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The recent empirical literature has delivered two main approaches to estimating 
tax multipliers. The first, pioneered by the work of Blanchard and Perotti (2002), 

is based on a structural vector autoregression (SVAR) analysis. The second strand 
of the empirical literature, initiated by the work of Romer and Romer (2010), esti-
mates tax shocks using a narrative approach and then regresses a measure of aggre-
gate activity, such as gross domestic product (GDP), on current and lagged values of 
the identified tax shock.

The motivation of this paper is that the SVAR and narrative approaches deliver 
significantly different estimates of the size of the tax multiplier. The former approach 
yields relatively small values of less than 1, whereas the latter delivers large values 
of about 3. That is, a cut in taxes equivalent to 1 percent of output generates a maxi-
mal increase in output of less than 1 percent according to the SVAR approach and of 
about 3 percent according to the narrative approach.

The starting point of our analysis is the observation that the two approaches differ 
along two dimensions. One dimension is the assumed reduced-form transmission 
mechanism. The transmission mechanism invoked by the SVAR approach consists 
of a multi-equation, multivariate autoregressive system in which taxes evolve jointly 
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The SVAR and narrative approaches to estimating tax multipliers 
deliver significantly different results. The former yields multipli-
ers of about 1 and the latter of about 3. The two approaches differ 
along two important dimensions: the identification scheme and the 
reduced-form transmission mechanism. This paper uses a DSGE-
model to evaluate the hypothesis that the difference in multipliers 
is due to differences in transmission mechanisms. The main finding 
of the paper is that this hypothesis is rejected. Instead, the observed 
differences in estimated multipliers are due either to the models fail-
ing to identify the same tax shock, or to small-sample uncertainty. 
(JEL E13, E23, E32, E62, H20)

Contents
A Model-Based Evaluation of the Debate on the Size of the Tax Multiplier†	 28

I.  The Data-Generating Process	 30
II.  A Model-Based Test of the Transmission-Mechanism Hypothesis	 32
A. Estimating the Blanchard-Perotti Transmission Mechanism on Artificial Data	 32
B. Estimating the Romer-Romer Transmission Mechanism on Artificial Data	 35
C. Evaluation of the Transmission-Mechanism Hypothesis	 37
III.  Anticipation	 38
IV.  Small Sample Uncertainty and Tax Multipliers	 41
V.  Hybrid Specifications	 42
VI.  Conclusion	 44
References	44

http://dx.doi.org/10.1257/pol.4.2.28


Vol. 4 No. 2� 29Chahrour et al.: A Model-Based Evaluation

with other endogenous variables. By contrast, the transmission mechanism proposed 
by the narrative approach involves a single equation expressing output as a linear 
function of current and past values of the exogenous tax shock.

The second dimension along which the SVAR and narrative approaches differ 
is, of course, the identification scheme. The SVAR approach imposes a number of 
restrictions to identify the variance-covariance matrix of the vector of fundamental 
shocks (one of which is the tax shock), given information on the variance-covariance 
matrix of the vector of estimated reduced form residuals. By contrast, the identifica-
tion scheme in Romer and Romer (2010) uses a narrative approach that consists of 
analyzing written historical records, including presidential speeches, executive-branch 
documents, and congressional reports, to identify exogenous changes in tax liabilities.

A natural question that emerges from the above analysis is whether the signifi-
cant differences in the size of tax multipliers stemming from the Blanchard-Perotti 
and Romer-Romer empirical models are due to differences in their transmission 
mechanisms or to fundamental differences in the tax shocks they identify. The goal 
of the present investigation is to evaluate the hypothesis that the differences in tax 
multipliers are due to the different transmission mechanisms, taking as given the 
ability of both approaches to identify exogenous tax shocks. To this end, we build 
an optimizing dynamic stochastic general equilibrium (DSGE) model featuring a 
number of exogenous shocks and real rigidities that have been shown to be impor-
tant for fitting the US postwar business cycle. We use the DSGE model as our data-
generating process to estimate the Blanchard-Perotti and Romer-Romer empirical 
models under the assumption that the econometrician successfully identifies the 
structural tax shocks. Fulfillment of this assumption is impossible to guarantee in 
empirical studies, but trivial to satisfy in our theoretical environment. This, in fact, 
is our main methodological contribution to the fiscal-multiplier debate.

Our main finding is that the hypothesis posited above is rejected within our data-
generating process. Conditional on correctly identifying the exogenous tax shock, 
the Blanchard-Perotti and Romer-Romer models deliver on average remarkably good 
approximations to the true impulse response of output to an exogenous innovation 
in income tax rates. Consequently, both models also deliver average tax multipliers 
that are in line with the ‘true’ one—i.e., the one implied by the DSGE model. This 
finding suggests that the sharp difference in the size of the tax multiplier implied 
by the Blanchard-Perotti and Romer-Romer models when estimated on actual data 
may be due to small sample uncertainty or to the fact that their associated identifi-
cation schemes uncover fundamentally different fiscal shocks or both. We explore 
the role of small sample uncertainty conditional on the correct identification of the 
underlying tax shock in the context of our data-generating process. We find that for 
samples of size similar to the length of the postwar period, small sample errors are 
significant. In fact, short sample uncertainty can explain the totality of the observed 
differences in estimated tax multipliers.

The remainder of the paper is organized in six sections. Section I develops the 
DSGE model that serves as our data-generating process. Section II contains the main 
result of the paper. It estimates the Blanchard-Perotti and Romer-Romer empiri-
cal models using artificial data and compares the resulting tax multiplier to the true 
one stemming from the DSGE model. Section III studies the effects of introducing 
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anticipated shocks in the DSGE model on the ability of the Blanchard-Perotti and 
Romer-Romer models to uncover the true tax multiplier. Section IV analyzes the con-
sequences of finite samples on the variance of the estimated tax multipliers. Section V 
studies the hybrid reduced-form model of Favero and Giavazzi (2010), which com-
bines elements of the VAR and narrative approaches. Section VI concludes.

I.  The Data-Generating Process

The DSGE model that we use as our data-generating process is an augmented 
version of the one proposed by Mertens and Ravn (2011). The main difference 
with the Mertens and Ravn (2011) model is that our framework includes a number 
of additional structural shocks customarily used in the quantitative business-cycle 
literature. Specifically, our model is driven by four shocks: income-tax shocks, 
government spending shocks, neutral productivity shocks, and preference shocks. 
The model distinguishes between durable and nondurable consumption and fea-
tures four real rigidities: habit formation, adjustment costs in investment, adjust-
ment cost in durable consumption, and variable capacity utilization. This class of 
model has been shown in several recent studies to fit well the postwar US business 
cycle along a number of dimensions, including output, consumption, investment, 
hours worked, and tax revenues (see Mertens and Ravn 2011; and Schmitt-Grohé 
and Uribe 2010, 2011).

The economy is populated by a large number of identical households that seek to 
maximize the lifetime utility function

	​ E​0​ ​∑ 
t=0

​ 
∞

 ​ ​β​ t​​ ​μ​t​ [ ​ ​X​ t​ 
1−σ​  −  1

 _ 1  −  σ ​   − ​ 
ω​n​ t​ 

1+κ​ _ 
1  +  κ ​ ​Z​ t​ 

1−σ​ ]
subject to the following sequential budget constraints

	​ X​t​  = ​ C​ t​ ν​​ V​ t​ 1−ν​  −  b​C​ t−1​ ν  ​​ V​ t−1​ 1−ν​ ,

	​ V​t+1​  =  (1  − ​ δ​v​)​V​t​  + ​ D​t​[1  − ​ Φ​v​(​  ​D​t​ _ ​D​t−1​
 ​)],

	​ K​t+1​  =  [1  − ​ δ​k​  − ​ Ψ​k​(​u​t​)]​K​t​  + ​ I​t​[1  − ​ Φ​k​(​  ​I​t​ _ ​I​t−1​
 ​)],

	​ C​t​  + ​ I​t​  + ​ D​t​  = ​ W​t​​ n​t​(1  − ​ τ​ t​ n​)  + ​ r​t​ ​u​t​​K​t​(1  − ​ τ​ t​ k​)  + ​ τ​ t​ k​ ​δ​τ​ ​K​ τ t​  + ​ F​ t​ ,

and

	​ K​ τ t+1​  =  (1  − ​ δ​τ​)​K​ τ t​  + ​ I​t​ ,

where ​X​t​ is a composite good made of nondurable consumption and services derived 
from a stock of durable consumption goods, ​C​t​ denotes consumption of nondurables, ​
V​t​ denotes the stock of durables, ​D​t​ denotes purchases of durable goods, ​n​t​ denotes 



Vol. 4 No. 2� 31Chahrour et al.: A Model-Based Evaluation

hours worked, ​Z​t​ is a deterministic log-linear trend growing at the (gross) rate ​γ​z​ , ​μ​t​ 
denotes a stochastic preference shock, ​K​t​ is the capital stock, ​I​t​ denotes gross invest-
ment, ​u​t​ denotes capital capacity utilization, ​W​t​ denotes the real wage rate, ​r​t​ denotes 
the rental rate of capital, ​τ​ t​ n​ and ​τ​ t​ k​ denote, respectively, labor and capital income tax 
rates, ​F​ t​ are lump-sum transfers received from the government, and ​K​ τ t​ denotes a 
measure of the capital stock used by the fiscal authority to calculate the depreciation 
allowance. The depreciation rate used for tax purposes may not equal the economic 
rate of depreciation (​δ​τ​ ≠ ​δ​k​).

Firms purchase labor and capital services to produce a single perishable good, ​Y​ t​ , 
by means of the production technology

	​ Y​ t​  = ​ a​t​(​u​t​ ​K​t​​)​α​ (​Z​t​ ​n​t​​)​1−α​.

Firms are assumed to be perfectly competitive in product and factor markets. They 
choose input quantities to maximize profits, given by ​Y​ t​ − ​W​t​ ​n​t​ − ​r​t​ ​u​t​ ​K​t​ , subject to 
the production technology given above.

The government is assumed to issue one-period bonds, denoted ​B​t​ , paying the 
interest rate ​r​t​ . The government budget constraint is therefore given by

	​ G​t​  + ​ F​ t​  +  (1  + ​ r​t−1​)​B​t−1​  = ​ B​t​  + ​ τ​ t​ n​ ​W​t​ ​n​t​  + ​ τ​ t​ k​(​r​t​ ​u​t​ ​K​t​  − ​ δ​τ​ ​K​ τ t​).

The government is assumed to adjust transfer payments, ​F​ t​ , so as to guarantee inter-
temporal solvency. In the present model, the exact timing of transfers does not affect 
the equilibrium dynamics of output and hence neither the size of the tax multiplier.

The laws of motion of the income tax rates are assumed to be of the form

	​ τ​ t​ n​  − ​ τ​ n​  = ​ ρ​ 1​ n​(​τ​ t−1​ n
  ​  − ​ τ​ n​)  + ​ ρ​ 2​ n​(​τ​ t−2​ n

  ​  − ​ τ​ n​)  + ​ ϵ​ t​ τ​

and

	​ τ​ t​ k​  − ​ τ​ k​  = ​ ρ​ 1​ k
 ​(​τ​ t−1​ k

  ​  − ​ τ​ k​)  + ​ ρ​ 2​ k
 ​(​τ​ t−2​ k

  ​  − ​ τ​ k​)  + ​ ϵ​ t​ τ​ ,

where ​ϵ​ t​ τ​ is an i.i.d. innovation with mean zero and standard deviation ​σ​τ​ , and ​τ​ n​ 
and ​τ​ k​ denote, respectively, the deterministic-steady-state values of ​τ​ t​ n​ and ​τ​ t​ k​ . The 
innovation ​ϵ​ t​ τ​ is common to both processes. Mertens and Ravn (2011) motivate this 
assumption by observing that in practice most of the tax liability changes affect the 
taxation of both types of factor income.

The laws of motion of the remaining three driving forces are as follows:

	 ln ​μ​t​  = ​ ρ​μ​ ln ​μ​t−1​  + ​ ϵ​ t​ μ​

	 ln(​g​t​ /g)  = ​ ρ​g​ ln(​g​t−1​/g)  + ​ ϵ​ t​ g​ ,

and

	 ln ​a​t​  = ​ ρ​a​ ln ​a​t−1​  + ​ ϵ​ t​ a​ ,
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where ​g​t​ ≡ ​G​t​/​Z​t​ denotes the detrended level of government spending, g denotes 
the deterministic-steady-state of ​g​t​ , and ​ρ​μ​ , ​ρ​g​ , ​ρ​a​ ∈ (−1, 1) are parameters. The 
disturbances ​ϵ​ t​ μ​, ​ϵ​ t​ g​, and ​ϵ​ t​ a​ are i.i.d. with mean zero and standard deviations ​σ​μ​ , ​
σ​g​ , and ​σ​a​ , respectively.

The time unit in the model is meant to be one quarter. The calibration of the 
model follows closely Mertens and Ravn (2011), who estimate the structural 
parameters of the model to match observed impulse responses of a number of 
macroeconomic variables to tax shocks. For more details regarding the param-
eterization of the model, we refer the reader to the work of Mertens and Ravn 
(2011). Our model requires the calibration of a number of parameters that are not 
present in the Mertens and Ravn (2011) model, namely, the parameters defining 
the stochastic processes of preference shocks, government spending shocks, and 
productivity shocks, and the volatility of tax shocks. We set the serial correlations 
of preference and government spending shocks at 0.9 and the serial correlation of 
the technology shock at 0.95, which are values in the range used in business-cycle 
analysis. All of the results of this paper are invariant to proportional changes in the 
standard deviations of all shocks. We therefore arbitrarily normalize the standard 
deviation of the technology shock at one percent and set the standard deviations 
of the remaining three shocks to ensure that the share of the variance of output 
explained by tax shocks, government spending shocks, productivity shocks, and 
preference shocks be, respectively, 20, 10, 35, and 35 percent. Table 1 summarizes 
the calibration of the model.

II.  A Model-Based Test of the Transmission-Mechanism Hypothesis

We wish to evaluate the hypothesis that, assuming the correct identification of tax 
shocks, the Blanchard-Perotti and Romer-Romer models identify different transmis-
sion mechanisms of tax shocks on output. Using the DSGE model of the previous 
section as the data-generating process, we estimate the transmission mechanisms 
associated with the Blanchard-Perotti and Romer-Romer models. In so doing, we 
use our knowledge of the shocks driving the model economy to leave completely 
aside the issue of identification.

A. Estimating the Blanchard-Perotti Transmission Mechanism on Artificial Data

To estimate the Blanchard-Perotti reduced-form transmission mechanism, we 
draw a sample of 1,000 quarters of the four disturbances of the model to produce 
time series for ​​  y​​t​ ≡ ln (​y​t​/y), ​​  τ​​t​ ≡ ln(​τ​t​/τ), and ​​  g​​t​ ≡ ln(​g​t​/g), denoting, respectively, 
the log-deviations from steady state of detrended output, ​y​t​ ≡ ​Y​t​/​Z​t​ , detrended tax 
revenues, ​τ​t​ ≡ ​T​t​/​Z​t​, and detrended government spending, ​g​t​ ≡ ​G​t​ ​Z​t​ . Tax revenues 
are given by

	​ T​t​  ≡ ​ τ​ t​ n​ ​W​t​​ n​t​  + ​ τ​ t​ k​(​r​t​ ​u​t​ ​K​t​  − ​ δ​τ​​ K​ τ t​).

The parameters y, τ, and g denote the steady-state values of ​y​t​ , ​τ​t​ , and ​g​t​ . We 
keep only the last 250 observations of each artificial time series, which roughly 
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corresponds to the length of the postwar period, and discard the initial 750 observa-
tions. Our choice of variables used for estimation is guided by the observation that 
in their empirical model Blanchard and Perotti (2002) include output, tax revenues, 
and government spending.

The next step in our simulation exercise is to estimate the VAR system

	​ X​t​  = ​ ∑ 
i=1

​ 
4

 ​ ​A​i​ ​X​t−i​​  + ​ u​t​ ,

where

	​ X​t​  ≡ [ ​ 
​​  y​​t​

 
 

 ​​  τ​​t​   

​​  g​​t​
​ ].

Table 1—Calibration

Parameter Value Memo

α 0.36 Technology parameter
​γ​z​ 1.005 Gross growth rate

β​γ​ z​ 
−σ​ 1.0​3​−1/4​ Growth-adjusted discount factor

​δ​k​ 0.025 Depreciation rate of capital

​δ​v​ 0.025 Depreciation rate of durables

​Ψ​ k​ ′ ​(1) 0.0375 Marginal cost of capacity utilization

ν 0.8557 Preference parameter

ω 30,117 Preference parameter
​s​g​ 0.201 Share of government spending in GDP

​δ​τ​ 0.05 Fiscal depreciation rate

​τ​k​ 0.42 Capital income tax rate

​τ​n​ 0.26 Labor income tax rate

σ 2.572 Preference parameter
b 0.880 Habit formation

κ 0.976 Preference parameter

​Φ​ v​ ″​(​γ​z​) 7.795 Adjustment costs durables

​Φ​ k​ ″​(​γ​z​) 8.488 Adjustment costs investment

​Ψ​ k​ ″​(1)/​Ψ​ k​ ′ ​(1) 0.619 Capacity utilization

​ρ​ 1​ n​ 1.483 Labor-income tax rate

​ρ​ 2​ n​ −0.484 Labor-income tax rate

​ρ​ 1​ k
 ​ 1.707 Capital income tax rate

​ρ​ 2​ k
 ​ −0.729 Capital income tax rate

​ρ​μ​ 0.9 Preference shock

​ρ​g​ 0.9 Government spending shock

​ρ​a​ 0.95 Technology shock

​σ​τ​ 0.00273 SD of tax shock

​σ​μ​ 0.0462 SD of preference shock

​σ​g​ 0.0548 SD of government spending shock

​σ​a​ 0.01 SD of technology shock
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Following Blanchard and Perotti (2002), we posit that the reduced form shock ​u​t​ is 
related to a vector of orthogonal shocks, ​ϵ​t​ , as

	​ u​t​  =  B​ϵ​t​ ,

where

	​ ϵ​t​  ≡ [​ ​ϵ​ t​ 1​   ​ϵ​ t​ 2​   

​ϵ​ t​ 3​

 ​ ]  ∼  N(∅, I).

We note that because the DSGE model features four structural innovations and the size 
of the VAR is three, the elements of ​ϵ​t​ cannot be interpreted as structural. Nevertheless, 
as stated earlier, our exercise takes for granted the empirical model’s ability to identify 
tax shocks and examines instead the ability of the estimated VAR system to propagate 
that type of shock. To this end, we identify ​ϵ​ t​ 1​ with the tax shock and set the first column 
of the matrix B equal to the impact effect of a unit increase in ​ϵ​ t​ τ​ on the vector ​X​t​ in the 
DSGE model. In other words, the restrictions we impose on the VAR system imply that 
the impulse responses of output, tax revenues, and government spending to a tax shock 
implied by the DSGE and VAR models are identical in the initial period. In subsequent 
periods, the true and estimated impulse responses will in general be different.

We replicate this exercise 1,000 times and report the average impulse responses 
of tax revenues and output to an innovation in ​ϵ​ t​ τ​ that raises tax revenues by 
one percent of steady-state output on impact. Figure 1 displays with solid lines 
the impulse responses of tax revenue and output to a tax innovation implied by  
the DSGE model. The figure shows with broken lines the corresponding mean impulse 
response functions implied by the Blanchard-Perotti model estimated using artificial 
data. By construction, the impulse responses implied by the DSGE and the Blanchard-
Perotti models are identical on impact. The Blanchard-Perotti empirical model does 

Figure 1. Impulse Response to a Tax Innovation in the DSGE and Blanchard-Perotti Models

Notes: BP stands for the Blanchard-Perotti model. The BP impulse responses are computed as the average over 1,000 
estimations of the BP model. Each estimation uses a sample of size 250 quarters drawn from the DSGE model.
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a good job at tracing the propagation of the tax shock on output. Both in the DSGE 
and in the Blanchard-Perotti models, output displays an inverted hump-shaped con-
traction. The trough in output is slightly less pronounced and occurs a quarter earlier 
(quarter 10 versus quarter 11) in the Blanchard-Perotti model. We measure the tax 
multiplier as the maximum drop in output divided by the initial increase in taxes. In 
the figure, the response of tax revenue is measured as a percentage of steady-state out-
put, and the response of output is measured in percent deviations from its steady-state 
value. This means that the tax multiplier coincides with the magnitude of the trough 
in the output response. The tax multiplier predicted by the Blanchard-Perotti model is 
slightly smaller than that predicted by the DSGE model (1.6 versus 1.78). We conclude 
that, conditional on the correct identification of the tax shock, the Blanchard-Perotti 
reduced-form model does a good job at replicating the propagation of such shocks.

B. Estimating the Romer-Romer Transmission Mechanism on Artificial Data

Following the same logic as in the previous subsection, we continue to assume 
that the econometrician has correctly identified exogenous innovations in taxes. We 
therefore use the artificial time series generated from the DSGE model (and used in 
the estimation of the Blanchard-Perotti model) to estimate the Romer-Romer model. 
That is, we estimate the single equation

(1)	​​   y​​t​  = ​ ∑ 
i=0

​ 
12

 ​ ​C​i​​ ​ϵ​ t−i​ τ  ​  + ​ u​t​ ,

where both ​​  y​​t​ and ​ϵ​ t​ τ​ are equilibrium realizations of output and tax disturbances gen-
erated from the DSGE model and ​u​t​ is the residual of the regression.

Before proceeding to the estimation of the Romer-Romer equation on artificial 
data, we wish to show that, conditional on the correct identification of tax innova-
tions, the OLS estimates of the parameters ​C​i​ for i = 0, … , 12, deliver unbiased 
estimates of the impact and subsequent 12 points of the true impulse response func-
tion of output to a tax innovation. To see this, recall that the DSGE model admits a 
MA(∞) representation of output of the form

	​​   y​​t​  = ​ ∑ 
i=0

​ 
∞

 ​ ​a​i​ ​ϵ​ t−i​ τ  ​​  + ​ ∑ 
i=0

​ 
∞

 ​ ​b​i​​ ​ϵ​ t−i​ a
  ​  + ​ ∑ 

i=0
​ 

∞

 ​ ​c​i ​​​ϵ​ t−i​ μ  ​  + ​ ∑ 
i=0

​ 
∞

 ​ ​d​i​​ ​ϵ​ t−i​ g
  ​ .

All of the innovations on the right-hand side of this expression are independent 
of one another. Comparing this expression with the Romer-Romer model, equa-
tion (1), we have that

	​ C​i​  = ​ a​i​ ,  i  =  0, 1, … , 12

and

	​ u​t​  = ​ ∑ 
i=13

​ 
∞

 ​ ​a​i​​ ​ϵ​ t−i​ τ  ​  + ​ ∑ 
i=0

​ 
∞

 ​ ​b​i​​​ ϵ​ t−i​ a
  ​  + ​ ∑ 

i=0
​ 

∞

 ​ ​c​i​​​ ϵ​ t−i​ μ  ​  + ​ ∑ 
i=0

​ 
∞

 ​ ​d​i​​​ ϵ​ t−i​ g
  ​ .



36	 American Economic Journal: economic policy� May 2012

It follows that ​u​t​ is uncorrelated with ​ϵ​ t−i​ τ  ​ for i = 0, 1, … , 12. As a result, the 
OLS estimate of ​C​i​ in the Romer-Romer model of equation (1) is unbiased for 
i = 0, 1, … , 12. Because in our DSGE model the trough of the impulse response 
function of output to a tax innovation occurs before period 12, it follows that the 
estimates of the Romer-Romer reduced-form transmission mechanism of equa-
tion (1) deliver unbiased estimates of the tax multiplier. The OLS estimate of ​C​i​ is, 
however, not efficient because the vector ​u​t​ is serially correlated. We explore this 
issue further in Section IV.

Figure 2 displays the responses of tax revenues and output to an innovation in 
taxes in the DSGE and Romer-Romer models.1 The magnitude of the innovation 
is set at the same value in the DSGE and Romer-Romer impulse responses and is 
chosen to generate an increase in tax revenues of one percent of trend ouput in the 
DSGE model. The Romer-Romer impulse responses correspond to the average of 
1,000 estimates of equation (1). The Romer-Romer reduced-form model captures 
almost perfectly the true impulse response functions. In particular, it delivers a tax 
multiplier of 1.73, which is close to the true multiplier of 1.78.

To preserve comparability with the Blanchard-Perotti model, we have estimated 
a version of the Romer-Romer model in which the explained variable is the level 
of output. The original Romer-Romer model, however, features the growth rate of 
output as the independent variable in an equation of the form

	 Δ​​  y​​t​  = ​ ∑ 
i=0

​ 
12

 ​ ​D​i​​​ ϵ​ t−i​ τ  ​  + ​ u​t​ .

We note that our DSGE model implies that the growth rate of output possesses an 
MA(∞) representation in the four structural shocks. Consequently, by the same 

1 To derive the response of tax revenue, we estimate on artificial data an equation like (1) but with tax revenues 
as the dependent variable.

Figure 2. Impulse Response to a Tax Innovation in the DSGE and Romer-Romer Models

Notes: RR stands for the Romer-Romer model. The RR impulse responses are computed as the average over 
1,000 estimations of the RR model. Each estimation uses a sample of size 250 quarters drawn from the DSGE model.

1 3 5 7 9 11 13 15 17 19
0

0.5

1

1.5

2

Quarters

%
 d

ev
ia

tio
ns

 fr
om

 s
s 

ou
tp

ut
Tax revenue

DSGE

RR

1 3 5 7 9 11 13 15 17 19
−2

−1.78

−1.5

−1

−0.5

0

Quarters

%
 d

ev
ia

tio
ns

 fr
om

 s
te

ad
y 

st
at

e

Output

DSGE

RR



Vol. 4 No. 2� 37Chahrour et al.: A Model-Based Evaluation

argument given in discussing the properties of the Romer-Romer model in levels, we 
have that an OLS estimation of the Romer-Romer model in growth rates delivers unbi-
ased estimates of the coefficients ​D​i​ for i = 0, 1, … , 12. As a corollary, the OLS esti-
mator also delivers an unbiased estimate of the tax multiplier at any horizon below 12 
quarters.

Figure 3 displays the impulse responses of tax revenues and the level of output 
to a tax innovation implied by the DSGE model and by the Romer-Romer model 
estimated using output growth as the independent variable. The figure shows that the 
Romer-Romer model in growth rates, like its counterpart in levels, captures nearly 
perfectly the transmission of tax shocks to output. In particular, the Romer-Romer 
model estimated using the growth rate of output uncovers the correct tax multiplier 
of 1.78. For the remainder of the paper, we focus on the Romer-Romer model featur-
ing the level of output as the dependent variable.

C. Evaluation of the Transmission-Mechanism Hypothesis

We have shown that, conditional on the correct identification of the exogenous 
tax disturbances, the average transmission mechanisms invoked by the Blanchard-
Perotti and Romer-Romer reduced-form models yield virtually identical tax multi-
pliers, which, in turn, are in line with the true multiplier associated with the DSGE 
data-generating process. We take this result as suggesting two alternative explana-
tions for the fact that empirical estimates of the Blanchard-Perotti and Romer-Romer 
models deliver significantly different tax multipliers. One possible explanation is 
that actual estimated tax multipliers are different because of small-sample uncer-
tainty. We explore this hypothesis in detail in Section IV. A second possible expla-
nation is that the Blanchard-Perotti and Romer-Romer regression models identify 
fundamentally different tax disturbances.

Figure 3. Impulse Response to a Tax Innovation in the DSGE and Difference-Romer-Romer Models

Notes: RR-G stands for the Romer-Romer model with output growth as the dependent variable. The RR-G impulse 
responses are computed as the average over 1,000 estimations of the RR-G model. Each estimation uses a sample 
of size 250 quarters drawn from the DSGE model.
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III.  Anticipation

We have established that conditional on the correct identification of tax innova-
tions, both the Blanchard-Perotti and Romer-Romer models satisfactorily capture 
the transmission mechanism of tax disturbances. We now explore whether this con-
tinues to be the case when the DSGE model is assumed to be driven by anticipated 
and unanticipated shocks. Schmitt-Grohé and Uribe (2010) argue that at least half 
of the variance of output and other macroeconomic aggregates are driven by antici-
pated shocks. Mertens and Ravn (2011) argue that 37 out of the 70 exogenous tax 
liability changes identified by Romer and Romer (2010) are indeed anticipated, with 
a median anticipation horizon of six quarters. Anticipation can potentially affect 
the ability of both the Blanchard-Perotti model and the Romer and Romer model to 
capture the transmission mechanism of fiscal shocks.

To introduce anticipation into the DSGE model, we assume the following speci-
fication for the four structural disturbances:

	​ ϵ​ t​ x​  = ​ ν​ t​ x 0​  + ​ ν​ t−6​ x 6
 ​ ,

for x = τ, μ, g, a. We assume that ​ν​ t​ x 0​ and ​ν​ t​ x 6​ are distributed independently of each 
other and across time with mean 0 and standard deviation ​σ​x 0​ and ​σ​x 6​ , respectively. 
The innovation ​ν​ t​ x0​ is announced in period t and materializes in period t. That is, ​ν​ t​ x 0​ 
is a purely unanticipated shock. The innovation ​ν​ t​ x 6​ is announced in period t and 
materializes in period t + 6. That is, ​ν​ t​ x 6​ is a disturbance anticipated six quarters. 
We pick six quarters of anticipation for tax shocks based on the finding of Mertens 
and Ravn (2011) referred to above. Schmitt-Grohé and Uribe (2011) present econo-
metric evidence of anticipation in technology, government spending, and preference 
shocks at horizons 4 and 8 quarters. For simplicity, we arbitrarily assume anticipa-
tion horizons of six quarters for these three shocks.

The calibration of the model is as before. In particular, we assume that ​σ​ a0​ 2
 ​ + ​

σ​ a6​ 2
 ​ = ​σ​ a​ 2​(= 0.0​1​2​). We also assume that tax shocks, government spending shocks, 

and preference shocks explain, respectively 20, 10, and 35 percent of the variance 
of output. Finally, we assume that the variance of each shock is explained in equal 
parts by its anticipated and its unanticipated components, that is, ​σ​ x 0​ 2

 ​ = ​σ​ x 6​ 2
 ​ for 

x = τ, g, μ, a.
Figure 4 displays with solid lines the impulse responses to a surprise tax shock 

in the DSGE model. Given that the model is approximated up to first order, these 
responses are identical to those corresponding to the DSGE model featuring only 
unanticipated shocks. The figure displays with broken lines the responses of the 
Blanchard-Perotti (top panels) and Romer-Romer (bottom panels) models. As 
before, each model is estimated 1,000 times on artificial data of length 250 quarter 
generated by the DSGE model, with 750 burn-in periods.

In the case of the Blanchard-Perotti model, we continue to assume that the 
econometrician is able to identify the impact response of output and tax revenues 
to an unanticipated tax shock. The coefficients of the VAR, however, are esti-
mated using data from the DSGE model driven by anticipated and unanticipated 
disturbances in taxes, preferences, technology, and government spending. The 
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figure shows that on average the Blanchard-Perotti model is able to capture quite 
well the true impulse response functions. In particular, it delivers an average tax 
multiplier of about 1.6, which is only slightly below its theoretical counterpart 
of 1.78.

In the case of the Romer-Romer model, we run the following regression:

	​​   y​​t​  = ​ ∑ 
i=0

​ 
12

 ​ ​C​i​​(​ν​ t−i​ τ 0
 ​  + ​ ν​ t−i−6​ τ 6

  ​)  + ​ u​t​ .

Notice that ​ν​ t​ τ 0​ + ​ν​ t−6​ τ 6
  ​ equals ​ϵ​ t​ τ​ , which is the total innovation in taxes materialized 

in period t. This is the correct regression for the Romer-Romer model, because the 
econometrician is not assumed to distinguish between anticipated and unanticipated 
tax disturbances. In spite of the assumed inability of the econometrician to isolate 
the unanticipated tax innovation, the regression recovers remarkably well the true 

Figure 4. Impulse Response to a Tax Innovation in the Blanchard-Perotti and Romer-Romer Models 
when the DSGE Model is Driven by Anticipated and Unanticipated Shocks

Notes: BP and RR impulse responses are computed as the average over 1,000 estimations of the BP and RR mod-
els, respectively. Each estimation uses a sample of size 250 quarters drawn from the DSGE model driven by antici-
pated and unanticipated shocks.
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impulse response to an unanticipated tax shock. In particular, the estimated Romer-
Romer model correctly predicts an average tax multiplier of 1.78.

We note that, unlike in the economy driven only by unanticipated shocks, in the 
economy under study here, the Romer-Romer regression does not have a theoretical 
underpinning. To see this, note that the MA(∞) representation of ​​  y​​t​ implied by the 
DSGE model with anticipation is of the form

	​​   y​​t​  = ​ ∑ 
i=0

​ 
∞

 ​ ​C​ i​ 0​ ​​ν​ t−i​ τ 0
 ​  + ​ ∑ 

i=0
​ 

∞

 ​ ​C​ i​ 6​​ ​ν​ t−i​ τ 6
 ​  +  rest,

where in this equation the term labeled ‘rest’ is orthogonal to the anticipated and 
unanticipated tax disturbances that appear on the right-hand side.

By regressing ​​  y​​t​ onto ​ν​ t−i​ τ 0
 ​ + ​ν​ t−6−i​ τ 6

  ​ , the Romer-Romer regression incorrectly 
imposes the restriction that ​C​ i​ 0​ = ​C​ i+6​ 6

  ​ for i = 0, 1, … , 12. Theoretically, these two 
coefficients are not identical. However, as can be seen in Figure 5, numerically in 
the DSGE model under study these two coefficients are quite similar. As a result, 
the Romer-Romer model does not miss by much the magnitude of the multiplier to 
an unanticipated tax shock (see the bottom-right panel of Figure 4). The economic 
reason for the similitude of the MA coefficients ​C​ i​ 0​ and ​C​ i+6​ 6

  ​ is that, given the state of 
the economy (i.e., given the levels of capital, habits, durable goods, past investment, 
and the levels of the exogenous shocks) the economy responds equally to a purely 
unanticipated shock that occurs in the current period and to a shock that materializes 
in the current period but was announced in the past.

Figure 5. Tax Coefficients in the MA(∞) Representation of Output in the DSGE Model
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The results presented in this section, suggest that, conditional on the correct iden-
tification of tax innovations, both the Blanchard-Perotti and Romer-Romer models 
provide on average an adequate reduced-form description of the underlying trans-
mission mechanism of fiscal shocks and a fairly precise estimate of the tax multi-
plier. The success of both empirical models occurs in spite of the fact that half of the 
variance of the data generated by the DSGE model is explained by six-quarter antic-
ipated shocks. This result further strengthens the main thesis of this paper, namely, 
that the differences in tax multipliers implied by estimates of the Blanchard-Perotti 
and Romer-Romer models on actual data might be due to factors other than the 
transmission mechanisms that these models invoke.

IV.  Small Sample Uncertainty and Tax Multipliers

Thus far we have concentrated attention on the average responses of the Blanchard-
Perotti and Romer-Romer models to tax shocks. These averages were taken over 
1,000 samples of artificial data, each 250 quarters long. As explained earlier, the 
sample size of 250 quarters is meant to capture the length of the postwar period. We 
now address the issue of small sample uncertainty. This analysis allows us to answer 
questions such as how likely it is to observe within a finite sample of 250 quarters an 
estimate of the Romer-Romer tax multiplier that exceeds the Blanchard-Perotti mul-
tiplier by two, which is the difference between the two multipliers when estimated 
on actual US postwar data.

We characterize the distributions of tax multipliers at horizons 10, 11, and 12 quar-
ters. The tax multiplier at horizon 11, for instance, is defined as the percentage devia-
tion of output from steady state in period 11 triggered by an increase in tax revenues 
in period 1 equivalent to 1 percent of output. We focus on horizons 10, 11, and 12 
quarters because in our assumed data-generating process the maximum contraction in 
output in response to an exogenous unanticipated tax innovation occurs in quarter 11.

The top panel of Table 2 displays summary statistics of tax multipliers obtained 
from 1,000 samples of 250 quarters of artificial data generated using the DSGE 
model. As discussed in previous sections, the mean of the tax multiplier implied by 
the Blanchard-Perotti and Romer-Romer models is quite close to the true multiplier 

Table 2—Small Sample Properties of the Blanchard-Perotti and Romer-Romer Tax Multiplier 
Conditional on the Correct Identification of Tax Shocks

 ​m​BP​ ​m​RR​ Probability (percent)

Horizon (qrt.) Mean Median SD Mean Median SD ​m​RR​ > ​m​BP​  ​m​RR​ − ​m​BP​ > 2
Sample size: 250 quarters
10 1.61 1.60 0.96 1.73 1.83 1.82 52.7 10.2
11 1.60 1.59 0.96 1.70 1.78 1.82 54.1 10.8
12 1.57 1.57 0.96 1.69 1.76 1.82 55.3 10.9
Sample size: 1,000 quarters
10 1.70 1.71 0.47 1.76 1.78 0.88 51.5 1.0
11 1.70 1.70 0.47 1.78 1.77 0.88 52.6 0.8
12 1.69 1.69 0.47 1.77 1.76 0.89 53.0 1.0

Notes: ​m​BP​ and ​m​RR​ stand for the tax multipliers implied by the Blanchard-Perotti and Romer-Romer models, 
respectively. All statistics are computed from 1,000 samples of artificial data generated from the DSGE Model.
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of 1.78. But, as the top panel of the table shows, the short sample uncertainty sur-
rounding both estimates is quite large, as reflected in the standard deviation of the 
multiplier estimates over the 1,000 samples. The Romer-Romer multiplier esti-
mate appears to be substantially more vulnerable to small-sample uncertainty. Its 
associated standard deviation is almost twice as large as the one associated with the 
Blanchard-Perotti estimate. This suggests that, conditional on the ability of both 
models to correctly identify exogenous tax shocks, the Blanchard-Perotti model 
delivers a more efficient estimate of the tax multiplier.

The penultimate column of Table 2 shows that the estimated Romer-Romer tax 
multiplier can be larger or smaller than the Blanchard-Perotti multiplier with almost 
equal probability. The last column shows that the probability that in a sample of 
250 quarters the Romer-Romer multiplier exceeds the Blanchard-Perotti multiplier 
by 2 is greater than 10 percent. This means that one cannot reject, at standard confi-
dence levels, the hypothesis that, conditional on correct identification, the observed 
differences in estimated tax multipliers are due to small sample uncertainty.

But there is a caveat to this result. For it implies that in a cross section of countries one 
should observe with ninety percent probability that the difference between the Romer-
Romer and the Blanchard-Perotti multipliers is less than two. An incipient empirical 
literature, however, suggests that the Romer-Romer multiplier exceeds consistently 
the Blanchard-Perotti multiplier by more than two. For the UK, for instance, Perotti 
(2005) reports a negative Blanchard-Perotti tax multiplier whereas Cloyne (2010) finds 
a Romer-Romer tax multiplier of 2.5. If the difference in the size of the Romer-Romer 
and Blanchard-Perotti tax multipliers was due to small sample uncertainty and not to 
identification problems, then it would be highly unlikely to observe the US and UK 
evidence. We therefore conclude that the small cross-country evidence that is available 
points towards an explanation based on differences in identification strategies.

The bottom panel of Table 2 suggests that, conditional on the correct identifi-
cation of tax shocks, both the Blanchard-Perotti and Romer-Romer reduced-form 
models produce consistent estimates of the tax multiplier. As the number of observa-
tions increases from 250 to 1,000 quarters, the standard deviations of both estimates 
fall by half, and the probability of observing a Romer-Romer multiplier that exceeds 
the Blanchard-Perotti multiplier by two falls from 10 to 1 percent.

V.  Hybrid Specifications

In a recent contribution, Favero and Giavazzi (2010) augment the Blanchard-
Perotti model by including the Romer-Romer shock as a regressor. They then 
compute the tax multiplier induced by an innovation in the Romer-Romer shock. 
Favero and Giavazzi (2010) find that the size of the multiplier is around unity, 
in line with the results of Blanchard and Perotti (2002).2 They argue that their 
combined model is the best approach to measure tax multipliers. The key premise 

2 Mertens and Ravn (2011) also estimate a hybrid specification that combines a VAR system with the Romer-
Romer tax shock as a regressor. In their specificaiton, these auhors distinguish between anticipated and unantici-
pated Romer-Romer shocks. Unlike Favero and Giavazzi (2010), Mertens and Ravn (2011) estimate a tax multiplier 
of around 2. This difference deserves study.
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of their paper is that both the Blanchard-Perotti and the Romer-Romer models cor-
rectly identify exogenous tax innovations. They interpret their findings, therefore, 
as suggesting that the Romer-Romer single-equation model fails to capture the 
transmission of tax shocks onto output.

We have shown that conditional on the correct identification of tax shocks, both 
the Blanchard-Perotti and the Romer-Romer models produce the correct transmis-
sion mechanism and tax multipliers on average. We have also shown, again con-
ditional on correct identification, that the Blanchard-Perotti model yields more 
efficient estimates of the tax multiplier than does the Romer-Romer model when 
small sample uncertainty is taken into account. In light of these findings, we analyze 
the Favero-Giavazzi specification along two dimensions, namely, bias and efficiency 
of the estimated tax multiplier.

We consider the following version of the Favero-Giavazzi model:

	​ X​t​  = ​ ∑ 
i=1

​ 
4

 ​ ​A​i​​ ​X​t−i​  + C​ϵ​ t​ τ​  + ​ u​t​ ,

where the notation is as in earlier sections. As in our previous Monte Carlo exer-
cises, we estimate this version of the Favero-Giavazzi model 1,000 times. Each 
estimation uses a sample of 250 quarters generated using the DSGE model. Figure 
6 displays with solid lines the response to a tax innovation implied by the DSGE 
model and with broken lines the average response implied by the Favero-Giavazzi 
model. Like the Blanchard-Perotti and Romer-Romer models, on average the 
Favero-Giavazzi model does a good job at uncovering the transmission mechanism 
of tax innovations. We conclude that, conditional on the correct identification of 
the tax shock, the Favero-Giavazzi model produces an unbiased estimate of the tax 
multiplier. In this respect, therefore, the reduced-form transmission mechanisms 
invoked by the Blanchard-Perotti, Romer-Romer, and Favero-Giavazzi models are 
on equal footing.

Figure 6. Impulse Response to a Tax Innovation in the DSGE and Favero-Giavazzi Models

Notes: FG stands for the Favero-Giavazzi model. The FG impulse responses are computed as the average over 1,000 
estimations of the FG model. Each estimation uses a sample of size 250 quarters drawn from the DSGE model.
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But is the Favero-Giavazzi estimate of the tax multiplier more efficient than 
the one produced by the Blanchard-Perotti or Romer-Romer models? We find that 
for a sample size of 250 quarters, the estimate of the tax multiplier at a horizon of 
11 quarters implied by the Favero-Giavazzi model has a standard deviation across 
the 1,000 samples of 1.1. This figure is slightly larger than the standard deviation 
of 0.96 found for the Blanchard-Perotti estimate and significantly smaller than the 
standard deviation of 1.82 of the Romer-Romer estimate (see Table 2). We con-
clude that, conditional on the correct identification of the tax shock, the Favero-
Giavazzi model produces a more efficient estimate than the Romer-Romer model, 
but offers no efficiency gains with respect to the Blanchard-Perotti model.

VI.  Conclusion

Since the revolutionary ideas of Keynes, governments have been fighting reces-
sions with spending increases and tax cuts. The justification of these policy mea-
sures often references estimates of fiscal multipliers. But the literature on the size 
of fiscal multipliers, be it tax or government spending multipliers, does not speak 
with one voice. The VAR literature delivers tax multipliers of about one, whereas 
the narrative literature produces tax multipliers of about three. These differences are 
sizable enough to leave policymakers without a clear guidance on the power of tax 
cuts to stimulate the economy.

The VAR and narrative approaches differ along two important dimensions. One is 
the assumed transmission mechanism. The second is the methodology for identify-
ing tax shocks. This paper uses a micro-founded data-generating process to evaluate 
the hypothesis that differences in estimated tax multipliers are due to differences in 
the assumed transmission mechanism. In testing this hypothesis, it is assumed that 
both methodologies identify the same tax shock. The main finding of this paper is 
that this hypothesis is rejected. Both reduced-form models correctly uncover the 
size of the underlying tax multiplier.

Our results leave open two alternative explanations for the observed differences in 
estimated tax multipliers. One is small sample uncertainty. Accordingly, we explore 
the small-sample properties of the estimated tax multipliers stemming from the VAR 
and narrative models. We find that, conditional on both models identifying the same 
tax shock, small sample uncertainty is large. In fact, small sample uncertainty may 
account for all of the observed differences in estimated tax multipliers according to 
our data-generating process.

All of the results reported in this investigation are conditional on the assumption 
that the VAR and narrative approaches successfully identify exogenous innovations 
in taxes. An alternative explanation of the observed differences in estimates of tax 
multipliers is, of course, that the two methodologies fail to identify the same tax 
shock. We believe that this alternative warrants future investigation.
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