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1 Introduction

A popular specification in recent analyses of alternative monetary policies is

the “new-Keynesian” Phillips curve,

πt = ξŝt + βEtπt+1, (1.1)

where πt is the rate of inflation, ŝt is the departure of the (average) log of

real marginal cost from its steady-state value, the coefficient ξ > 0 depends

on the degree of stickiness of prices, and 0 < β < 1 is a utility discount

factor that, under an empirically realistic calibration, must nearly equal 1.

As is well known, this relation follows (in a log-linear approximation) from

the Calvo model of staggered price-setting under certain assumptions.1 The

implications of (1.1) for the co-movement of the general level of prices and

marginal cost have been subject to extensive econometric testing, beginning

with the work of Gali and Gertler (1999) and Sbordone (2002).

In standard derivations, (1.1) follows from the optimal pricing problem

of a firm that adjusts the price of its product at random intervals, under the

assumption that the marginal cost St(i) of supplying a given good i in period

t is given by a function of the form

St(i) = S(yt(i); Xt), (1.2)

where yt(i) is the quantity sold of good i in that period, and Xt is a vector

of variables that firm i takes to be unaffected by its pricing decision. Under

the further assumption of a demand curve of the form yt(i) = Y (pt(i); Xt),

this implies that marginal cost can be expressed as a function of the price

pt(i) that i chooses to charge in that period, together with variables that are

unaffected by its actions.

The specification (1.2) is in turn correct as long as all factors of production

are either purchased on a spot market (at a price that is independent of the

quantity used by i), or completely fixed. In particular, one can treat the case

1See, e.g., Woodford (2003, chap. 3, sec. 2.2).
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in which capital is not a variable factor of production (and output is simply a

concave function of the variable labor input, as in Woodford, 2003, chap. 3),

or the case in which capital is variable, but capital services are obtained on a

rental market (as in Gali and Gertler, 1999, and the baseline case considered

in Sbordone, 2002).2 Matters are more complex, however, under the more

realistic assumption that capital is endogenous and firm-specific. That is,

we shall assume that each firm accumulates capital for its own use only, and

that (as in standard neoclassical investment theory) there are convex costs

of more rapid adjustment of an individual firm’s capital stock. In this case,

St(i) will depend not only on the quantity that firm i produces in period t,

but also on the firm’s capital stock in that period, and this latter variable

depends on the firm’s decisions in previous periods, including its previous

pricing decisions. The dynamic linkages in a firm’s optimal price-setting

decision are therefore more complex in this case than is assumed in standard

derivations of the new-Keynesian Phillips curve.

Here I treat the optimal price-setting problem in a model with firm-

specific capital, and show that once again a relation of the form (1.1) can

be derived.3 Hence the econometric estimates reported by authors such as

Gali and Gertler (1999) and Sbordone (2002) can be interpreted without

making assumptions as restrictive as those papers had appeared to rely upon.

However, the coefficient ξ is a more complex function of underlying model

parameters, such as the frequency with which prices are re-optimized, in the

case that capital is firm-specific.

This is potentially of considerable importance for the interpretation of

econometric estimates of the coefficient ξ. Estimates of ξ are often inter-

preted in terms of the frequency of price of adjustment that they imply,

given estimated or calibrated values for other model parameters. (Indeed, in

many papers in the literature, beginning with Gali and Gertler, 1999, equa-

tion (1.1) is estimated in a form that results directly in an estimate of the

2Both assumptions lead to a relation of the form (1.1). However, the interpretation of
the coefficient ξ in terms of underlying model parameters is different in the two cases, as
discussed in Sbordone (2002).

3The derivation here corrects the analysis given in Woodford (2003, chap. 5, sec. 3), to
take account of an error in the original calculations noted by Sveen and Weinke (2004a).
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frequency of price adjustment rather than of the elasticity ξ.) Furthermore, it

is often argued that estimated values of ξ are so small as to imply that prices

are sticky for an implausibly long length of time; and this is taken to cast

doubt on the realism of the Calvo pricing model and hence of the aggregate-

supply specification (1.1). But the mapping between the frequency of price

adjustment and the value of ξ is different in the case of firm-specific capital

than under the more common assumption of a rental market for capital ser-

vices.4 The assumption of a rental market for capital substantially weakens

the degree of strategic complementarity among the pricing decisions of dif-

ferent firms — or alternatively, it reduces the importance of real rigidities in

the sense of Ball and Romer (1990) — with the consequence that ξ is larger

for any given frequency of price adjustment. It then follows that a small

estimated value of ξ will be taken to imply very infrequent price adjustment.

But allowing for firm-specific capital can make the implied frequency of price

adjustment much greater, as shown in section 4.4 below.

The fact that an assumption that capital is firm-specific will lead to a

lower estimate of the degree of price stickiness was first demonstrated by

Sbordone (1998), and also illustrated by Gali, Gertler and Lopez-Salido

(2001). However, in these papers, the treatment of capital as firm-specific is

accompanied (at least implicitly) by an assumption that the capital stock of

each firm is exogenously given, as in the analysis in Woodford (2003, chap. 3),

rather than responding endogenously to the firm’s incentives to invest. This

is because it is only in this case that a specification of the form (1.2) remains

consistent with the assumption of firm-specific capital. The analysis here in-

stead presents an analysis of aggregate supply in the case that capital is both

firm-specific and endogenous.5 This case is a good deal more complicated to

4It is also different under the assumption of a fixed quantity of capital for each firm, as
noted above; but that simple model is disconfirmed by the observation that capital varies
over time, and indeed that investment spending is substantially affected by monetary
disturbances.

5Subsequent to the first circulation of these notes, Eichenbaum and Fisher (2004),
Altig et al. (2005), and Matheron (2005) have built on the analysis here to examine
the consequences of endogenous firm-specific capital for the estimated frequency of price
adjustment in empirical versions of the new-Keynesian Phillips curve. These authors
extend the present analysis to more complicated versions of (1.1) that allow a closer fit to
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analyze, but it turns out still to be possible to derive an aggregate-supply

relation that (in a log-linear approximation) takes the simple form (1.1).

The paper proceeds as follows. In section 2, I introduce a model of firm-

specific investment demand with convex costs of adjustment of an individual

firm’s capital stock, with particular attention to the way in which standard

neoclassical investment theory must be modified when the firm is not a price-

taker in its product market, but instead fixes its price for a period of time and

fills whatever orders it may receive. In section 3, I then consider the price-

setting problem of such a firm, under the assumption that the price remains

fixed for a random interval of time, and characterize the joint dynamics of the

firm’s price and its capital stock. Finally, in section 4, I derive the model’s

implications for the form of the aggregate-supply relation that connects the

overall inflation rate with the overall level of real activity, and discuss the

consequences for the inference about the frequency of price adjustment that

can be drawn from an estimate of the elasticity ξ in (1.1).

2 Investment Demand when Prices are Sticky

I wish to analyze the relation between inflation and aggregate output in

a model with staggered pricing (modeled after the fashion of Calvo (1983)

and Yun (1996)) and endogenous capital accumulation. The main source of

complication in this analysis is the assumption that the producers of indi-

vidual differentiated goods (that adjust their prices at different dates) invest

in firm-specific capital which is relatively durable, so that the distribution of

capital stocks across different firms (as a result of differing histories of price

adjustment) matters, and not simply the economy’s aggregate capital stock.

Nonetheless, I shall show that (in the same kind of log-linear approximation

that is used in standard derivations of the New Keynesian Phillips curve) it is

possible to derive structural relations that constitute the “aggregate supply

block” of a macro model, which involve only the economy’s aggregate capital

stock, aggregate output, and overall index of prices.

A first task is to develop a model of optimizing investment demand by

aggregate U.S. time series.
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suppliers with sticky prices, and that are demand-constrained as a result.

As in the sticky-price models with exogenous capital presented in Woodford

(2003, chap. 3), there is a continuum of differentiated goods, each supplied

by a single (monopolistically competitive) firm. The production function for

good i is assumed to be of the form

yt(i) = kt(i)f(Atht(i)/kt(i)), (2.1)

where f is an increasing, concave function, with f(0) = 0. I assume that each

monopoly supplier makes an independent investment decision each period;

there is a separate capital stock kt(i) for each good, that can be used only in

the production of good i.

I also assume convex adjustment costs for investment by each firm, of

the usual kind assumed in neoclassical investment theory. Increasing the

capital stock to the level kt+1(i) in period t+1 requires investment spending

in the amount It(i) = I(kt+1(i)/kt(i))kt(i) in period t. Here It(i) represents

purchases by firm i of the composite good, defined as the usual Dixit-Stiglitz

aggregate over purchases of each of the continuum of goods (with the same

constant elasticity of substitution θ > 1 as for consumption purchases).6 In

this way, the allocation of investment expenditure across the various goods

is in exactly the same proportion as consumption expenditure, resulting in a

demand curve for each producer that is again of the form

yt(i) = Yt

(
pt(i)

Pt

)−θ

, (2.2)

but where now aggregate demand is given by Yt = Ct + It + Gt, in which ex-

pression Ct is the representative household’s demand for the composite good

for consumption purposes, Gt is the government’s demand for the composite

good (treated as an exogenous random variable), and It denotes the integral

of It(i) over the various firms i.

I assume as usual that the function I(·) is increasing and convex; the

convexity implies the existence of costs of adjustment. I further assume that

near a zero growth rate of the capital stock, this function satisfies I(1) = δ,

6See Woodford (2003, chap. 3) for discussion of this aggregator and its consequences
for the optimal allocation of demand across alternative differentiated goods.
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I ′(1) = 1, and I ′′(1) = εψ, where 0 < δ < 1 and εψ > 0 are parameters.

This implies that in the steady state to which the economy converges in

the absence of shocks (which here involves a constant capital stock, as I

abstract from trend growth), the steady rate of investment spending required

to maintain the capital stock is equal to δ times the steady-state capital stock

(so that δ can be interpreted as the rate of depreciation). It also implies that

near the steady state, a marginal unit of investment spending increases the

capital stock by an equal amount (as there are locally no adjustment costs).

Finally, in my log-linear approximation to the equilibrium dynamics, εψ is

the parameter that indexes the degree of adjustment costs. A central goal of

the analysis is consideration of the consequences of alternative values for εψ;

the model with exogenous firm-specific capital presented in Woodford (2003,

chaps. 3, 4) is recovered as the limiting case of the present model in which

εψ is made unboundedly large.

Profit-maximization by firm i then implies that the capital stock for pe-

riod t + 1 will be chosen in period t to satisfy the first-order condition

I ′(gt(i)) = EtQt,t+1Πt+1 {ρt+1(i) +

gt+1(i)I
′(gt+1(i))− I(gt+1(i))} , (2.3)

where gt(i) ≡ kt+1(i)/kt(i), ρt+1(i) is the (real) shadow value of a marginal

unit of additional capital for use by firm i in period t + 1 production, and

Qt,t+1Πt+1 is the stochastic discount factor for evaluating real income streams

received in period t + 1. Expressing the real stochastic discount factor as

βλt+1/λt, where λt is the representative household’s marginal utility of real

income in period t and 0 < β < 1 is the utility discount factor, and then

log-linearizing (2.3) around the steady-state values of all state variables, we

obtain

λ̂t + εψ(k̂t+1(i)− k̂t(i)) = Etλ̂t+1 +

[1− β(1− δ)]Etρ̂t+1(i) + βεψEt(k̂t+2(i)− k̂t+1(i)), (2.4)

where λ̂t ≡ log(λt/λ̄), k̂t(i) ≡ log(kt(i)/K̄), ρ̂t(i) ≡ log(ρt(i)/ρ̄), and vari-

ables with bars denote steady-state values.

Note that ρt+1(i) would correspond to the real “rental price” for capital

services if a market existed for such services, though I do not assume one
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here.7 It is not possible in the present model to equate this quantity with

the marginal product, or even the marginal revenue product of capital (using

the demand curve (2.2) to compute marginal revenue). For suppliers are

demand-constrained in their sales, given the prices that they have posted; it

is not possible to increase sales by moving down the demand curve. Thus the

shadow value of additional capital must instead be computed as the reduction

in labor costs through substitution of capital inputs for labor, while still

supplying the quantity of output that happens to be demanded. In this way

I obtain

ρt(i) = wt(i)

(
f(h̃t(i))− h̃t(i)f

′(h̃t(i))

Atf ′(h̃t(i))

)
,

where wt(i) is the real wage for labor of the kind hired by firm i and

h̃t(i) ≡ Atht(i)/kt(i) is firm i’s effective labor-capital input ratio.8 I can

alternatively express this in terms of the output-capital ratio for firm i (in

order to derive an “accelerator” model of investment demand), by substitut-

ing (2.1) to obtain

ρt(i) =
wt(i)

At

f−1(yt(i)/kt(i))[φ(yt(i)/kt(i))− 1], (2.5)

where φ(y/k) is the reciprocal of the elasticity of the function f , evaluated

at the argument f−1(y/k).

As in the baseline model treated in Woodford (2003, chap. 3), I shall

assume a sector-specific labor market. In this case, the first-order condition

for optimizing labor supply can be written in the form

wt(i) =
vh(f

−1(yt(i)/kt(i))kt(i)/At; ξt)

λt

, (2.6)

where labor demand has been expressed as a function of the demand for good

i. This can be log-linearized as

ŵt(i) = ν(ĥt(i)− h̄t)− λ̂t,

7The case in which there is a rental market for capital services is instead considered in
section 4.2 below.

8Note that in the case of a flexible-price model, the ratio of wt(i) to the denominator
would always equal marginal revenue, and so this expression would equal the marginal
revenue product of capital, though it would be a relatively cumbersome way of writing it.
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where ν > 0 is the elasticity of the marginal disutility of labor with re-

spect to labor supply, and h̄t is an exogenous disturbance to preferences,

indicating the percentage increase in labor supply needed to maintain a con-

stant marginal disutility of working. Substituting (2.6) into (2.5) and log-

linearizing, I obtain

ρ̂t(i) =

(
νφh +

φh

φh − 1
ωp

)
(ŷt(i)− k̂t(i)) + νk̂t(i)− λ̂t − ωqt, (2.7)

where φh > 1 is the steady-state value of φ(y/k), i.e., the reciprocal of the

elasticity of the production function with respect to the labor input, and

ωp > 0 is the negative of the elasticity of the marginal product f ′(f−1(y/k))

with respect to y/k. The composite exogenous disturbance qt is defined as

qt ≡ ω−1[νh̄t + (1 + ν)at]

where at ≡ log At; it indicates the percentage change in output required to

maintain a constant marginal disutility of output supply, in the case that the

firm’s capital remains at its steady-state level.9 Substituting (2.7) into (2.4),

I then have an equation to solve for the dynamics of firm i’s capital stock,

given the evolution of demand ŷt(i) for its product, the marginal utility of

income λ̂t, and the exogenous disturbance qt.

As the coefficients of these equations are the same for each firm, an equa-

tion of the same form holds for the dynamics of the aggregate capital stock (in

our log-linear approximation). The equilibrium condition for the dynamics

of the capital stock is thus of the form

λ̂t + εψ(K̂t+1 − K̂t) = β(1− δ)Etλ̂t+1 +

[1− β(1− δ)][ρyEtŶt+1 − ρkK̂t+1 − ωEtqt+1] + βεψEt(K̂t+2 − K̂t+1),

(2.8)

where the elasticities of the marginal valuation of capital are given by

ρy ≡ νφh +
φh

φh − 1
ωp > ρk ≡ ρy − ν > 0.

9That is, qt measures the output change that would be required to maintain a fixed
marginal disutility of supply given possible fluctuations in preferences and technology, but
not taking account of the effect of possible fluctuations in the firm’s capital stock. With
this modification of the definition given in Woodford (2003, chap. 3) for the model with
exogenous capital, qt is again an exogenous disturbance term.
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The implied dynamics of investment spending are then given by

Ît = k[K̂t+1 − (1− δ)K̂t], (2.9)

where Ît is defined as the percentage deviation of investment from its steady-

state level, as a share of steady-state output, and k ≡ K̄/Ȳ is the steady-state

capital-output ratio.

Thus far I have derived investment dynamics as a function of the evolution

of the marginal utility of real income of the representative household. This

is in turn related to aggregate spending through the relation λt = uc(Yt −
It −Gt; ξt), which we may log-linearize as

λ̂t = −σ−1(Ŷt − Ît − gt), (2.10)

where the composite disturbance gt reflects the effects both of government

purchases and of shifts in private impatience to consume.10 Finally, be-

cause of the relation between the marginal utility of income process and the

stochastic discount factor that prices bonds,11 the nominal interest rate must

satisfy

1 + it = {βEt[λt+1/(λtΠt+1)]}−1,

which one may log-linearize as

ı̂t = Etπt+1 + λ̂t − Etλ̂t+1. (2.11)

The system of equations (2.8) – (2.11) then comprise the “IS block” of

the model. These jointly suffice to determine the paths of the variables

{Ŷt, Ît, K̂t, λt}, given an initial capital stock and the evolution of short-term

real interest rates {ı̂t−Etπt+1}. The nature of the effects of real interest-rate

expectations on these variables is discussed further in Woodford (2004).

10Note that the parameter σ in this equation is not precisely the intertemporal elasticity
of substitution in consumption, but rather C̄/Ȳ times that elasticity. In a model with
investment, these quantities are not exactly the same, even in the absence of government
purchases.

11See Woodford (2003, chaps. 2, 4) for further discussion of the stochastic discount
factor and the Fisher relation between the nominal interest rate and expected inflation.
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3 Optimal Price-Setting with Endogenous

Capital

I turn next to the implications of an endogenous capital stock for the price-

setting decisions of firms. The capital stock affects a firm’s marginal cost,

of course; but more subtly, a firm considering how its future profits will be

affected by the price it sets must also consider how its capital stock will

evolve over the time that its price remains fixed.

I begin with the consequences for the relation between marginal cost and

output. Real marginal cost can be expressed as the ratio of the real wage to

the marginal product of labor,

st(i) =
wt(i)

Atf ′(f−1(yt(i)/kt(i)))
. (3.1)

Again writing the factor input ratio as a function of the capital/output ratio,

and using (2.6) for the real wage, we obtain

st(i) =
vh(f

−1(yt(i)/kt(i))kt(i)/At; ξt)

λtAtf ′(f−1(yt(i)/kt(i)))
(3.2)

for the real marginal cost of supplying good i. This can be log-linearized to

yield

ŝt(i) = ω(ŷt(i)− k̂t(i)− qt) + νk̂t(i)− λ̂t, (3.3)

where ŝt(i) ≡ log(st(i)/s̄), and ω ≡ ωw + ωp ≡ νφh + ωp > 0 is the

elasticity of marginal cost with respect to a firm’s own output.

Letting ŝt without the index i denote the average level of real marginal

cost in the economy as a whole, I note that (3.3) implies that

ŝt(i) = ŝt + ω(ŷt(i)− Ŷt)− (ω − ν)(k̂t(i)− K̂t). (3.4)

Then using (2.2) to substitute for the relative output of firm i in (3.4), one

obtains

ŝt(i) = ŝt − (ω − ν)k̃t(i)− ωθp̃t(i), (3.5)

where p̃t(i) ≡ log(pt(i)/Pt) is the firm’s log relative price, and k̃t(i) ≡ k̂t(i)−
K̂t is its log relative capital stock. Note also that the average level of real

marginal cost satisfies

ŝt = ω(Ŷt − K̂t − qt) + νK̂t − λ̂t. (3.6)
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Following the same logic as in Woodford (2003, chap. 3), the Calvo price-

setting framework implies that if a firm i resets its price in period t, it chooses

a price that satisfies the (log-linear approximate) first-order condition

∞∑

k=0

(αβ)kÊi
t [p̃t+k(i)− ŝt+k(i)] = 0, (3.7)

where 0 < α < 1 is the fraction of prices that are not reset in any period.

Here I introduce the notation Êi
t for an expectation conditional on the state

of the world at date t, but integrating only over those future states in which

i has not reset its price since period t. Note that in the case of any aggregate

state variable xt (i.e., a variable the value of which depends only on the

history of aggregate disturbances, and not on the individual circumstances

of firm i), Êi
txT = EtxT , for any date T ≥ t. However, the two conditional

expectations differ in the case of variables that depend on the relative price

or relative capital stock of firm i. For example,

Êi
t p̃t+k(i) = p̃t(i)−

k∑

j=1

Etπt+j, (3.8)

for any k ≥ 1, since firm i’s price remains unchanged along all of the histories

that are integrated over in this case. Instead, the expectation when one

integrates over all possible future states conditional upon the state of the

world at date t is given by

Etp̃t+1(i) = α[p̃t(i)− Etπt+1] + (1− α)Etp̂
∗
t+1(i), (3.9)

where p̂∗t (i) is the (log) relative price chosen when i reconsiders its price at

date t. (Similar expressions can be given for horizons k > 1.)

Substituting (3.5) for st+k(i) and (3.8) for Êi
t p̃t+k(i) in (3.7), one obtains

(1 + ωθ)p̂∗t (i) =

(1− αβ)
∞∑

k=0

(αβ)kÊi
t


ŝt+k + (1 + ωθ)

k∑

j=1

πt+j − (ω − ν)k̃t+k(i)


 (3.10)

for the optimal relative price that should be chosen by a firm that resets its

price at date t. This relation differs from the result obtained in Woodford
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(2003, chap. 3) for a model with exogenous capital only in the presence of

the Êi
t k̃t+k(i) terms.

The additional terms complicate the analysis in several respects. Note

that the first two terms inside the square brackets are aggregate state vari-

ables, so that the distinction between Êi
t and Et would not matter in this

expression, were it not for the dependence of marginal cost on i’s relative

capital stock; it is for this reason that the alternative form of conditional

expectation did not have to be introduced in Woodford (2003, chap. 3).

However, in the model with endogenous capital, it is important to make this

distinction when evaluating the Êi
t k̃t+k(i) terms.12 Furthermore, these new

terms will not have the same value for all firms i that reset their prices at

date t, for they will depend on i’s relative capital stock k̃t(i) at the time

that prices are reconsidered; hence p∗t (i) is no longer independent of i, as in

the model with exogenous capital (or a model with an economy-wide rental

market for capital). And finally, (3.10) is not yet a complete solution for the

optimal price-setting rule, since the value of the right-hand side still depends

on the expected evolution of i’s relative capital stock; and this in turn de-

pends on the expected evolution of i’s relative price, which depends on the

choice of p̂∗t (i). A complete solution for this decision rule requires that one

consider the effect of a firm’s relative price on the evolution of its relative

capital stock.

3.1 Dynamics of the Relative Capital Stock

Equation (2.8) implies that i’s relative capital stock must evolve in accor-

dance with the relation

εψ(k̃t+1(i)− k̃t(i)) = [1− β(1− δ)][ρyEt(ŷt+1(i)− Ŷt)− ρkk̃t+1(i)]

+βεψEt(k̃t+2(i)− k̃t+1(i)).

12It is the failure to distinguish between Êi
t and Et in evaluating these terms that

results in the incorrect calculations in the treatment of the present model in Woodford
(2003, chap. 5) noted by Sveen and Weinke (2004a).
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Again using i’s demand curve to express relative output as a function of the

firm’s relative price, this can be written as

Et[Q(L)k̃t+2(i)] = ΞEtp̃t+1(i), (3.11)

where the lag polynomial is

Q(L) ≡ β − [1 + β + (1− β(1− δ))ρkε
−1
ψ ]L + L2,

and

Ξ ≡ (1− β(1− δ))ρyθε
−1
ψ > 0.

I note for later reference that the lag polynomial can be factored as

Q(L) = β(1− µ1L)(1− µ2L).

Given that Q(0) = β > 0, Q(β) < 0, Q(1) < 0, and that Q(z) > 0 for all

large enough z > 0, one sees that µ1, µ2 must be two real roots that satisfy

0 < µ1 < 1 < β−1 < µ2.

Equation (3.11) can not yet be solved for the expected evolution of the

relative capital stock, because of the dependence of the expected evolution of

i’s relative price (the “forcing term” on the right-hand side) on the expected

evolution of the relative capital stock itself, for reasons just discussed. How-

ever, one may note that insofar as i’s decision problem is locally convex, so

that the first-order conditions characterize a locally unique optimal plan, the

optimal decision for i’s relative price in the event that the price is reset at

date t must depend only on i’s relative capital stock at date t and on the

economy’s aggregate state. Thus a log-linear approximation to i’s pricing

rule must take the form

p̂∗t (i) = p̂∗t − ψk̃t(i), (3.12)

where p̂∗t depends only on the aggregate state (and so is the same for all i),

and ψ is a coefficient to be determined below.

Note that the assumption that the firms that reset prices at date t are

drawn with uniform probability from the entire population implies that the

average value of k̃t(i) over the set of firms that reset prices is zero (just as it

is over the entire population of firms). Hence p̂∗t is also the average relative
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price chosen by firms that reset prices at date t, and the overall rate of price

inflation will be given (in our log-linear approximation) by

πt =
1− α

α
p̂∗t . (3.13)

Substitution of this, along with (3.12), into (3.9) then yields

Etp̃t+1(i) = αp̃t(i)− (1− α)ψk̃t+1(i). (3.14)

Similarly, the optimal quantity of investment in any period t must depend

only on i’s relative capital stock in that period, its relative price (which

matters as a separate argument of the decision rule in the event that the

price is not reset in period t), and the economy’s aggregate state. Thus a

log-linear approximation to i’s investment rule must imply an expression of

the form

k̃t+1(i) = λk̃t(i)− τ p̃t(i), (3.15)

where the coefficients λ and τ remain to be determined. This in turn implies

that

Etk̃t+2(i) = λk̃t+1(i)− τEtp̃t+1(i)

= [λ + (1− α)τψ]k̃t+1(i)− ατp̃t(i),

using (3.14) to substitute for Etp̃t+1(i) in the second line. Using this to

substitute for Etk̃t+2(i) in (3.11), and again using (3.14) to substitute for

Etp̃t+1(i), we obtain a linear relation that can be solved for k̃t+1(i) as a

linear function of k̃t(i) and p̃t(i). The conjectured solution (3.15) satisfies

this equation, so that the first-order condition (3.11) is satisfied, if and only

if the coefficients λ and τ satisfy

R(λ; ψ) = 0, (3.16)

(1− αβλ)τ = Ξαλ, (3.17)

where

R(λ; ψ) ≡ (β−1 − αλ)Q(βλ) + (1− α)Ξψλ

is a cubic polynomial in λ, with a coefficient on the linear term that depends

on the value of the (as yet unknown) coefficient ψ. Condition (3.16) involves
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only λ (given the value of ψ); given a solution for λ, (3.17) then yields a

unique solution for τ , as long as λ 6= (αβ)−1.13

The dynamics of the the relative capital stock given by (3.15), together

with (3.14), imply an expected joint evolution of i’s relative price and relative

capital stock satisfying


 Etp̃t+1(i)

k̃t+1(i)


 =


 α + (1− α)τψ −(1− α)ψλ

−τ λ





 p̃t(i)

k̃t(i)


 . (3.18)

This implies convergent dynamics — so that both the means and variances

of the distribution of possible future values for i’s relative price and relative

capital stock remain bounded no matter how in the future one looks, as long

as the fluctuations in the average desired relative price p̂∗t are bounded — if

and only if both eigenvalues of the matrix in this equation are inside the unit

circle. This stability condition is satisfied if and only if

λ < α−1, (3.19)

λ < 1− τψ, (3.20)

and

λ > −1− 1− α

1 + α
τψ. (3.21)

These conditions must be satisfied if the implied dynamics of firm i’s capital

stock and relative price are to remain forever near enough to the steady-state

values around which I have log-linearized the first-order conditions for the

solution to the linearized equations to accurately approximate a solution to

the exact first-order conditions. Hence the firm’s decision problem has a

solution that can be characterized using the local methods employed above

only if equations (3.16) – (3.17) have a solution (λ, τ) satisfying (3.19) –

(3.21). I show below that a unique solution consistent with these bounds

exists, in the case of large enough adjustment costs.

13It is obvious from (3.17) that no solution with λ = (αβ)−1 is possible, as long as
Ξ > 0, as we assume here (i.e., there exists some cost of adjusting capital). Even in the
case that Ξ = 0, such a solution would violate condition (3.19) below, so one can exclude
this possibility.
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3.2 The Optimal Pricing Rule

I return now to an analysis of the first-order condition for optimal price-

setting (3.10). The term that depends on firm i’s own intended future be-

havior is proportional to

∞∑

k=0

(αβ)kÊi
t k̃t+k(i).

It is now possible to write this term as a function of i’s relative capital stock

at the time of the pricing decision and of the expected evolution of aggregate

variables, allowing me to obtain an expression of the form (3.12) for the

optimal pricing rule.

Equation (3.15) for the dynamics of the relative capital stock implies that

Êi
t k̃t+k+1(i) = λÊi

t k̃t+k(i)− τ [p̃t(i)− Et

k∑

j=1

πt+j]

for each k ≥ 0, using (3.8) to substitute for Êi
t p̃t+k(i). This can be integrated

forward (given that14 |λ| < (αβ)−1), to obtain

∞∑

k=0

(αβ)kÊi
t k̃t+k(i) = (1− αβλ)−1k̃t(i)

−τ
αβ

(1− αβ)(1− αβλ)

[
p̃t(i)−

∞∑

k=1

(αβ)kEtπt+k

]
. (3.22)

Substitution of this into (3.10) then yields

φp̂∗t (i) = (1−αβ)
∞∑

k=0

(αβ)kEtŝt+k +φ
∞∑

k=1

(αβ)kEtπt+k− (ω− ν)
1− αβ

1− αβλ
k̃t(i),

where

φ ≡ 1 + ωθ − (ω − ν)τ
αβ

1− αβλ
. (3.23)

The solution to this equation is a pricing rule of the conjectured form (3.12)

if and only if the process p̂∗t satisfies

φp̂∗t = (1− αβ)
∞∑

k=0

(αβ)kEtŝt+k + φ
∞∑

k=1

(αβ)kEtπt+k, (3.24)

14Note that (3.20) – (3.21) jointly imply that λ > −α−1. Hence any solution consistent
with the stability conditions derived in the previous section must imply convergence of
the infinite sum in (3.22).
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where ŝt is defined by (3.6), and the coefficient ψ satisfies

φψ = (ω − ν)
1− αβ

1− αβλ
. (3.25)

Note that this last equation can be solved for ψ, given the values of λ and

τ ; however, the equations given earlier to determine λ and τ depend on the

value of ψ. Hence equations (3.16), (3.17), and (3.25) comprise a system of

three equations that jointly determine the coefficients λ, τ, and ψ of the firm’s

optimal decision rules.

This system of equations can be reduced to a single equation for λ in the

following manner. First, note that for any conjectured value of λ 6= 0, (3.16)

can be solved for ψ. This defines a function15

ψ(λ) ≡ −(1− αβλ)Q(βλ)

(1− α)βΞλ
.

Similarly, (3.17) defines a function16

τ(λ) ≡ αΞλ

1− αβλ
. (3.26)

Substituting these functions for ψ and τ in (3.25), one obtains an equation in

which λ is the only unknown variable. Multiplying both sides of this equation

by (1− α)β(1− αβλ)Ξλ,17 one obtains the equation

V (λ) = 0, (3.27)

where V (λ) is the quartic polynomial

V (λ) ≡ [(1+ωθ)(1−αβλ)2−α2β(ω−ν)Ξλ]Q(βλ)+β(1−α)(1−αβ)(ω−ν)Ξλ.

(3.28)

Finally, one can write the inequalities (3.19) – (3.21) as restrictions upon

the value of λ alone. One observes from the above discussion that the product

15The function is not defined if λ = 0. However, since Q(0) 6= 0, it is clear from (3.16)
that λ 6= 0, for any economy with some adjustment costs (so that Ξ is finite).

16The function is not defined if λ = (αβ)−1, but that value of λ would be inconsistent
with (3.20) and (3.21) holding jointly, as noted above.

17This expression is necessarily non-zero in the case of the kind of solution that we seek,
for the reasons noted in the previous two footnotes.
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τ(λ)ψ(λ) is well-defined for all λ, and equal to −(α/1− α)β−1Q(βλ). Using

this function of λ to replace the terms τψ in the previous inequalities, one

obtains an equivalent set of three inequalities,

λ < α−1, (3.29)

α

1 + α
β−1Q(βλ)− 1 < λ <

α

1− α
β−1Q(βλ) + 1, (3.30)

that λ must satisfy.

I can then summarize my characterization of a firm’s optimal pricing and

investment behavior as follows.

Proposition 1. Suppose that the firm’s decision problem has a solu-

tion in which, for any small enough initial log relative capital stock and log

relative price of the individual firm, and in the case that the exogenous dis-

turbance qt and the aggregate variables Ŷt, K̂t, λ̂t, and πt forever satisfy tight

enough bounds, both the conditional expectation Etk̂t+j(i) and the condi-

tional variance vartk̂t+j(i) remain bounded for all j, with bounds that can be

made as tight as one likes by choosing sufficiently tight bounds on the initial

conditions and the evolution of the aggregate variables.18 Then the firm’s

optimal decision rules can be approximated by log-linear rules of the form

(3.12) for p̂∗t (i) in periods when the firm re-optimizes its price and (3.15) for

the investment decision k̃t+1(i) each period. The coefficient λ in (3.15) is

a root of the quartic equation (3.27), that satisfies the inequalities (3.29) –

(3.30). The coefficient τ in (3.15) is furthermore equal to τ(λ), where the

function τ(·) is defined by (3.17), and the coefficient ψ in (3.12) is equal to

ψ(λ), where the function ψ(·) is defined by (3.25). Finally, the intercept p̂∗t
in (3.12) is given by (3.24), in which expression the process {ŝt} is defined

by (3.6).

This result gives a straightforward algorithm that can be used to solve for

the firm’s decision rules, in the case that local methods suffice to give an ap-

proximate characterization of optimal behavior in the event of small enough

18Note that this is the only condition under which local log-linearizations of the kind
used above can suffice to approximately characterize the solution to the firm’s problem.
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disturbances and a small enough initial departure of the individual firm’s

situation from that of an average firm. The two decision rules (3.12) and

(3.15), together with the law of motion

p̃t(i) = p̃t−1(i)− πt

for any period t in which i does not re-optimize its price, then allow a com-

plete solution for the evolution of the firm’s relative capital stock and relative

price, given its initial relative capital stock and relative price and given the

evolution of the aggregate variables {Ŷt, K̂t, λt, πt, qt}.

3.3 Existence of a Solution

Proposition 1 does not guarantee the existence of a non-explosive solution

to the firm’s decision problem. The following result, however, shows that at

least in the case of large enough adjustment costs there is a solution of the

kind characterized in Proposition 1.

Proposition 2. Let household preferences, the production function,

the rate of depreciation of capital, and the frequency of price changes all be

fixed, but consider alternative specifications of the investment adjustment-

cost function I(·), all of which are twice differentiable, increasing, convex,

and satisfy I(1) = δ, I ′(1) = 1. Then for any adjustment-cost function for

which the value of εψ ≡ I ′′(1) > 0 is large enough, the polynomial (3.27) has

a unique real root λ satisfying (3.29) – (3.30). It follows that the firm decision

problem has a solution of the kind described in Proposition 1. Furthermore,

in this solution 0 < λ < 1, and τ, φ, and ψ are all positive. In the limit as

Ξ → 0, λ → 1, τ → 0, φ → 1 + ωθ, and

φ → ω − ν

1 + ωθ
> 0.

This result can be established by considering the way in which the poly-

nomial (3.27) depends on the value of Ξ, which in turn varies inversely with

εψ. Note that the steady state allocation associated with zero inflation (or
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flexible prices) is determined independently of the assumed degree of adjust-

ment costs, and so the values of the parameters α, β, δ, ν, ω, θ, ρy, and ρk are

all given, regardless of the variation considered in the value of εψ. The co-

efficient Ξ is then equal to a positive constant divided by εψ, so that one

may equivalently consider the consequences of varying the value of Ξ while

holding fixed the values of the parameters listed above. I am then interested

in the roots of V (λ) as the value of Ξ approaches zero.

Since the definition (3.28) involves the polynomial Q(z), it is first neces-

sary to consider how this polynomial depends on the value of Ξ. One observes

that

Q(z) = z2 − (1 + β + cΞ)z + β,

where

c ≡ ρk

ρyθ
> 0.

One can then write

V (λ; Ξ) = V̄ (λ) + VΞ(λ)Ξ +
1

2
VΞΞ(λ)Ξ2,

where the polynomials

V̄ (λ) ≡ (1 + ωθ)(1− αβλ)2β(1− λ)(1− βλ),

VΞ(λ) ≡ β(1− αβλ)[1− α(1 + β) + αβλ](ω − ν)λ− (1 + ωθ)(1− αβλ)2cλ,

and VΞΞ(λ) are each independent of the value of Ξ.

When Ξ = 0, the roots of V (λ) are simply the roots of V̄ (λ), which are

easily seen to be λ1 = 1, λ2 = β−1, and λ3 = λ4 = (αβ)−1. By continuity,

any real roots in the case of a small enough positive value of Ξ will also have

to be close to one of the roots of V̄ (λ).

It is easily seen that no such root can satisfy the inequalities (3.29) –

(3.30), unless it is a root near 1. Because Q(βλ2; 0)Q(1; 0) = 0, the right-

most term in (3.30) is equal to 1, so that the second inequality is violated

when λ = λ2, Ξ = 0. By continuity, the second inequality of (3.30) will also

necessarily be violated by any root near λ2 in the case of any small enough

value of Ξ. Similarly, because Q(βλ3; 0) = Q(α−1; 0) = α−1(α−1− β)(1− α),

the right-most term is negative, and the second inequality is again violated,
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when λ = λ3 = λ4, Ξ = 0. Hence any roots near these will also violate the

inequality in the case of any small enough value of Ξ. Thus there can be at

most one root of (3.27) that satisfies the inequalities for small positive values

of Ξ, and it must be near 1.

Because V̄ ′(1) < 0, V (λ) will continue to have a real root λ1(Ξ) near 1

for all small enough values of Ξ, and the implicit function theorem implies

that
dλ1

dΞ
(0) = −VΞ(1)

V̄ ′(1)
.

Since

VΞ(1) = β(1− αβ)(1− α)(ω − ν)− (1 + ωθ)(1− αβ)2c

< (1− αβ)2[(ω − ν)− (1 + ωθ)c]

= (1− αβ)2[(ωρ−1
y − 1)ν − c] < 0,

using the fact that ρy > ω in the final line, and

V̄ ′(1) = −(1 + ωθ)β(1− β)(1− αβ)2 < 0,

it follows that
dλ1

dΞ
(0) < 0.

Thus there is a real root 0 < λ1 < 1 for all small enough positive values of

Ξ. This root necessarily also satisfies (3.29).

Since Q(β; 0) = 0, the left-most term of (3.30) is near -1 for all small

enough values of Ξ; hence the first inequality of (3.30) is satisfied by the root

λ1 as well. However, both sides of the second inequality are equal to 1 when

Ξ = 0; thus in order to determine whether the inequality holds when Ξ > 0,

one must determine the sign of the derivative

D ≡ d

dΞ

[
λ1(Ξ)− α

1− α

Q(βλ1(Ξ); Ξ)

β

]

at Ξ = 0. Since

d

dΞ
Q(βλ1(Ξ); Ξ) = −β(1− β)

dλ1

dΞ
− βc
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Table 1: Numerical parameter values.

β 0.99

ν 0.11

φ−1
h 0.75

ωp 0.33

(θ − 1)−1 0.15

δ 0.12

at Ξ = 0, it follows that

D =
1− αβ

1− α

dλ1

dΞ
+

α

1− α
c

=
(ω − ν)− (1 + ωθ)c

(1− β)(1 + ωθ)

=
[(ωρ−1

y − 1)ν − c]

(1− β)(1 + ωθ)
< 0.

Thus for all small enough Ξ > 0, the second inequality of (3.30) holds as

well, and λ = λ1(Ξ) is the solution asserted to exist in the proposition.

It then follows from (3.26) that associated with this solution is a positive

value of τ , and that τ → 0 as Ξ → 0. It similarly follows from (3.23) that the

associated value of φ is positive for all small enough values of Ξ, and that

φ → 1 + ωθ as Ξ → 0. Finally, it follows from these results and (3.25) that

the associated value of ψ is positive,19 and that it approaches the positive

limit stated in the proposition as Ξ → 0. Proposition 2 is thus established.

Proposition 2 guarantees that a solution to the firm’s optimization prob-

lem that can be characterized using the local methods employed above will

exist for at least some economies, namely, those in which adjustment costs

are large enough. The proposition also implies that in the limit of large

adjustment costs, the optimal price-setting rule approaches the one derived

in Woodford (2003, chap. 3) under the assumption of an exogenously given

capital stock for each firm. Thus the exogenous-capital model represents a

19Recall that our assumptions require that ω > ν.

22



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

2

3

4

5

6

7

8

9

10

α

ε
ψ

     unique real root
     no real root

Figure 1: Values of α and εψ for which a solution of the kind characterized

in Proposition 1 exists.

useful approximation to the equilibrium dynamics in a model with endoge-

nous capital accumulation, if adjustment costs are large enough.

Numerical exploration of the properties of the polynomial (3.27) suggests

that adjustment costs do not have to be large in order for the analysis given

above to apply. In Figure 1, model parameters are assigned the values given

in Table 1,20 while the values of α and εψ are allowed to vary. The figure

indicates for which part of the α − εψ plane the polynomial (3.27) has a

unique real root satisfying the bounds (3.29) – (3.30). Except in the case of

very high values of α (α > 0.93, corresponding to an average interval between

price changes longer than 3.5 years), a unique real root of this kind exists in

the case of any εψ > 0. If we suppose that εψ = 3 (the calibration used in

Woodford, 2004), then a solution exists in the case of any α less than 0.978

(i.e., as long as prices are changed at least once every 11 years, on average).

20These are the same parameter values used in the numerical illustrations in Woodford
(2004), which are in turn chosen for comparability with the numerical analyses of related
models in Woodford (2003). (The justification for interest in these values is discussed in
both of those sources.) Thus, for example, in Figure 1, one sees that if α = 0.66, a unique
solution exists for all possible values of εψ; this explains why it is possible to present
solutions for alternative values of εψ in Figure 1 of Woodford (2004). In this calibration
of the model, periods are understood to correspond to quarters.
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In the case of very high values of α, a solution does not exist, except in the

case of very high values of εψ;21 and when it does not, the solution to the

firm’s problem cannot be characterized using the local methods employed

above.22 But such high values of α are clearly not empirically realistic, so we

need not be concerned with this case.

4 Inflation Dynamics

I now consider the implications of the analysis above for the evolution of the

overall inflation rate. I show that the model of price-setting presented above

implies the existence of a new-Keynesian Phillips curve of the form (1.1), and

then consider the interpretation of empirical estimates of the slope coefficient

ξ in this relation.

4.1 A New-Keynesian Phillips Curve

Recall that the average log relative price set by firms that reoptimize at date

t is given by (3.24). This equation can be quasi-differenced (after dividing

by φ23) to yield

p̂∗t = (1− αβ)φ−1ŝt + αβEtπt+1 + αβEtp̂
∗
t+1.

Then, using (3.13) to substitute for p̂∗t , one obtains a relation of the form

(1.1), where

ξ ≡ (1− α)(1− αβ)

αφ
. (4.1)

Equation (1.1) is the corrected form of equation (3.17) in Woodford (2003,

chap. 5). Together with (3.6), it provides a complete characterization of

21It may appear from the figure that no solution is possible when α exceeds 0.99, but
this is because the vertical axis is truncated at εψ = 10. If α = 0.995, a solution exists in
the case of all εψ > 22.2; if α = 0.999, a solution exists in the case of all εψ > 88.2. Thus
a solution does always exist in the case of large enough adjustment costs, in accordance
with Proposition 2.

22This may, for example, be due to a failure of the firm’s problem to be locally convex.
I do not further investigate the problem here, as it does not appear to arise in cases of
practical interest.

23It follows from (3.25) that φ 6= 0, given that (as already discussed) λ 6= (αβ)−1.
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the equilibrium dynamics of inflation, given the evolution of Ŷt, K̂t, and

λ̂t. This pair of equations can be thought of as constituting the “aggre-

gate supply block” of the model with endogenous capital. They generalize

the aggregate-supply equation of the constant-capital model (expounded in

Woodford, 2003, chap. 3) to take account of the effects of changes in the cap-

ital stock on real marginal cost, and hence on the short-run tradeoff between

inflation and output.

In the constant-capital model, (3.6) (after using (2.10) to substitute for

λ̂t) reduces to

ŝt = ω(Ŷt − qt) + σ−1(Ŷt − gt),

which can be equivalently written as

ŝt = (ω + σ−1)Ỹt, (4.2)

where Ỹt is the “output gap,” defined as the (log) difference between ac-

tual and flexible-price equilibrium output. Substituting this relation into

(1.1), one obtains the familiar output-gap formulation of the new-Keynesian

Phillips curve,

πt = κỸt + βEtπt+1, (4.3)

where κ ≡ (ω + σ−1)ξ > 0.

In the model with endogenous (and firm-specific) capital, instead, (4.2)

takes the more general form

ŝt = (ω + σ−1)Ỹt − σ−1Ĩt, (4.4)

where Ĩt indicates the gap between actual investment (specifically, the value

of Ît) and its flexible-price equilibrium level.24 If one substitutes this relation

instead into (1.1), one obtains a generalization of (4.3),

πt = κỸt − κI Ĩt + βEtπt+1,

where κ is defined as before, but now κI ≡ σ−1ξ > 0. Thus while (1.1)

continues to apply, the relation between inflation and real activity is no longer

24See Woodford (2004) for further discussion of the definition of this and related “gap”
variables in this model.
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as simple as (4.3). This is a further reason (in addition to the lack of simple

empirical measures of the flexible-price equilibrium level of output) why it

has been appropriate for the empirical literature to focus more on estimation

of the inflation equation (1.1) than of the corresponding aggregate-supply

relation.

As with equation (3.17) in Woodford (2003, chap. 5), equation (1.1)

implies that one can solve for the inflation rate as a function of current and

expected future real marginal cost, resulting in a relation of the form

πt =
∞∑

j=0

ΨjEtŝt+j. (4.5)

The correct formula for these coefficients is given by

Ψj = ξβj,

just as in the model with constant capital discussed in Woodford (2003, chap.

3). Hence the coefficients do not decay as rapidly with increasing j as is shown

in Figure 5.6 of Woodford (2003), in the case of finite adjustment costs.

Nor do the coefficients ever change sign with increasing j, as occurs in the

figure. In the case that ξ > 0 (as implied by the calibrated parameter values

proposed below), an increase in the expected future level of real marginal

costs unambiguously requires that inflation increase; and the degree to which

inflation determination is forward-looking is even greater than is indicated

by the figure in Woodford (2003).

4.2 The Case of a Rental Market for Capital

I now briefly compare the results obtained above to those that would be

obtained under the assumption of a competitive rental market for capital

services.25 In the literature, when models of staggered pricing have allowed

for endogenous capital accumulation (as, for example, in Yun, 1996, or Chari

et al., 2000), they have typically assumed that firms purchase capital ser-

vices on a competitive rental market, rather than accumulating firm-specific

25Sveen and Weinke (2004b) similarly compare the consequences of these two assump-
tions, but instead focussing on the differences that result for the implied impulse responses
to disturbances in a complete DSGE model.
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capital as in the model above. This alternative assumption is of considerable

convenience, since it allows price-setting decisions to be analyzed separately

from the decision to accumulate capital.26 However, while the assumption

of an economy-wide rental market for capital is purely a convenience in the

case of standard real business-cycle models (i.e., one-sector models with a

competitive goods market), it is no longer innocuous in a model where firms

are price-setters, and so must consider the consequences for their profits of

setting a price different from that of their competitors. As we shall see, alter-

native assumptions about the way in which capital services can be obtained

(with a production technology that is otherwise the same) lead to different

conclusions regarding aggregate dynamics. In particular, the predicted slope

of the Phillips-curve tradeoff can be affected to an extent that is quantita-

tively significant.

I shall consider two versions of a model with a competitive rental market

for capital services. In each case, the production technology and the tech-

nology of capital accumulation are as described in section 1, except that now

capital goods are either accumulated by households and rented to the firms

that produce the goods that are used for consumption and investment, or

they are accumulated by a special set of firms that accumulate capital and

then rent capital services to the goods-producing firms. (Our equilibrium

relations will be the same, whether capital is accumulated by households or

by a special set of firms.) There is assumed to be a competitive market for

capital services each period, with rental rate ρt in period t. (Note that this

rental rate is no longer indexed by the firm that uses the capital.)

It follows that for each household or firm i that accumulates capital, its

holdings of capital {kt(i)} must evolve in accordance with the first-order

condition (2.3), except that now the firm-specific shadow value ρt+1(i) is

replaced by the market rental rate ρt+1, with the same value for all i. Log-

linearization of this condition again leads to a relation of the form (2.4) for

each i, but with ρ̂t+1(i) replaced simply by ρ̂t+1. Assuming that one starts

from a symmetric distribution of capital k0(i) = K0 for all i, one will similarly

have a common capital stock kt(i) = Kt in all subsequent periods, since each

26The same assumption was used, for example, in the DSGE model with oligopolistic
pricing of Rotemberg and Woodford (1992).
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household or firm solves an identical optimization problem. The aggregate

capital stock will then also evolve in accordance with (2.3) or, up to a log-

linear approximation, in accordance with (2.4).

An optimal demand for capital services by a goods-producing firm i [now

not to be confused with a firm i that accumulates capital!] again requires

that the firm’s output/capital ratio satisfy (2.5), though (2.5) is now a first-

order condition for a firm that takes as given the cost of capital services ρt,

rather than a definition of the shadow value of additional capital services; and

ρt(i) must now be replaced by the common rental rate ρt for all i. There are

two possible assumptions that may be made regarding labor inputs. In the

literature, when a rental market for capital services is assumed, it is often also

assumed that all sectors hire the same kind of labor, and that there is a single

economy-wide labor market as well; this is the case of “homogeneous factor

markets” treated in Woodford (2003, chap. 3).27 In this case, every firm i

faces a common wage, so that wt(i) = wt. It then follows from (2.5) that

each firm i will choose a common output/capital ratio; firms with higher

demand for their products (because of lower prices) will choose to use a

proportionately higher quantity of capital services, and a proportionately

higher quantity of labor as well. It then follows from (3.1) that the marginal

cost of output supply will be the same for all firms i, and independent of the

quantity produced by any firm, so that st(i) = st for all i, where the common

real marginal cost st is an increasing function of both ρt and wt. Equation

(3.5) then reduces simply to

ŝt(i) = ŝt.

In this case, frequently assumed in previous derivations of the new-Keynesian

27It is the case assumed in the derivation of a new-Keynesian Phillips curve in Gali and
Gertler (1999), and in the baseline case considered in Sbordone (1998, 2002). Note that a
single economy-wide labor market is also assumed in the analysis of the consequences of
an exogenous firm-specific capital stock in Sbordone (1998, 2002) and in Gali, Gertler and
Lopez-Salido (2001). For this reason, the formula for ξ(α) presented by those authors for
the case of firm-specific capital differs from the one derived in Woodford (2003, chap. 3)
under the assumption of industry-specific labor markets. Eichenbaum and Fisher (2004)
also assume an economy-wide labor market even in their model with firm-specific capital,
though in their case each firm’s capital stock is endogenous as in the model developed
here.
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Phillips curve, (3.7) implies that the optimal relative price that should be

chosen by a firm that resets its price at date t is given by

p̂∗t (i) = (1− αβ)
∞∑

k=0

(αβ)kÊi
t


ŝt+k +

k∑

j=1

πt+j


 (4.6)

instead of (3.10). In this case, the quantities inside the brackets are not

firm-specific, and there is no need to distinguish between the conditional

expectations Êi
t [·] and Et[·]. Nor is there any need to solve for the dynamics

of a firm’s relative capital stock in order to evaluate the right-hand side of

(4.6). The right-hand side of (4.6) is the same for all i, and thus gives the

value of p̂∗t . Equation (4.6) then leads directly to an inflation equation of the

form (1.1), with

ξh ≡ (1− α)(1− αβ)

α
> 0. (4.7)

Alternatively, we may assume the existence of a sector-specific labor mar-

ket for each sector, as in the model developed in this paper for the case of

firm-specific capital, or the model of “specific factor markets” treated in

Woodford (2003, chap. 3). In this case, the real wage for the type of la-

bor hired by firm i is given by a sector-specific labor supply equation (2.6).

Substituting this into (2.5) and log-linearizing, we again obtain equilibrium

relation (2.7) for each firm i, except that ρ̂t(i) must now be replaced by the

common rental rate ρ̂t. Because ρt is now the same for all firms, this condi-

tional for cost-minimizing production by firm i implies that the firm’s relative

capital stock will be a monotonic function of its relative sales, so that

ρk(k̂t(i)− K̂t) = ρy(ŷt(i)− Ŷt) (4.8)

for all i at any date.

The marginal cost of production of each firm i is again given by (3.4), but

we can now use (4.8) to substitute for the firm’s relative demand for capital

as a function of its relative sales. Then, again using (2.2) to substitute for

the relative sales of firm i, one obtains

ŝt(i) = ŝt − χθp̃t(i) (4.9)

instead of (3.5), where

χ ≡ ωρk − (ω − ν)ρy

ρk

=
νωp

ρk(φh − 1)
> 0.
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Note that there is no longer any dependence on the firm’s relative capital

stock (which is no longer a state variable for the firm’s optimization problem).

Once again substituting (4.9) for st+k(i) and (3.8) for Êi
t p̃t+k(i) in (3.7),

one now obtains

(1 + χθ)p̂∗t (i) = (1− αβ)
∞∑

k=0

(αβ)kÊi
t


ŝt+k + (1 + χθ)

k∑

j=1

πt+j


 (4.10)

for the optimal relative price that should be chosen by a firm that resets

its price at date t. One can again replace the conditional expectation Êi
t [·]

by Et[·], and one again observes that p̂∗t (i) is the same for all i, so that one

can replace p̂∗t (i) by p̂∗t . Relation (4.10) is then of the same form as relation

(3.24) for the model above with endogenous but firm-specific capital, but

with the coefficient φ in the earlier equation here replaced by 1 + χθ. One

again obtains a pricing relation of the form (1.1), but with elasticity

ξr ≡ (1− α)(1− αβ)

α(1 + χθ)
> 0. (4.11)

Thus each model leads to a Phillips-curve relation of the same form (1.1),

except that in each case the elasticity ξ > 0 is a different function of under-

lying model parameters. The quantitative difference made by the alternative

assumptions can be illustrated through a numerical example. Let us again

assume the parameter values given in Table 1, and furthermore now specify

that εψ = 3, as assumed in Woodford (2004). Figure 2 then plots the value

of ξ corresponding to any given frequency of price change (indicated by the

value of α on the horizontal axis), under each of four possible assumptions.

The function ξh(α) defined in (4.7) indicates how the elasticity ξ in (1.1)

varies with α in the case of homogeneous factor markets. The function ξr(α)

defined in (4.11) applies instead in the case of industry-specific labor but an

economy-wide rental market for capital. The function ξf (α) defined in (4.1)

applies instead in the case of industry-specific labor and firm-specific capi-

tal.28 And finally, the function ξc(α) is the corresponding relation derived in

Woodford (2003, chap. 3) for the case of the model with industry-specific

28As shown in Figure 1, the function ξf is only defined for values of α lower than a
critical value on the order of 0.978. The other functions are defined for all values of α

between 0 and 1.
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Figure 2: The relation between ξ and α under four alternative assumptions

about factor markets.

labor and a constant quantity of firm-specific capital.29 The function ξc(α)

corresponds to the limit of ξf (α) as εψ is made unboundedly large; it follows

from Proposition 1 that this is given by

ξc ≡ (1− α)(1− αβ)

α(1 + ωθ)
> 0.

We see from the figure that any given value of α (in the range for which

all four functions are defined), the model with homogeneous factor markets

implies the highest value of ξ, as in this case the model possesses the fewest

sources of “real rigidities” in the sense of Ball and Romer (1990). The fact

that an increase in demand in one part of the economy bids up the price of

factor inputs throughout the economy creates a source of “strategic substi-

tutability” between the pricing decisions in different sectors of the economy

29This is called the model with “specific factor markets” in Woodford (2003, chap. 3).
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(the fact that others keep their prices low increases your marginal cost of

production, and so gives you a reason for higher prices, rather than lower

ones); this speeds up the rate of adjustment of the aggregate price index to

changes in demand conditions.30 There are greater real rigidities, and hence

a flatter Phillips curve, in the case of industry-specific labor markets, even

if we continue to assume an economy-wide rental market for capital services;

for in this case, an increase in demand in one part of the economy still bids up

the price of capital services throughout the economy, but does not similarly

affect wages in other sectors. There are still greater real rigidities, and a still

flatter Phillips curve, if we assume firm-specific investment, because in this

case an increase in demand in one part of the economy which increases the

shadow value of capital there has no immediate effect on the shadow cost of

capital services in other parts of the economy.

Real rigidities are the greatest if we assume, as in the model with “specific

factor markets” in Woodford (2003, chap. 3), that the capital stock of each

firm is exogenously given, and hence never affected by differential shadow

values of capital in different sectors. In the model with endogenous firm-

specific capital developed here, a sustained higher shadow value of capital

in part of the economy will eventually raise the shadow value of capital

services everywhere, as a result of differential rates of investment in the

sectors with differing shadow values of capital. Thus capital is still reallocated

among sectors in response to rate-of-return differentials, albeit with a delay,

as long as investment adjustment costs are not too large. However, the

figure shows that in our calibrated example, an empirically realistic level of

adjustment costs result in a value of ξ that is quite close to what would be

implied by the exogenous-capital model with firm-specific capital (though

slightly larger), while it is considerably lower than would be implied by the

assumption of instantaneous reallocation of capital across sectors so as to

equalize the shadow value of capital services. Thus the implicit assumption

of an exogenously evolving capital stock in derivations of the Phillips curve for

30See Woodford, 2003, chap. 3, for further discussion of why the Phillips curve is
relatively steep in this case, building upon the seminal treatment by Kimball (1995). The
discussion there, conducted under the assumption of an exogenously given capital stock,
still gives the essential insight into why the specificity of factor markets matters.
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models with firm-specific capital by authors such as Sbordone (1998) appears

not to have been a source of any great inaccuracy.31 The endogeneity of

the capital stock is instead of greater significance for predictions about the

equilibrium responses of inflation or output to aggregate disturbances, as

shown in Woodford (2004), because of the effects of the endogenous rate of

investment on the evolution of real marginal cost, as indicated by equation

(4.4).

4.3 Additional Sources of Real Rigidities

Even the model with firm-specific capital developed above still abstracts

from a number of possible sources of real rigidities. Here I briefly consider

the effects of two generalizations that are discussed in more detail (though

in the context of a model with exogenous capital) in Woodford (2003, chap.

3, sec. 1.4).

First, I shall now suppose that each differentiated good is produced using

not only labor and capital, but also intermediate inputs produced by other

industries. As in Rotemberg and Woodford (1995), I assume a production

function of the form

yt(i) = min

[
kt(i)f(Atht(i)/kt(i))

1− sm

,
mt(i)

sm

]
,

generalizing (2.1), where f(·) has the same properties as before, mt(i) denotes

the quantity of materials inputs used by firm i in period t, and 0 ≤ sm < 1 is

a parameter of the production technology that can be identified, for purposes

of calibration, with the share of materials costs in the value of gross output.

The materials inputs are measured in units of the composite good.

31Coenen and Levin (2004) also discuss the role of firm-specific capital in increasing
real rigidities, in the context of a model with Taylor-style fixed-period price commit-
ments, which allows separate econometric identification of the length of time between
price changes, on the one hand, and the elasticity of a firm’s desired relative price with re-
spect to aggregate output, on the other. They are concerned with whether the estimated
value of the latter elasticity can be reconciled with the microfoundations of the firm’s
pricing decision, and argue that allowing for firm-specific capital is important in doing so.
Like Sbordone (1998) and Gali, Gertler and Lopez-Salido (2001), they assume that each
firm’s capital stock is fixed in analyzing this issue.
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The shadow value to firm i of an additional unit of capital is then given

by

ρt(i) =
wt(i)

At

f−1((1− sm)yt(i)/kt(i))[φ((1− sm)yt(i)/kt(i))− 1],

generalizing (2.5), where φ(·) is the same function as before. But because the

log deviation of (1− sm)yt(i)/kt(i) from its steady-state value is equal to the

log deviation of yt(i)/kt(i) from its steady-state value, the log-linear relation

(2.7) continues to apply, regardless of the size of the materials share.

With intermediate inputs, the real marginal cost of production can be

written as

st(i) = (1− sm)sV A
t (i) + sm, (4.12)

where sV A
t (i) is the real marginal cost of producing a unit of ’real value

added’, by which I mean the homogeneous-degree-one aggregate of primary

factors of production given by kt(i)f(Atht(i)/kt(i)). Equation (3.2) further-

more takes the more general form

sV A
t (i) =

vh(f
−1((1− sm)yt(i)/kt(i))kt(i)/At; ξt)

λtAtf ′(f−1((1− sm)yt(i)/kt(i)))
.

Substituting this into (4.12) and log-linearizing, I obtain

ŝt(i) = (1− µsm)[ω(ŷt(i)− k̂t(i)− qt) + νk̂t(i)− λ̂t], (4.13)

generalizing (3.3), where µ ≡ θ/(θ−1) > 1 is the steady-state markup (ratio

of price to marginal cost).32 The reduced elasticity of real marginal cost with

respect to the firm’s level of production when sm is positive (but less than

µ−1) indicates greater real rigidities.

Second, I shall suppose that substitution possibilities among the differen-

tiated goods are no longer necessarily described by the familiar Dixit-Stiglitz

aggregator that leads to the constant-elasticity demand function (2.2) for

individual goods. If I instead assume only that the aggregator belongs to

the more general family of homogeneous-degree-one functions considered by

32In the case of the model with generalized preferences introduced in the next paragraph,
this relation still applies, but θ > 1 indicates the steady-state elasticity of substitution
among differentiated goods, rather than a coefficient of the Dixit-Stiglitz aggregator.
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Kimball (1995), the elasticity of demand varies with the relative price of (and

hence the relative demand for) individual good i. The relative demand for

an individual good is again a decreasing function of the relative price,33 but

the function need not be a constant-elasticity function, as in (2.2).

As a result, the desired markup of the supplier’s price over the marginal

cost of supply will no longer be a constant µ > 1, but rather a function

µ(yt(i)/Yt) of the relative output of the good, where Yt is aggregate output,

defined using the Kimball aggregator. To a log-linear approximation, the

deviation of the log desired markup from its steady-state level (that I shall

again call µ) is equal to εµỹt(i), where εµ is the elasticity of the function µ(·),
evaluated at the steady state (i.e., at a relative output of 1), and ỹt(i) is the

log relative output. The demand function can again be log-linearized to yield

ỹt(i) = −θp̃t(i),

where θ > 1 is now the steady-state elasticity of demand (and not necessarily

also the elasticity near a relative price other than 1). One can then show that

the first-order condition for optimal price-setting under Calvo staggering of

price changes takes the form

∞∑

k=0

(αβ)kÊi
t [p̃t+k(i)− (1 + θεµ)−1ŝt+k(i)] = 0, (4.14)

generalizing (3.7), just as in Woodford (2003, chap. 3). The only difference

here is that real marginal cost will depend on the firm’s endogenous, firm-

specific capital stock in the way treated above. One observes directly from

(4.14) that a value εµ > 0 will increase the degree of real rigidities, by reduc-

ing the sensitivity of the desired relative price to variations in real marginal

cost, and hence to variations in the firm’s output.

Substituting (4.13) into (4.14), I now obtain

Γ1p̂
∗
t (i) = (1− αβ)

∞∑

k=0

(αβ)kÊi
t


ŝt+k + Γ1

k∑

j=1

πt+j − Γ2k̃t+k(i)


 , (4.15)

33As in the model developed above, it is assumed that both household preferences and
the production technology of firms depends only on the quantity purchased of the com-
posite good defined by this aggregator. Hence the purchases of each buyer, for whatever
purpose, will be distributed across differentiated goods in the same proportions.
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generalizing (3.10), where

Γ1 ≡ 1 + θεµ + (1− µsm)ωθ, Γ2 ≡ (1− µsm)(ω − ν).

Here only the expressions for Γ1 and Γ2 have become more complex. One

can then show, using the same reasoning as above, that the solution to the

firm’s optimization problem is characterized by Proposition 1, except that

(3.23) must be replaced by

φ ≡ Γ1 − Γ2τ
αβ

1− αβλ
, (4.16)

and (3.28) must be replaced by

V (λ) ≡ [Γ1(1− αβλ)2 − α2βΓ2Ξλ]Q(βλ) + β(1− α)(1− αβ)Γ2Ξλ. (4.17)

One can similarly obtain once again an aggregate-supply relation of the

form (1.1), where the elasticity ξ is defined by (4.1), but now using the

generalized definition (4.16) of φ. Alternatively, one can write the aggregate-

supply relation as

πt = ξŝV A
t + βEtπt+1, (4.18)

in which case

ξ ≡ (1− µsm)(1− α)(1− αβ)

αφ
, (4.19)

where φ is defined by (4.16), using the fact that

ŝt = (1− µsm)ŝV A
t ,

from a log-linearization of (4.12). The alternative form (4.18) is actually

the one that is estimated in the literature, since (under the assumption of

a Cobb-Douglas production function for ‘value added’) it is sV A
t rather than

st that is proportional to real unit labor cost (the proxy for “marginal cost”

that is used in empirical work).

The additional sources of real rigidities affect the value of ξ associated

with a given average frequency of price adjustment, as shown in Figure 3. As

in Woodford (2003, chap. 3, sec. 1.4), I shall consider the consequences of an

intermediate input share such that µsm = 0.6, and a non-constant elasticity

of substitution among differentiated goods such that θεµ = 1. The figure
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Figure 3: The relation between ξ and α with additional sources of real rigidi-

ties.

plots the functional relation ξ(α) defined by (4.1) for each of four possible

combinations of parameter values: the baseline case, in which sm = 0, εµ = 0;

a case with intermediate inputs, in which µsm = 0.6, though again εµ = 0; a

case with Kimball preferences, in which sm = 0 but θεµ = 1; and finally, a case

with both additional sources of real rigidities, in which µsm = 0.6, θεµ = 1. In

all four cases, it is assumed that labor markets are industry-specific, capital

is endogenous and firm-specific, and the numerical parameters other than

those just listed are as in the case with firm-specific capital plotted in Figure

2. (The function ξ(α) in the baseline case here corresponds to the function

ξf (α) in Figure 2.)

One observes that for each of the values of α considered, either interme-

diate inputs or Kimball preferences with εµ > 0 lowers the implied value of

ξ, and if both departures from the baseline model are considered simulta-

neously, the implied value of ξ is still lower. Hence allowance for either of

these empirically plausible additional sources of real rigidities further reduces
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the implied slope of the Phillips curve, without any change in the assumed

frequency of price changes. The results obtained here are quite similar to

those obtained in Woodford (2003, chap. 3) for the case of a model in which

each firm’s capital stock is given exogenously (see Table 3.1 there).

4.4 Consequences for Estimates of the Frequency of

Price Adjustment

Because alternative assumptions about the specificity of factor markets af-

fect the location of the curve ξ(α), as shown in Figure 2, it follows that the

consequences of an estimate of ξ for the frequency of price adjustment are

correspondingly different in the different cases. (One should note estimation

of the aggregate-supply relation (1.1) only allows an estimate of the elasticity

ξ, and provides no direct evidence regarding the frequency of price adjust-

ment, nor any way of testing which of the alternative possible assumptions

about the specificity of factor markets is the correct one.) An assumption of

specific factor markets — either that labor markets are industry-specific, or

that capital is firm-specific — increases the degree of real rigidities, relative

to an assumption of an economy-wide market for the services of that factor,

and so lowers the value of ξ corresponding to any given value of α. Conversely,

it follows that the value of α required to explain any given value of ξ — and

hence the value of α implied by any given estimate of ξ — is lower the greater

the degree of specificity of factors. Hence a given degree of sluggishness in

the adjustment of the overall price index to changes in aggregate conditions

can be reconciled with a greater degree of firm-level flexibility of prices in

the case that one assumes more specific factors of production.

This is illustrated by the calculations reported in Table 2. The numerical

parameter values given in Table 1 are again assumed, and in addition (in

the case of the model with firm-specific capital) it is assumed that εψ = 3,

as in the baseline case considered in Woodford (2004). The first panel of

the table then indicates the value of α that would be implied by a given

estimate of the elasticity ξ, under each of three different possible assumptions

about factor markets: homogeneous factor markets; industry-specific labor

markets but a rental market for capital services; and industry-specific labor
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Table 2: Interpretation of the estimated value of ξ under alternative assump-

tions about factor markets.

Implied values of α

ξ homo. fact. rental mkt firm-spec.

0.05 .804 .757 .630

0.04 .823 .779 .663

0.03 .845 .806 .703

0.02 .872 .840 .754

Implied values of T

ξ homo. fact. rental mkt firm-spec.

0.05 4.57 3.59 2.16

0.04 5.13 4.01 2.43

0.03 5.94 4.65 2.84

0.02 7.32 5.71 3.55

markets together with endogenous, firm-specific capital. The range of values

considered for ξ in the table corresponds to the range of values found in

empirical estimates of the new-Keynesian Phillips curve (1.1) for the US.34

34For example, Gali and Gertler (1999) report an estimate of 0.023 when they estimate
the “reduced form” equation (1.1) using US data. When they use an alternative GMM
estimation approach that yields estimates of α (under the assumption of homogeneous
factor markets) rather than of ξ, the values of ξ implied by the reported estimates (that
vary depending on the sample and moment conditions used) are mostly in the range of 0.02
to 0.04. (It should noted that when Gali and Gertler report estimates of α, they are really
only estimating a nonlinear transformation of the elasticity ξ that would correspond to α

under the assumption of homogeneous factor markets, and do not attempt any test of the
homogeneous-factor assumption.) Gali, Gertler and Lopez-Salido (2001) similarly report
estimates of α using US data that imply values of ξ equal to 0.03 or 0.04. Sbordone (2002)
obtains an estimate of 0.055 for US data using a different estimation technique, while
Sbordone (2004) obtains an estimate of 0.025 for US data using yet another approach.
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The second panel of the table shows the implied values of

T ≡ −1

log α
,

the average time (in quarters) that a price remains fixed,35 for each of the

same possible estimates of ξ under each of the same three possible assump-

tions about factor markets.

One observes that the assumption made regarding factor markets has a

substantial effect on the implied frequency of price adjustment, given any

estimate of the slope of the Phillips curve ξ. If, for example, one estimates

a slope ξ = 0.02 — and some estimates using US data are this low, though

most reported estimates have been at least somewhat larger — then under

the assumption of homogeneous factor markets (and the other parametric

assumptions in Table 1), one would conclude that the estimate implied an

average time between price changes of over 7 quarters. This is implausibly

long, given microeconomic evidence on the frequency of price changes, so that

one might well conclude that the model cannot account for the observed facts

about price adjustment, no matter how well it might fit the joint evolution

of overall inflation and average marginal cost. Assuming instead that labor

markets are industry-specific, however, would reduce the implied average

time between price changes to less than 6 quarters, even if one continues to

assume a rental market for capital services. And allowing for firm-specific

capital would further reduce the implied average time between price changes,

to only three and a half quarters. This is no longer so implausible, given the

evidence in surveys such as that of Blinder et al. (1998) that many prices in

the US are changed only once a year or less.

35In the literature, estimates of α are often converted into estimates of the average time
between price changes using the alternative formula T = 1/(1 − α). This latter formula
is correct if one takes the discrete-time model (in which all prices change, if they change
at all, at a single time each quarter) literally; but it has the unappealing feature that no
matter how flexible prices may be (and how steep the estimated Phillips curve may be
as a result), T must always equal at least 3 months. The formula here assumes instead
that there is a constant hazard rate ρ in continuous time for price changes, and that an
estimate of α is an estimate of e−ρ. This means that if one estimates a steep enough
Phillips curve, and hence infers a value of α close enough to 1, the inferred value of T may
be arbitrarily small.
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My finding that an assumption that capital is firm-specific reduces the

average time between price changes implied by estimates of the aggregate-

supply relation (1.1) confirms the previous results of Sbordone (1998) and

Gali, Gertler and Lopez-Salido (2001), obtained under an implicit assump-

tion that each firm’s capital stock is constant, or evolves exogenously. Figure

2 shows that the assumption of a constant (or exogenous) capital stock would

imply even slightly greater real rigidities than exist in the case of an endoge-

nous but firm-specific capital stock; but the numerical error resulting from

that simplifying assumption is not great, at least if investment adjustment

costs are of the size assumed here.36 For example, in the case that ξ = 0.02,

under the assumptions of exogenous capital and industry-specific labor mar-

kets, the value of α would be 0.740 and the value of T would be 3.28, rather

than the values shown in the third column of Table 2. Allowance for a real-

istic degree of endogenous adjustment of each firm’s capital stock does not

dramatically change those conclusions.

The implied average times between price adjustments shown in Table 2

may still seem a bit too long to square with microeconomic evidence, even

in the case of firm-specific capital, especially if ξ is estimated to take a value

between 0.2 and 0.3. (Blinder et al., 1998, report a median time between

price changes of 3 quarters; but Bils and Klenow, 2004, instead report a

median of less than 2 quarters.) However, a value of ξ of this magnitude

can be reconciled with even greater frequencies of adjustment of individual

prices, if additional empirically plausible sources of real rigidities are taken

into account.

Table 3 shows the values of α and T implied by alternative estimates of ξ,

under alternative assumptions about the importance of intermediate inputs

and the degree to which the aggregator that defines the composite good

differs from the Dixit-Stiglitz form. All numerical parameters except sm and

εµ take the same values as in Table 2, and in each case it is now assumed

that labor markets are industry-specific and capital is firm-specific. (Thus

36As shown in Woodford (2004), adjustment costs of roughly this size are needed to
explain the observed size of output response to an identified monetary policy shock, in the
context of a simple new-Keynesian model that incorporates the model of investment and
price-setting decisions developed here.
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Table 3: Interpretation of the estimated value of ξ under alternative as-

sumptions about input/output structure and substitutability of differentiated

goods.

Implied values of α

ξ baseline intermed. inputs Kimball both

0.05 .630 .584 .598 .528

0.04 .663 .619 .633 .564

0.03 .703 .662 .674 .609

0.02 .754 .716 .728 .669

Implied values of T

ξ baseline intermed. inputs Kimball both

0.05 2.16 1.86 1.95 1.56

0.04 2.43 2.09 2.18 1.75

0.03 2.84 2.42 2.54 2.02

0.02 3.55 3.00 3.15 2.48

the “baseline” case in Table 3 corresponds to the “firm-specific” column of

Table 2.) The values assumed for sm and εµ in the alternative cases are the

same as in Figure 3.

One observes the average time between price changes implied by any

given estimate of ξ falls in the case that one assumes either of the additional

sources of real rigidities, and falls by even more if one assumes both. Making

corrections of both type that remain within the range of empirically plausible

parameter values, one finds that a Phillips-curve slope of only 0.02 can be

consistent with a average period between price changes that is less than 2.5

quarters. A Phillips-curve slope of 0.04 can instead be consistent with an

average period between price changes that is well below 2 quarters. Since

point estimates of this magnitude for ξ are obtained in a number of studies

(and it is within the 95 percent confidence interval in an even larger number of
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cases), one cannot say that estimates of ξ are too small to be consistent with

microeconomic evidence regarding the frequency with which prices change.

I conclude that there is no necessary conflict between the parameter val-

ues that are required to explain the comovement between overall inflation

and aggregate output, as indicated by Phillips curves estimated using ag-

gregate time series, on the one hand, and the parameter values required for

consistency with microeconomic observations, on the other. The appearance

of a “micro/macro conflict” results from simplifying assumptions in familiar

derivations of the new-Keynesian Phillips curve that are not actually nec-

essary in order to obtain a relation between aggregate time series of that

form, and that are not realistic, either. When one adopts more realistic (or

at the very least, no less realistic) assumptions — industry-specific labor

markets, firm-specific capital, intermediate inputs required for production,

and a non-constant elasticity of substitution among differentiated goods for

both consumption and investment purposes — the discrepancy between the

frequency of price adjustment that is required to explain the aggregate co-

movements and the one that is indicated by microeconomic data disappears.

A similar conclusion is reached by Eichenbaum and Fisher (2004), Altig

et al. (2005), and Matheron (2005) in the context of econometric models

that allow for endogenous, firm-specific capital, following the analysis pre-

sented above. While the first two papers place particular stress on the role

of firm-specific capital in reconciling the microeconomic and macroeconomic

evidence, the assumption of an aggregator of the Kimball form that departs

substantially from the Dixit-Stiglitz case is also important for the quanti-

tative results of Eichenbaum and Fisher. Matheron stresses the importance

of allowing for industry-specific labor as well as firm-specific capital. In the

case of his analysis with euro-area data, a specification with firm-specific

capital but homogeneous labor, as assumed by the other authors, reduces

the estimated time between price revisions relative to the specification with

economy-wide markets for both factors, but not by nearly enough to reconcile

the model with microeconomic evidence on the frequency of price changes; al-

lowing for both firm-specific capital and industry-specific labor, as proposed

here, results in a substantial further reduction in the estimated time between

time between price revisions.
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I have given particular attention to the importance of allowing for firm-

specific capital because, in the case that one allows for endogenous capital

accumulation, the assumption that capital is firm-specific results in a non-

trivial complication in the analysis. It turns out, however, that the same

form of equilibrium relation between inflation dynamics and the evolution of

average real marginal cost can be derived under this assumption. Moreover,

the relation between the slope of the Phillips curve and the frequency of

price adjustment that can be derived under the simpler assumption of an

exogenously given capital stock for each firm turns out to be fairly accurate

as an approximation to the correct relation in the case of an empirically

realistic size of adjustment costs for investment. Hence the conclusions of

the earlier literature (beginning with Sbordone, 1998) that drew inferences

about the frequency of price adjustment from estimated Phillips curves under

the implicit assumption of an exogenous capital stock are found to have been

essentially correct, even if a more precise inference can be made using the

analysis given here.
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