fortunel
et al. (2016), for example, analyzed 315 species in a hyperdiverse tropical forest and found that
72% of the species showed no biotic neighborhood effect on growth. These results accord with
point pattern analyses (e.g., Lieberman & Lieberman 2007, Wiegand et al. 2012, Perry et al. 2014,
Wang et al. 2016) that suggest weaker linkages of species with their biotic neighborhood if species
richness increases. The reason for such stochastic dilution is grounded in the stochastic geometry
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of biodiversity in which the identity of neighbors becomes increasingly unpredictable if species
richness increases (McGill 2010b, Wiegand et al. 2012, Wang et al. 2016, Perry et al. 2017). This
causes large variability in the outcome of deterministic species interactions among individuals of a
given species and dilutes nonrandom patterns expected from deterministic theory. Consequently,
using a metric of local dominance, Wang et al. (2016) found that a target species was more likely
to show linkages to its functional or phylogenetic neighborhood if it was locally more dominant.
Point process theory deals with the stochastic placement of individuals in space and is therefore
predestinated to take the lead in efforts to quantify the role of stochasticity in community assembly.
Stochasticity is not inherently uninteresting noise, as has long been perceived in ecology, but an
essential ingredient of spatial processes.

Deterministic processes operating via ecological dissimilarities dij
P provide important assem-

bly mechanisms, and the dissimilarity measures can be incorporated into community-level point
pattern or neighborhood analyses to evaluate the relative support for competing hypotheses on
the multivariate properties of the neighborhood of species (Uriarte et al. 2010a, Wang et al. 2016).
The need for a multivariate perspective was outlined by Kraft et al. (2015b), who found that the
outcomes of interactions between multiple species can be very different from predictions of pair-
wise competition experiments. Nevertheless, we may need even more refined analytical tools to
obtain a comprehensive understanding of the complex spatial nature of multispecies interactions.
The analysis of the competition community (Figure 3) suggests that capturing spatial patterns
that emerge from competitive interactions may need metrics of third-order interactions among
triplets of individuals. For example, if pairs of nearby species AB and AC co-occur because AB
and AC are dissimilar, what happens with the BC pairs that are likely to be more similar? Sim-
ilarly, neighborhood-based multivariate analyses need to find a way to incorporate intransitive
competition (i.e., no single competitor exists like in the rock-paper-scissors game) that has been
proposed as a mechanism promoting coexistence among dominant species (Allesina & Levine
2011, Soliveres et al. 2015). Intransitivities in species interactions can result from species effects
on their biotic (e.g., microbes; Reed et al. 2008) or abiotic environments (e.g., leaf litter; Uriarte
et al. 2015). By explicitly incorporating these feedbacks into analyses (e.g., effects of leaf litter
inputs on seedling demography; Muscarella et al. 2013), we can gain insights into the mechanisms
that underlie intransitivities in species interactions.

7.4. The Relative Importance of Ecological Mechanisms for Community
Assembly and Dynamics

Future work that takes advantage of the dynamic simulation modeling framework (e.g., Brown
et al. 2011, May et al. 2015) should involve both forward and backward (inverse) simulations.
Inverse simulation modeling (Hartig et al. 2011) can parallel recent approaches of neighborhood
analyses (e.g., Uriarte et al. 2010a, Fortunel et al. 2016) to evaluate the relative support of compet-
ing hypotheses on the structure of competition coefficients with respect to ecological similarity.
The advantage is that the statistical model is replaced by a dynamic model, allowing not only for
inference on the collective effects of the biotic neighborhood on plant performance (as done by
neighborhood approaches) but also for more direct exploration of the link between processes and
the emerged patterns. Forward simulations can do this by systematically varying the parameters
governing the processes in the model to evaluate their relative importance in generating spatial
patterns in diversity. For example, F. May, T. Wiegand, A. Huth, and J.M. Chase (submitted
manuscript) found in such a study that operation of conspecific negative density dependence (on
the sapling level) enhances species diversity of mature tree communities only marginally and that
its effect is overpowered even under (unrealistically) low levels of species immigration. This is
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an example of cases in which mechanisms operate in a system (e.g., as revealed by neighborhood
analyses; objective A5) but which may not translate into the theoretically expected patterns be-
cause community dynamics are driven by complex interactions of several mechanisms operating
simultaneously. Revealing the relative importance of processes may therefore be possible only by
using spatially explicit dynamic approaches.

FUTURE ISSUES

1. Point pattern analysis quantifies the average biotic neighborhood of individuals, but
analysis of the variance in the biotic neighborhoods among individuals is required to
better understand the effects of stochasticity on coexistence in species-rich communities.

2. Although most point pattern analyses deal with static patterns, future efforts should also
take the temporal dimension of the census data into account and develop methods of
spatiotemporal and multivariate pattern detection and point process modeling.

3. Partitioning the relative importance of biotic interactions, habitat heterogeneity, and
stochastic effect in neighborhood diversity remains a general problem in ecology. Statis-
tical neighborhood analysis shows that certain mechanisms operate in a community, but
future efforts are needed to place these mechanisms into a dynamic framework (e.g., of
spatially explicit simulation models) to evaluate their relative importance with respect to
emerging diversity patterns.

4. Species have effects on the microbial communities and nutrient fluxes in their neighbor-
hood. These effects can interact in different ways with the demography of the species
and possibly cause intransitive competition. Incorporating these feedbacks into neigh-
borhood analyses may uncover mechanisms underlying intransitive competition.

5. Individual-based stochastic simulations guided by results of spatiotemporal pattern anal-
yses and neighborhood analyses are required to assess the effect of temporal variation
in external forcing (e.g., climate) on biotic interactions among species and community
assembly.

6. The techniques presented here could also be applied to evolutionary studies, given the
fundamental analogies between allele diversity and species diversity and those between
allele genealogies and phylogenies (Hardy & Senterre 2007, Matesanz et al. 2011). Addi-
tionally, if genetic dissimilarity between all individuals of a population can be determined
within an observation window or spatial scale, spatially explicit patterns of genetic vari-
ation or genetic neighborhood effects can be assessed.
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Parmentier I, Réjou-Méchain M, Chave J, Vleminckx J, Thomas DW, et al. 2014. Prevalence of phylogenetic
clustering at multiple scales in an African rain forest tree community. J. Ecol. 102:1008–16

Pélissier R, Goreaud F. 2015. Ads package for R: a fast unbiased implementation of the K-function family for
studying spatial point patterns in irregular-shaped sampling windows. J. Stat. Softw. 63:1–18

Perry GLW, Miller BP, Enright NJ, Lamont BB. 2014. Stochastic geometry best explains spatial associations
among species pairs and plant functional types in species-rich shrublands. Oikos 123:99–110

Perry GLW, Miller BP, Lamont BB, Enright NJ. 2017. Community-level spatial structure supports a model
of stochastic geometry in species-rich shrublands. Oikos 126:833–42

Peters HA. 2003. Neighbour-regulated mortality: the influence of positive and negative density dependence
on tree populations in species-rich tropical forests. Ecol. Lett. 6:757–65

Phillips PD, Brash TE, Yasman I, Subagyo P, Gardingen PRV. 2003. An individual-based spatially explicit
tree growth model for forests in East Kalimantan (Indonesian Borneo). Ecol. Model. 159:1–26

Plotkin JB, Potts MD, Leslie N, Manokaran N, LaFrankie JV, et al. 2000. Species-area curves, spatial aggre-
gation, and habitat specialization in tropical forests. J. Theor. Biol. 207:81–99

Punchi-Manage R, Wiegand T, Wiegand K, Getzin S, Huth A, et al. 2015. Neighborhood diversity of large
trees shows independent species patterns in a mixed dipterocarp forest in Sri Lanka. Ecology 96(7):1823–34

Rao CR. 1982. Diversity and dissimilarity coefficients—a unified approach. Theor. Popul. Biol. 21:24–43
Reed SC, Cleveland CC, Townsend AR. 2008. Tree species control rates of free-living nitrogen fixation in a

tropical rain forest. Ecology 89:2924–34
Ripley BD. 1977. Modelling spatial patterns (with discussion). J. R. Stat. Soc. B 39:172–212
Shen G, Wiegand T, Mi X, He F. 2013. Quantifying spatial phylogenetic structures of fully stem-mapped

plant communities. Methods Ecol. Evol. 4:1132–41
Shen G, Yu M, Hu XS, Mi X, Ren H, et al. 2009. Species-area relationships explained by the joint effects of

dispersal limitation and habitat heterogeneity. Ecology 90:3033–41

www.annualreviews.org • Spatially Explicit Metrics of Diversity 349

A
nn

u.
 R

ev
. E

co
l. 

E
vo

l. 
Sy

st
. 2

01
7.

48
:3

29
-3

51
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
ol

um
bi

a 
U

ni
ve

rs
ity

 o
n 

11
/1

5/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



ES48CH15_Wiegand ARI 26 September 2017 20:9

Shimatani K. 2001. Multivariate point processes and spatial variation of species diversity. For. Ecol. Manag.
142:215–29

Simpson EH. 1949. Measurement of diversity. Nature 163:688
Soliveres S, Maestre FT, Ulrich W, Manning P, Boch S, et al. 2015. Intransitive competition is widespread

in plant communities and maintains their species richness. Ecol. Lett. 18:790–98
Stoll P, Newbery DM. 2005. Evidence of species-specific neighborhood effects in the Dipterocarpaceae of a

Bornean rain forest. Ecology 86:3048–62
Stoll P, Prati D. 2001. Intraspecific aggregation alters competitive interactions in experimental plant commu-

nities. Ecology 82:319–27
Swenson NG. 2011. Phylogenetic beta diversity metrics, trait evolution and inferring the functional beta

diversity of communities. PLOS ONE 6(6):e21264
Tilman D, Kareiva P. 1997. Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions.

Princeton, NJ: Princeton Univ. Press
Tucker CM, Cadotte MW, Carvalho SB, Davies TJ, Ferrier S, et al. 2017. A guide to phylogenetic metrics

for conservation, community ecology and macroecology. Biol. Rev. 92:698–715
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Adam D. Leaché and Jamie R. Oaks � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �69

The Role of Sexual Selection in Local Adaptation and Speciation
Maria R. Servedio and Janette W. Boughman � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �85

The Potential Impacts of Climate Change on Biodiversity in Flowing
Freshwater Systems
Jason H. Knouft and Darren L. Ficklin � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 111

The Ecology of Mating and Its Evolutionary Consequences in Seed Plants
Spencer C.H. Barrett and Lawrence D. Harder � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 135

Process-Based Models of Phenology for Plants and Animals
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