
Optimal Monetary and Fiscal Policy in a Liquidity Trap ∗

Gauti Eggertsson
International Monetary Fund

Michael Woodford
Princeton University

July 2, 2004

Abstract

In previous work (Eggertsson and Woodford, 2003), we characterized the optimal
conduct of monetary policy when a real disturbance causes the natural rate of interest
to be temporarily negative, so that the zero lower bound on nominal interest rates binds,
and showed that commitment to a history-dependent policy rule can greatly increase
welfare relative to the outcome under a purely forward-looking inflation target. Here we
consider in addition optimal tax policy in response to such a disturbance, to determine
the extent to which fiscal policy can help to mitigate the distortions resulting from the
zero bound, and to consider whether a history-dependent monetary policy commitment
continues to be important when fiscal policy is appropriately adjusted. We find that
even in a model where complete tax smoothing would be optimal as long as the zero
bound never binds, it is optimal to temporarily adjust tax rates in response to a binding
zero bound; but when taxes have only a supply-side effect, the optimal policy requires
that the tax rate be raised during the “trap”, while committing to lower tax rates below
their long-run level later. An optimal policy commitment is still history-dependent, in
general, but the gains from departing from a strict inflation target are modest in the
case that fiscal policy responds to the real disturbance in an appropriate way.
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Recent developments in both Japan and the U.S. have brought new attention to the

question of how policy should be conducted when short-term nominal interest rates reach a

level below which no further interest-rate declines are possible (as in Japan), or below which

further interest-rate declines are regarded as undesirable (arguably the situation of the U.S.).

It is sometimes feared that when nominal interest rates reach their theoretical or practical

lower bound, monetary policy will become completely impotent to prevent either persistent

deflation or persistent underutilization of productive capacity. The experience of Japan for

the last several years suggests that the threat is a real one.

In a previous paper (Eggertsson and Woodford, 2003), we consider how the existence of

a theoretical lower bound for nominal interest rates at zero affects the optimal conduct of

monetary policy, under circumstances where the natural rate of interest — the real interest

rate required for an optimal level of utilization of existing productive capacity — can be

temporarily negative, as in Krugman’s (1998) diagnosis of the recent situation in Japan. We

show that the zero lower bound can be a significant obstacle to macroeconomic stabilization

at such a time, through an approach to the conduct of monetary policy that would be effective

under more normal circumstances. Nonetheless, we find that the distortions created by the

zero lower bound can be mitigated to a large extent, in principle, through commitment to the

right kind of policy. We show that an optimal policy is history-dependent, remaining looser

after the real disturbance has dissipated than would otherwise be chosen given the conditions

prevailing at that time. According to our model, the expectation that interest rates will be

kept low for a time even after the natural rate of interest has returned to a positive level

can largely eliminate the deflationary and contractionary impact of the disturbance that

temporarily causes the natural rate of interest to be negative.

An important limitation of our previous analysis is that it abstracted entirely from the

role of fiscal policy in coping with a situation of the kind that may give rise to a liquidity

trap. In the model of Eggertsson and Woodford (2003), fiscal policy considerations of two

distinct sorts are omitted. First, in the consideration of optimal policy there, no fiscal

instruments are assumed to be available to the policymaker. The sole problem considered
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was the optimal conduct of monetary policy, taking fiscal policy as given, and assuming

that fiscal policy fails to eliminate the temporary decline in the natural rate of interest that

created a challenge for monetary policy. And second, the fiscal consequences of alternative

monetary policies are ignored in the characterization of optimal monetary policy. It is thus

implicitly assumed (as in much of the literature on the evaluation of alternative monetary

policy rules) that the distortions associated with an increase in the government’s revenue

needs are of negligible importance relative to the distortions resulting from the failure of

prices to adjust more rapidly when considering alternative monetary policies. This would be

literally correct if a lump-sum tax were available as a source of revenue, but is not correct

(at least, not completely correct) given that only distorting taxes exist in practice.

In the present paper, we seek to remedy both omissions by extending our analysis to take

account of the consequences of tax distortions for aggregate economic activity and pricing

decisions. The model that we consider introduces a distorting tax (which we model as a

VAT) that is assumed to be the only available source of government revenues, and considers

both the optimal conduct of monetary policy (in particular, the optimal evolution of short-

term nominal interest rates) and the optimal timing of tax collections in such a setting. Our

key result is an extension of the analysis of Benigno and Woodford (2003) to a case in which

the zero lower bound on nominal interest rates is a binding constraint on what can be done

with monetary policy.

There are several important issues that we wish to clarify with such an investigation.

First, we wish to understand the implications of an occasionally binding zero lower bound

for optimal tax policy. Feldstein (2002) has suggested that while tax policy is not a useful

instrument of stabilization policy under normal circumstances — this problem being both

adequately and more efficiently addressed by monetary policy, because of the greater speed

and precision with which central banks can respond to sudden economic developments —

there may nonetheless be an important role for fiscal stabilization policy when a binding zero

bound constrains what can be done through monetary policy. Here we consider this issue by

analyzing optimal fiscal policy in a setting that has been contrived to yield the result that
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it is not optimal to vary the tax rate in response to real disturbances, as long as these do

not cause the zero bound to bind.1 We find that it is indeed true that an optimal tax policy

involves changing tax rates in response to a situation in which the zero bound is temporarily

binding, and we find furthermore that the optimal change in tax rates is largely temporary.

However, the nature of the optimal tax response to a liquidity trap is quite different from

traditional Keynesian policy advice. In the case that only taxes with supply-side effects are

available, we find that it is actually optimal to raise taxes while the economy is in a liquidity

trap. And while we find that Feldstein is correct to argue that tax policy can eliminate the

problem of the zero bound in principle, the conditions under which this can be done are

somewhat more special than his discussion suggests.

Second, we wish to consider the robustness of our previous conclusions, about the impor-

tance of commitment by the central bank to a history-dependent monetary policy following

a period in which the zero bound binds, to allowing for the use of fiscal policy in a way

that mitigates the effects of the real disturbance to the extent possible. Many readers have

worried that the demonstration in Eggertsson and Woodford (2003) of a dramatic benefit

from commitment to a history-dependent monetary policy depends on having excluded from

consideration the traditional Keynesian remedy for a liquidity trap, i.e., countercyclical fiscal

policy.2 Not only might monetary policy be unimportant once a vigorous fiscal response is

allowed, but commitment of future policy and signalling of such commitments might also be

found to be of minor importance, once one introduces an instrument of policy (tax incen-

tives) that can affect spending and pricing decisions quite independently of any change in

expectations regarding future policy.

We address this issue by considering optimal monetary policy when tax policy is used

1The real reason that Feldstein does not consider tax policy to be a useful tool of everyday stabilization
policy, of course, is not the one on which our model relies; for we assume, for purposes of normative analysis,
that tax rates can be quickly adjusted on the basis of full information about current aggregate conditions.
But by considering a case in which it would be optimal to fully smooth tax rates at times when the zero
bound does not bind (and has not recently bound), we can show clearly that the zero bound introduces a
new reason for it to be desirable for tax rates to depend on aggregate conditions.

2At the Brookings panel meeting at which our previous paper was presented, a number of panel members
protested the omission of any role for fiscal policy; see the published discussion of Eggertsson and Woodford
(2003).
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optimally, and examining the degree to which it involves a commitment to history-dependent

policy. We find that except under the most favorable circumstances for the effective use of

fiscal policy, optimal monetary policy continues to be similar in important respects to the

optimal policy identified in our previous paper. In particular, it requires the central bank

to commit itself to maintain a looser policy following a period in which the natural rate of

interest has been negative (and the zero interest-rate bound has been reached) than would

otherwise be optimal given conditions at the later time. This implies a temporary period of

inflation and eventual stabilization of the price level around a higher level than would have

been reached if the zero bound had not been hit. On the other hand, the welfare gains from

such a sophisticated monetary policy commitment are relatively modest when fiscal policy

is used for stabilization purposes, and if fiscal policy is sufficiently flexible, they disappear

altogether.

We further show that when the set of available tax instruments is restricted in a way

that seems to us fairly realistic, it is also optimal for tax policy to be conducted in a history-

dependent way. The policy authorities should commit to a more expansionary fiscal policy

(i.e., lower tax rates) after the disturbance to the natural rate of interest has ended; thus

there should be a commitment to use both monetary and fiscal policy to create “boom”

conditions at that time. Whether monetary policy is optimal or not, the optimal fiscal policy

is history-dependent and depends on successful advance signalling of policy commitments.

In fact, we compare the outcome with fully optimal monetary and fiscal policies with

the best outcome that can be achieved by purely forward-looking policies. We find that the

choice of an optimal fiscal rule, even subject to the restriction that policy be purely forward-

looking (in the sense of Woodford, 2000), allows substantial improvement over the outcome

that would result from a forward-looking monetary policy (i.e., a constant inflation target)

in the case of a simple tax-smoothing rule for taxes. Nonetheless, further improvements in

stabilization are possible through commitment to history-dependent policies.

It is also worth noting that the gains from fiscal stabilization policy that we find, even

when policy is constrained to be purely forward-looking, are always heavily dependent on the
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public’s correct understanding of how current developments change the outlook for future

policy. Optimal fiscal policy involves raising taxes during the liquidity trap in order to lower

the public debt (or build up government assets), implying that taxes will be lower later. The

expectation of lower taxes later can be created even under the constraint that fiscal policy

be purely forward-looking, because the level of the public debt is a state variable that should

condition future tax policy even when policy is purely forward-looking. But the effectiveness

of the policy does depend on the public’s expectations regarding future policy changing in

an appropriate way when the disturbance occurs, and so there remains an important role for

discussion by policymakers of the outlook for future policy.

Finally, we wish to re-examine the character of optimal monetary policy taking account of

the fiscal effects of monetary expansion. Auerbach and Obstfeld (2003) emphasize that when

tax distortions are considered, there is an additional benefit from expansionary monetary

policy in a liquidity trap, resulting from reduction of the future level of real tax collections

that will be needed to service the public debt. We consider this issue by analyzing optimal

monetary policy in a setting where only distorting sources of government revenues exist, and

where there is assumed to be an initial (nominal) public debt of non-trivial magnitude.

An important issue that is not considered in Auerbach and Obstfeld’s calculation of the

welfare gains from monetary expansion is the extent to which the gains that they find would

also be present even if the economy were not in a liquidity trap — and thus constitute an

argument, not for unusual monetary expansion in the event of a liquidity trap, but for always

expanding the money supply. Of course, as is well known from the literature on rules versus

discretion, it is easy to give reasons why monetary expansion should appear attractive to a

discretionary policy authority, that asks, at a given point in time, what the best equilibrium

would be from that time onward, taking as given past expectations and not regarding itself

as bound by any past commitments. At the same time, in several well-known models, the

authority ought to prefer to commit itself in advance not to behave this way, owing to the

harmful consequences of prior anticipation of inflationary policy. It is important to consider

the extent to which the gains from expansionary monetary policy under circumstances of
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a liquidity trap are ones that one would commit oneself in advance to pursue under such

a contingency, or whether they represent the sort of temptation under discretionary policy

that a sound policy must commit itself to resist.

We address this question by considering optimal state-contingent policy under advance

commitment. While we do consider how policy should be conducted from some initial date

at which it is already known that a disturbance that lowers the natural rate of interest has

occurred, we consider this question from a “timeless perspective,” as advocated by Woodford

(1999; 2003, chap. 7); this means that characterize a policy from that date forward to which

the policy maker would have wished to commit itself at an earlier date.3 We find that

such a commitment will involve a zero inflation rate over periods when the zero bound does

not bind and has not recently bound; but that the central bank will commit itself to a

policy that permanently increases the price level by a finite proportion each time the zero

bound is reached. We also compare the size of the optimal increase in the price level, for

a given size and duration of real disturbance, for high-debt versus low-debt economies, in

order to see to what extent the existence of a higher shadow value of additional government

revenues (in order to reduce tax distortions) strengthens the case for a commitment to

expansionary policy under circumstances of a liquidity trap. We find that optimal policy is

somewhat more inflationary (in response to a real disturbance that lowers the natural rate of

interest) in the case of an economy with a larger quantity of nominal public debt and more

severe tax distortions; however, neither optimal fiscal policy nor optimal monetary policy

are fundamentally different in this case than they are in the simpler case of an economy with

zero initial public debt and a zero steady-state tax rate.

1 An Optimizing Model with Tax Distortions

The framework that we use to analyze the questions posed above is the one introduced

in Benigno and Woodford (2003). We first review the structure of the model, and then

3See also Svensson and Woodford (2004), Giannoni and Woodford (2002), and Benigno and Woodford
(2003), for further discussions of this concept.
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the linear-quadratic approximation derived by Benigno and Woodford. We finally discuss

the additional complications that are introduced in the case that the zero lower bound on

nominal interest rates is sometimes a binding constraint on monetary policy.

1.1 The Exact Policy Problem

Here we review the structure of the model of Benigno and Woodford (2003). Further details

are provided there and in Woodford (2003, chaps. 3-4). The goal of policy is assumed to

be the maximization of the level of expected utility of a representative household. In our

model, each household seeks to maximize

Ut0 ≡ Et0

∞∑

t=t0

βt−t0

[
ũ(Ct; ξt)−

∫ 1

0
ṽ(Ht(j); ξt)dj

]
, (1.1)

where Ct is a Dixit-Stiglitz aggregate of consumption of each of a continuum of differentiated

goods,

Ct ≡
[∫ 1

0
ct(i)

θ
θ−1 di

] θ−1
θ

, (1.2)

with an elasticity of substitution equal to θ > 1, and Ht(j) is the quantity supplied of labor

of type j. Each differentiated good is supplied by a single monopolistically competitive pro-

ducer. There are assumed to be many goods in each of an infinite number of “industries”; the

goods in each industry j are produced using a type of labor that is specific to that industry,

and also change their prices at the same time. The representative household supplies all

types of labor as well as consuming all types of goods. We follow Benigno and Woodford in

assuming the isoelastic functional forms,

ũ(Ct; ξt) ≡ C1−σ̃−1

t C̄ σ̃−1

t

1− σ̃−1
, (1.3)

ṽ(Ht; ξt) ≡ λ

1 + ν
H1+ν

t H̄−ν
t , (1.4)

where σ̃, ν > 0, and {C̄t, H̄t} are bounded exogenous disturbance processes. (We use the

notation ξt to refer to the complete vector of exogenous disturbances, including C̄t and H̄t.)
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We assume a common technology for the production of all goods, in which (industry-

specific) labor is the only variable input,

yt(i) = Atf(ht(i)) = Atht(i)
1/φ,

where At is an exogenously varying technology factor, and φ > 1. Inverting the production

function to write the demand for each type of labor as a function of the quantities produced

of the various differentiated goods, and using the identity

Yt = Ct + Gt

to substitute for Ct, where Gt is exogenous government demand for the composite good, we

can write the utility of the representative household as a function of the expected production

plan {yt(i)}.
The producers in each industry fix the prices of their goods in monetary units for a

random interval of time, as in the model of staggered pricing introduced by Calvo (1983).

We let 0 ≤ α < 1 be the fraction of prices that remain unchanged in any period. Each

supplier that changes its price in period t optimally chooses the same price p∗t that depends

on aggregate conditions at the time. Benigno and Woodford (2003) show that the optimal

relative price is given by

p∗t
Pt

=
(

Kt

Ft

) 1
1+ωθ

, (1.5)

where ω ≡ φ(1+ ν)− 1 > 0 is the elasticity of real marginal cost in an industry with respect

to industry output, and Ft and Kt are two sufficient statistics for aggregate conditions

at date t; each is a function of current aggregate output Yt, the current tax rate τt, the

current exogenous state ξt, and the expected future evolution of inflation, output, taxes and

disturbances. In the model of Benigno and Woodford (2003), the tax rate τt is a proportional

tax on sales revenues, included in the posted price of goods, like a VAT. This tax is the sole

source of government revenues; it distorts the allocation of resources owing to its effect on

the price-setting decisions of firms.4

8



The Dixit-Stiglitz price index Pt then evolves according to a law of motion

Pt =
[
(1− α)p∗1−θ

t + αP 1−θ
t−1

] 1
1−θ . (1.6)

Substitution of (1.5) into (1.6) implies that equilibrium inflation in any period is given by

1− αΠθ−1
t

1− α
=

(
Ft

Kt

) θ−1
1+ωθ

, (1.7)

where Πt ≡ Pt/Pt−1. This defines a short-run aggregate supply relation between inflation

and output, given the current tax rate τt, current disturbances ξt, and expectations regarding

future inflation, output, taxes and disturbances.

Again following Benigno and Woodford, we abstract here from any monetary frictions

that would account for a demand for central-bank liabilities that earn a substandard rate

of return; we nonetheless assume that the central bank can control the riskless short-term

nominal interest rate it,
5 which is in turn related to other financial asset prices through the

arbitrage relation

1 + it = [EtQt,t+1]
−1,

where Qt,T is the stochastic discount factor by which financial markets discount random

nominal income in period T to determine the nominal value of a claim to such income in

period t. In equilibrium, this discount factor is given by

Qt,T = βT−t ũc(CT ; ξT )

ũc(Ct; ξt)

Pt

PT

, (1.8)

so that the path of nominal interest rates implied by a given path for aggregate output and

inflation is given by

1 + it = β−1 ũc(Yt −Gt; ξt)P
−1
t

Et[ũc(Yt+1 −Gt+1; ξt+1)P
−1
t+1]

. (1.9)

4We discuss the consequences for our analysis of allowing for other kinds of taxes in section 2.2. The main
limitation on our analysis that results from assuming that only a VAT rate can be varied is that this tax
instrument affects aggregate supply incentives but not the intertemporal Euler equation (1.9) for the timing
of private expenditure. In fact, many other important instruments of fiscal policy, such as variations in a
payroll tax rate or in the rate of tax on labor income, would have the same property, and we think that the
supply-side effects of variations in tax policy are the ones of greatest importance in practice. We do however
discuss in section 2.2 the conditions under which tax policy can be used to affect the timing of expenditure.

5For discussion of how this is possible even in a “cashless” economy of the kind assumed here, see Woodford
(2003, chapter 2).
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Without entering into the details of how the central bank implements a desired path for

the short-term nominal interest rate, it is important to note that it will be impossible for

it to ever be driven negative, as long as private parties have the option of holding currency

that earns a zero nominal return as a store of value. Hence the zero lower bound

it ≥ 0 (1.10)

is a constraint on the set of possible equilibria that can be achieved by any monetary policy.

Benigno and Woodford assume that this constraint never binds under the optimal policies

that they consider, so that they do not need to introduce any additional constraint on the

possible paths of output and prices associated with a need for the chosen evolution of prices

to be consistent with a non-negative nominal interest rate. This can be shown to be true

in the case of small enough disturbances, given that the nominal interest rate is equal to

r̄ = β−1 − 1 > 0 under the optimal policy in the absence of disturbances; but it need not

be true in the case of larger disturbances. The goal of the present paper is to consider the

implications of this constraint.

Our abstraction from monetary frictions, and hence from the existence of seignorage

revenues, does not mean that monetary policy has no fiscal consequences, for interest-rate

policy and the equilibrium inflation that results from it have implications for the real burden

of government debt. For simplicity, we shall assume that all public debt consists of riskless

nominal one-period bonds. The nominal value Bt of end-of-period public debt then evolves

according to a law of motion

Bt = (1 + it−1)Bt−1 + Ptst, (1.11)

where the real primary budget surplus is given by6

st ≡ τtYt −Gt − ζt. (1.12)

Here τt, the share of the national product that is collected by the government as tax revenues

6Benigno and Woodford (2003) also allow for exogenous variations in the size of government transfer
programs, but we do not consider this form of disturbance here.
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in period t, is the key fiscal policy decision each period; both the real value of government

purchases Gt and the real value of government transfers ζt are treated as exogenously given.

Rational-expectations equilibrium requires that the expected path of government sur-

pluses must satisfy an intertemporal solvency condition

bt−1
Pt−1

Pt

= Et

∞∑

T=t

Rt,T sT (1.13)

in each state of the world that may be realized at date t, where Rt,T ≡ Qt,T PT /Pt is the

stochastic discount factor for a real income stream, and This condition restricts the possible

paths that may be chosen for the tax rate {τt}. Monetary policy can affect this constraint,

however, both by affecting the period t inflation rate (which affects the left-hand side) and

(in the case of sticky prices) by affecting the discount factors {Rt,T}. Again using (1.8), we

can equivalently write this as a constraint on the possible paths of aggregate prices, output

and the tax rate,

bt−1ũc(Yt −Gt; ξt)Π
−1
t = Et

∞∑

T=t

βT−tũc(YT −GT ; ξT )[τT YT −GT ]. (1.14)

The complete set of restrictions on the joint evolution of the variables {Πt, Yt, it, τt} under

any possible monetary and fiscal policies is then given by equations (1.7), (1.9), (1.10), and

(1.13), each of which must hold for each t ≥ t0, given the initial public debt bt0−1. We wish

to consider the state-contingent evolution of these variables that will maximize the welfare of

the representative household, measured by (1.1), given the exogenously specified evolution

of the various disturbances {ξt}.

1.2 A Linear-Quadratic Approximation

Benigno and Woodford (2003) derive a local approximation to the above policy problem that

will be of use in our own analysis of optimal policy as well. This is obtained from Taylor

series expansions of both the objective and the constraints (other than the zero lower bound,

that they assume not to bind) around the steady state values of the endogenous variables

that represent an optimal policy in the case that there are no disturbances. They show that
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this optimal steady state involves zero inflation (and hence identical, constant prices in all

industries), an arbitrary constant level of real public debt b̄ (that depends on the initial

level of real claims on the government), and a constant tax rate τ̄ and output level Ȳ that

are jointly consistent with the aggregate supply relation (1.7) and the government’s budget

constraint, given a zero inflation rate and the constant debt level b̄. The relation between the

steady-state values of these variables implied by the government budget constraint is simply

(1− β)b̄ = τ̄ Ȳ − Ḡ− ζ̄ .

Because there is zero inflation in the steady state, the steady-state output level Ȳ is just

the flexible-price equilibrium level of output (in the absence of disturbances) in the case of

a constant tax rate τ̄ .

A critical issue for the characterization of optimal stabilization policy is the degree of

efficiency of the steady-state level of output Ȳ (i.e., the size of the discrepancy between

Ȳ and the level of output that would maximize utility subject to the feasibility constraint

implied by the production technology). The degree of inefficiency of the steady state output

level can be measured by the parameter

Φ ≡ 1− θ − 1

θ

1− τ̄

µ̄w
< 1, (1.15)

which indicates the steady-state wedge between the marginal rate of substitution between

consumption and leisure and the marginal product of labor. (Here µ̄w ≥ 1 is the steady-state

level of the markup of wage demands over those associated with competitive labor supply.)

Our numerical examples assume that b̄ ≥ 0, implying that τ̄ ≥ 0 and hence that Φ > 0, so

that steady-state output is inefficiently low.7 This implies that the effects of stabilization

policy on the average level of output matter for the welfare evaluation of alternative policies.

Benigno and Woodford (2003) show that it is nonetheless possible to correctly evaluate

welfare under alternative policies, to second order in a bound on the amplitude of the exoge-

nous disturbances, using only a log-linear approximation to the model equilibrium relations

7This contrasts with the assumption made in Eggertsson and Woodford (2003). However, we nonetheless
obtain a quadratic loss function of the form assumed in our previous analysis, as explained below.
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to characterize equilibrium dynamics under a given policy. This is possible when one uses

as one’s welfare measure a quadratic loss function in which the effects of stabilization policy

on average output have already been taken into account in the loss function, so that the loss

function is purely quadratic, rather than depending explicitly on the average level of out-

put. In fact, Benigno and Woodford show that a quadratic approximation to the expected

discounted utility of the representative household is a decreasing function of the objective

Et0

∞∑

t=t0

βt−t0

{
1

2
qππ2

t +
1

2
qy(Ŷt − Ŷ ∗

t )2
}

, (1.16)

where the coefficients qπ, qy are functions of the model parameters, and the target level of

output Ŷ ∗
t is a function of all of the exogenous real disturbances (discussed further in the

next section). In the case that both the share of output consumed by the government and

the steady-state tax rate are not extremely large, the coefficients qπ, qy are shown both to be

positive; this is true for the numerical calibrations considered below. Hence the stabilization

of both inflation and the welfare-relevant output gap yt ≡ Ŷt − Ŷ ∗
t is desirable for welfare.

Given the purely quadratic form of the objective (1.16), a log-linear approximation to

the model structural relations suffices to allow a characterization of welfare under alternative

rules that is accurate to second order, and hence a characterization of optimal policy that

is accurate to first order in the amplitude of the disturbances. A first-order Taylor series

expansion of (1.7) around the zero-inflation steady state yields the log-linear aggregate-

supply relation

πt = κ[Ŷt + ψτ̂t + c′ξξt] + βEtπt+1, (1.17)

where πt is the inflation rate, Ŷt ≡ log(Yt/Ȳ ), and τ̂t ≡ τt− τ̄ .8 Here the coefficients are given

by

κ ≡ (1− αβ)(1− α)

α

ω + σ−1

1 + ωθ
> 0,

8Note a difference in notation from that used in Benigno and Woodford (2003), where τ̂t refers to the
deviation of log τt from its steady-state value. Here we wish to be able to consider the case of a zero steady-
state tax rate. Our alternative notation implies a corresponding difference in the value of the coefficient ψ;
the coefficient ψ defined in Benigno and Woodford (2003) is equal to τ̄ψ in our notation. Note that our
coefficient ψ has a positive value even in the case that τ̄ = 0, while the coefficient defined by Benigno and
Woodford is zero in that case, even though an increase in the tax rate will still shift the aggregate-supply
relation in that case.
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ψ ≡ 1

1− τ̄

1

ω + σ−1
> 0,

where σ ≡ σ̃C̄/Ȳ > 0 is an intertemporal elasticity of substitution for total (as opposed to

merely private) expenditure.9

This is the familiar “New Keynesian Phillips curve” relation, extended here to take

account of the effects of variations in the level of distorting taxes on supply costs. (Note

that −c′ξξt−ψτ̂t represents the log deviation of the flexible-price equilibrium level of output

from the steady-state output level Ȳ , in the case of real disturbances ξt and a tax rate τ̂t.) It

is useful to write this approximate aggregate-supply relation in terms of the welfare-relevant

output gap yt. Equation (1.17) can be equivalently be written as

πt = κ[yt + ψτ̂t + ut] + βEtπt+1, (1.18)

where ut is composite “cost-push” disturbance, indicating the degree to which the various

exogenous disturbances included in ξt preclude simultaneous stabilization of inflation, the

welfare-relevant output gap, and the tax rate. (The effects of real disturbances on this term

are discussed in the next section.) Alternatively we can write

πt = κ[yt + ψ(τ̂t − τ̂ ∗t )] + βEtπt+1, (1.19)

where τ̂ ∗t ≡ −ψ−1ut indicates the tax change needed at any time to offset the“cost-push”

shock, in order to allow simultaneous stabilization of inflation and the output gap (the two

stabilization objectives reflected in (1.16)).

The other constraint on possible equilibrium paths considered by Benigno and Woodford

(2003) is the intertemporal government solvency condition. A log-linear approximation to

(1.14) can be written in the form

b̂t−1 − sbπt − sbσ
−1yt = −ft + Et

∞∑

T=t

βT−t[byyT + bτ (τ̂T − τ̂ ∗T )], (1.20)

where b̂t ≡ (bt − b̄)/Ȳ measures the deviation of the real public debt from its steady-state

level (as a fraction of steady-state output),10 and ft is a composite measure of exogenous

9Under the simplifying assumption of zero government purchases, maintained in our numerical examples
below, σ is simply the preference parameter σ̃.
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“fiscal stress.” (Note that the sum b̂t−1 + ft indicates the degree to which a plan to maintain

zero inflation and a zero output gap for all periods T ≥ t would fail to be consistent with

government solvency. The way in which real disturbances affect the term ft is discussed

further in the next section.) The coefficient sb ≡ b̄/Ȳ indicates the steady-state level of

public debt as a proportion of steady-state output. Under the simplifying assumption of

zero government purchases, maintained in our numerical examples, the coefficients by, bτ ,

indicating the effect on the government budget of variations in aggregate output and the tax

rate respectively, are equal to11

by = (1− σ−1)τ̄ , bτ = 1.

In deriving the first-order conditions that characterize optimal policy, it is useful to write

this constraint in a flow form. Note that if (1.20) holds each period, it follows that

b̂t−1 − sbπt − sbσ
−1yt + ft = [byyt + bτ (τ̂t − τ̂ ∗t )] + βEt[b̂t − sbπt+1 − sbσ

−1yt+1 + ft+1] (1.21)

each period as well. The solvency condition also implies the transversality condition

lim
T→∞

βT Et[b̂T−1 − sbπT − sbσ
−1yT + fT ] = 0,

and this transversality condition, together with the requirement (1.21) for each period, im-

plies (1.20).

The linear-quadratic policy problem considered by Benigno and Woodford (2003) is then

the choice of state-contingent paths for the endogenous variables {πt, yt, τ̂t, b̂t} from some

date t0 onward so as to minimize the quadratic loss function (1.16), subject to the constraint

that conditions (1.19) and (1.20) be satisfied each period, given an initial value b̂t0−1 and

subject also to the constraints that πt0 and yt0 equal certain precommitted values,

πt0 = π̄t0 , yt0 = ȳt0 , (1.22)

10Here again our notation differs from that of Benigno and Woodford (2003), so that we can treat the case
of a steady state with zero public debt. As a consequence, our coefficients by, bτ are equal to (1− β)sb times
the definitions given by Benigno and Woodford.

11More general expressions for these coefficients can be found in the appendix to Benigno and Woodford
(2003), taking account of the change in notation discussed in the previous footnote.
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that may depend on the state of the world in period t0. The allowance for appropriately

chosen initial constraints allows us to ensure that the policy judged to be optimal from some

date t0 onward corresponds to the commitment that would have optimally been chosen at

some earlier date. This means that even if we suppose that at date t0 it is already known

that a disturbance has occurred, the optimal policy response that is computed is the way

that a policymaker should have committed in advance to respond to such a shock, rather

than one that takes advantage of the opportunity to choose an optimal policy afresh and

exploit existing expectations.12

1.3 The Natural Rate of Interest and the Zero Bound

In the Benigno - Woodford (2003) characterization of optimal monetary and fiscal policy,

it is not necessary to include among the constraints of the policy problem any relations

that connect interest rates to the target variables (inflation and the output gap). It suffices

that there be some feasible level of short-term nominal interest rate at each point in time

associated with the solution to the constrained optimization problem that they define; it

does not actually matter what this interest rate is, in order to determine the optimal state-

contingent paths of inflation, output, tax rates, and the public debt. And since the nominal

interest rate is positive in the optimal steady state, the solution to their optimization problem

continues to imply a positive nominal interest rate at all times, as long as shocks are small

enough.

Here, however, we are interested in the case in which there are occasionally disturbances

large enough to cause the zero bound to bind, though we shall continue to assume that the

above local approximations to both the model structural relations and the welfare objective

are sufficiently accurate. In order to see how possible paths for the target variables are

restricted by this constraint, it is necessary to consider the equilibrium relation between

12Thus we consider a policy that is “optimal from a timeless perspective,” in the sense defined in Woodford
(2003, chap. 7). In fact, in the numerical exercises reported below, the optimal responses that are reported
are the same as those that would be obtained if the initial constraints (1.22) were omitted, since we set the
initial lagged Lagrange multipliers equal to zero.
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interest rates and aggregate expenditure. A log-linear approximation to the Euler equation

(ISexact) for optimal expenditure can be written in the form13

Ŷt − gt = Et[Ŷt+1 − gt+1]− σ(it − Etπt+1 − r̄), (1.23)

where gt is a composite exogenous disturbance indicating the percentage change in period

t output required in order to hold constant the representative household’s marginal utility

of additional real expenditure (despite shifts in impatience to consume or in government

purchases), σ is again the intertemporal elasticity of substitution of private expenditure,

and r̄ ≡ β−1 − 1 > 0 is the steady-state real rate of interest.

This can alternatively be written in terms of the welfare-relevant output gap as

yt = Etyt+1 − σ(it − Etπt+1 − rn
t ), (1.24)

where

rn
t ≡ r̄ + σ−1[(gt − Ŷ ∗

t )− Et(gt+1 − Ŷ ∗
t+1)] (1.25)

represents the “natural rate of interest,” i.e., the equilibrium real rate of interest at each point

in time that would be required in order for output to be kept always at its target level.14

Note that the natural rate of interest depends only on exogenous real disturbances.15 It

indicates the degree to which short-term nominal interest rates must be adjusted in order

to be consistent with full achievement of both stabilization goals — i.e., in order for output

to equal the target level while inflation is equal to zero each period. If the natural rate

13The it in this equation actually refers to log(1 + it) in the notation of section 1.1, i.e., to the log of the
gross nominal interest yield on a one-period riskless investment, rather than to the net one-period yield. Note
also that this variable, unlike the others appearing in our log-linear approximate relations, is not defined as
a deviation from a steady-state value. This is so that we can continue to write the zero bound as a simple
requirement that it be non-negative. Hence the steady-state value r̄ appears in equation (1.23).

14For symmetry with our definition of it, we have also defined rt to be the absolute level of the natural
rate — technically, the log of a gross real rate of return — rather than a deviation from the steady-state
natural rate r̄.

15The natural rate of interest defined here does not correspond to the flexible-price equilibrium real rate
of interest, which would depend on the path of the tax rate rather than only on the exogenous disturbances.
However, in the case of isoelastic preferences (assumed here) and zero government purchases (assumed in our
numerical example), it does correspond to what the equilibrium real rate of interest would be under flexible
prices in the event that the tax rate τt were maintained at the steady-state level.
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of interest is sometimes negative, the zero lower bound on nominal interest rates alone will

imply that full achievement of these stabilization objectives is impossible, even in the absence

of cost-push shocks.16

Taking account of the zero bound thus requires that we adjoin to the set of constraints

considered by Benigno and Woodford (2003) two additional constraints, namely (1.24) and

the zero bound

it ≥ 0. (1.26)

We can replace these by a single constraint on possible paths for inflation and the output

gap,

yt ≤ Etyt+1 + σ(rn
t + Etπt+1), (1.27)

as in Eggertsson and Woodford (2003). The optimal policy problem is then to choose state-

contingent paths {πt, yt, τ̂t, b̂t} to minimize (1.16) subject to the constraints that (1.19),

(1.20) and (1.27) be satisfied each period, together with the initial constraints (1.22). This

reduces to the problem considered by Benigno and Woodford (2003) in the event that (1.27)

never binds. It is clear that the constraint is a tighter one the lower the value of the natural

rate of interest.

There are various reasons why real disturbances may shift the natural rate of interest.

On the one hand, there may be temporary fluctuations in the factor gt appearing in (1.23).

These may result either from variations in government purchases Gt, or from variations in the

preference parameter C̄t, indicating the level of private expenditure required to maintain a

constant marginal utility of real expenditure, and hence the variations in private expenditure

that occur if the private sector smooths the marginal utility of expenditure. But on the other

hand, any source of temporary fluctuations in the target output level Ŷ ∗
t will also imply

variation in the natural rate of interest as defined here. As Benigno and Woodford (2003)

show, a large variety of real disturbances should affect Ŷ ∗
t , including (in the case of a distorted

16For an extension of our analysis of the determinants of the natural rate of interest to a model with
endogenous capital accumulation, see Woodford (2004). The numerical conditions under which the natural
rate of interest can be temporarily negative in such a model are explored by Christiano (2004).
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steady state) variations in market power, as well as disturbances to both preferences and

technology.

In the baseline case considered in the next section, we shall consider the challenges for

policy created by fluctuations in the natural rate of interest, while abstracting from the

effects of variations in either the cost-push term ut in (1.18) or in the fiscal stress term ft

in (1.20). It is possible for a real disturbance to affect rn
t without any effect on either ut or

ft. In our numerical examples, we shall simplify by assuming that there are no government

purchases, and we consider the effects of exogenous variations in the factors C̄t and H̄t in

(1.3) – (1.4), or in the technology factor At. Variation in the factor C̄t results in variation in

the term gt;
17 indeed, under the simplifying assumption of no government purchases, gt is just

the deviation of log C̄t from its steady-state value. At the same time, all three disturbances

effect the target level of output, which under the assumption of no government purchases is

given by18

Ŷ ∗
t =

σ−1

ω + σ−1
gt +

ω

ω + σ−1
qt. (1.28)

Here qt is the increase in log output that would be required to maintain a constant marginal

disutility of labor effort; it is positive if H̄t or At are temporarily above their steady-state

levels.

In the case assumed in our baseline analysis, an exogenous disturbance temporarily makes

both gt and qt negative, but reduces gt by more. It follows from (1.28) that Ŷ ∗t declines, but

by less than the decline in gt, so that gt − Ŷ ∗
t is temporarily negative. Hence a temporary

disturbance of the kind proposed implies a temporary decline in the natural rate of interest.

In the specific numerical exercises reported below, we assume that an exogenous disturbance

changes C̄t, H̄t and/or At from their steady-state levels, after which there is a probability

17In our model, the factor C̄t is treated as a parameter of the preferences of the representative household.
However, the variable Ct stands for all private expenditure in our model, and the utility function u(Ct; ξt) is
actually to be understood as a reduced-form representation of the way in which utility is increased by real
private expenditure of all types — on investment as well as consumer goods. (See Woodford, 2003, chap. 4,
for further discussion.) Thus fluctuations in C̄t might also represent fluctuations in the marginal efficiency
of investment spending, for reasons treated as exogenous to our model.

18This is a special case of the more general formula given in the appendix of Benigno and Woodford (2003).
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0 < ρ < 1 each period that C̄t+1 = C̄t, H̄t+1 = H̄t, and At+1 = At, and on the other

hand a probability 1 − ρ that C̄t+1 = C̄, H̄t = H̄, and At = Ā. Once the exogenous

preference and technology factors return to their steady-state levels, they are expected to

remain permanently at those values. In the case of this kind of disturbance, Etgt+1 = ρgt

and Etqt+1 = ρqt, so that (1.25) implies that

rn
t = r̄ + (1− ρ)

ωσ−1

ω + σ−1
(gt − qt).

Thus rn
t falls below its steady-state level r̄ > 0 when a shock of the kind hypothesized

occurs (so that gt < qt < 0), remains at the lower level for as long as the exogenous factors

remain at their irregular values, and returns to the steady-state level r̄ (permanently) once

these factors return to their normal values. If the temporary disturbance is large enough (or

temporary enough), the natural rate of interest may be negative during the period that these

factors depart from their steady-state values. This is the case considered in the numerical

exercises below.

Benigno and Woodford (2003) show that if there are no government purchases, distur-

bance of these kinds have no cost-push effect, i.e., that ut = 0. This occurs because the

variations in C̄t, H̄t and At shift the flexible-price, constant-tax-rate equilibrium level of out-

put to exactly the same extent as the target level of output Ŷ ∗
t . As a consequence, Ŷt = Ŷ ∗

t

at all times is consistent with a constant tax rate τt under flexible prices, and consequently

also consistent with a constant tax rate in the event that inflation is zero at all times, even

in the presence of price stickiness. Thus the aggregate-supply relation (1.19) requires no

variation in tax rates in order for complete achievement of both stabilization goals despite

the occurrence of shocks of this kind.

However, complete stabilization of inflation and the output gap may nonetheless be incon-

sistent with intertemporal government solvency. On the one hand, because the disturbance

reduces the target level of output Ŷ ∗
t , as discussed above, it reduces the level of real gov-

ernment revenues associated with an unchanged tax rate. On the other hand, a reduction

in the real rate of interest associated with zero inflation and a zero output gap (i.e., the
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natural rate of interest), for the reasons also just discussed, will reduce the size of the tax

revenues needed for government solvency. It is possible (though a rather special case) that

these countervailing effects may precisely cancel. In the case of a disturbance of the specific

(Markovian) kind discussed above, the effect on the left-hand side of (1.14) is a percentage

increase equal to

σ−1(gt − Ŷ ∗
t ),

while the effect on the right-hand side is a percentage increase equal to

1− β

1− βρ
[Ŷ ∗

t + σ−1(gt − Ŷ ∗
t )].

Intertemporal solvency continues to be satisfied without any change in the tax rate if these

two expressions are equal.

Using (1.28), we see that this occurs if it happens that

[
ω − β−1 − 1

1− ρ

]
σ−1gt =

[
σ−1 +

β−1 − 1

1− ρ

]
ωqt. (1.29)

In the baseline example in the next section, we shall assume a disturbance in which the

relative magnitudes of the shifts in gt and in qt are precisely those needed for this to be

so, so that ft = 0. (Alternatively, we assume a degree of persistence of the disturbance

of precisely the size needed to satisfy this condition, given the relative magnitudes of the

shifts in the two types of exogenous factors.) We assume parameter values under which both

factors in square brackets are positive; hence (1.29) requires that gt and qt have the same

sign, as assumed above. One can show that it also implies that gt is larger than qt in absolute

value, so that rn
t moves in the same direction as gt and qt, as also asserted above. In fact,

one can show that (1.29) implies that

rn
t = r̄ + (β−1 − 1)Ŷ ∗

t . (1.30)

It follows that in our baseline example, the real disturbance that temporarily changes

the natural rate of interest has no effect on either the cost-push term ut in (1.18) or the

fiscal stress term ft in (1.20). This means that as long as the natural rate of interest remains
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always non-negative, optimal monetary and fiscal policy would involve a constant tax rate,

a zero inflation rate and a zero output gap, and a nominal interest rate that tracks the

temporary variation in the natural rate of interest. However, if the natural rate of interest

is temporarily negative, it will not be possible to achieve such an equilibrium. In this case,

the zero bound is a binding constraint. We take up the characterization of optimal policy in

such a case in the next section.

In general, of course, there is no reason for (1.29) to happen to hold. The case of most

practical interest is one in which a real disturbance that temporarily lowers the natural rate

of interest also lowers the fiscal stress term ft in (1.20). The reason is that the natural rate

of interest is only negative in the event of a disturbance that has a particularly large effect

on the natural rate of interest. This is most likely in the case that the shift in Ŷ ∗
t does not

offset the shift in gt to the extent required for (1.29) to hold; but this means that the most

likely case is one in which the effect on the government budget of the decline (if any) in Ŷ ∗t

is not as great as the effect of the decline in the real interest rate associated with complete

inflation and output-gap stabilization. Hence it is most likely in practice that a sharp decline

in the natural rate of interest will be associated with a reduction in fiscal stress (a negative

value of ft).

In section 2.3, we consider an alternative form of disturbance with this feature. Specifi-

cally, we consider the case of a disturbance which lowers the natural rate of interest without

affecting the target level of output. (An example of such a disturbance would be a temporary

decline in the rate of time preference; this is equivalent to a simultaneous reduction in C̄t and

increase in H̄t. Because the intratemporal first-order condition for optimal labor supply is

unaffected by such a disturbance, the flexible-price equilibrium level of output is unaffected.

And in the case of zero government purchases, this implies that Ŷ ∗
t is unaffected as well.) In

this alternative special case, the fiscal stress term is given by

ft = sb

∞∑

T=t

βT−t+1Et[r
n
T − r̄]. (1.31)

Hence a disturbance that temporarily lowers the natural rate of interest results in a reduction
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in fiscal stress. In section 2.3, we consider how the character of optimal policy changes in

this more complex case.

1.4 The Zero Lower Bound as a Constraint on Stabilization Policy:
A Simple Example

Here we show that the existence of the zero lower bound on nominal interest rates can

have important consequences for macroeconomic stability. We do this by considering policy

rules that would lead to optimal outcomes in the event that real disturbances are not large

enough to cause the zero lower bound to bind, and then showing that in the event of a larger

disturbance, the bound can bind. We further show that when the bound does bind, the

consequence can be both substantial deflation and a substantial negative output gap, both

of which are have adverse welfare consequences under the analysis of stabilization objectives

presented above.

Our analysis is simplest if we assume an initial public debt of zero, as well as zero

government purchases and zero government transfers at all times, so that the steady-state

tax rate τ̄ is also zero. In this zero-debt case, sb = 0, so that the constraint (1.20) takes a

simpler form,

b̂t−1 = Et

∞∑

T=t

βT−tτ̂T . (1.32)

There are no effects of inflation variation on the government budget in this case (to first

order), since there is no nominal public debt in the steady state; and there are no effects of

output variation (to first order), either, since there is a zero tax rate in the steady state.

There is also no fiscal stress term in (1.32). The assumption that sb = 0 implies that

there is no fiscal stress effect of variations in either the natural rate of interest (since there is

no debt to roll over, in the steady state) or in the target level of output (output variations

have no revenue effects, to first order, because the steady-state tax rate is zero). Hence as

long as the real disturbance that lowers the natural rate of interest has no cost-push effect

— which will be true of any disturbances to C̄t, H̄t, or At, under our assumption that sG = 0

— it will have no fiscal stress effect, either. Hence we can abstract from variations in either
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ut or ft in this case, without requiring the special assumption (1.29).

In the absence of either cost-push or fiscal stress effects, it is evident that (1.16) would

be minimized by a policy that maintains πt = yt = τ̂t = 0 at all times, as long as this is

consistent with the zero bound on interest rates. Such a policy is consistent with (1.26) as

long as rn
t ≥ 0 at all times, which will be true in the case of small enough real disturbances.

On the other hand, (1.26) implies that no such equilibrium is possible in the event that the

natural rate of interest is occasionally negative.

This suggests the following thought experiment. Suppose that fiscal and monetary policy

are conducted in accordance with the following simple rules: (i) The tax rate τ̂t that is chosen

at each point in time is the one that the fiscal authority expects to be able to maintain

indefinitely, without violating the intertemporal government solvency condition; that is, an

expected path of taxes such that Etτ̂T = τ̂t for all T ≥ t is consistent with (1.20); and (ii)

monetary policy is used to ensure that inflation equals zero at all times, unless the zero bound

prevents interest rates from being lowered enough to prevent deflation. In our baseline case,

since (1.20) reduces to (1.32), the proposed fiscal rule is simply

τ̂t = (1− β)b̂t−1. (1.33)

The monetary policy rule (a strict zero inflation target of the kind discussed in Eggertsson

and Woodford, 2003) implies that

πt ≤ 0 (1.34)

each period, and that in each period either (1.26) or (1.34) must hold with equality.

If real disturbances are small enough so that the natural rate of interest is non-negative at

all times, then the policy rules (1.33) – (1.34) result in an equilibrium in which b̂t = b̂t0−1 = 0

for all t ≥ t0, so that τ̂t = 0 at all times, and in which πt = 0 each period, so that yt = 0 at

all times as well. (This requires that the nominal interest rate satisfy it = rn
t each period.)

This is obviously an optimal equilibrium; so the proposed rules would be optimal (in our

baseline case) in the event of any small enough real disturbances.

Let us consider instead the consequences of these policies in the case of a larger distur-
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Zero debt High debt

β 0.99 0.99
σ 0.5 0.5
ω 0.47 0.47
θ 10 10
κ 0.02 0.02

sG 0 0
sζ 0 0.176
sb 0 2.4
τ̄ 0 0.2
ψ 0.40 0.51

µ̄w 1.08 1.08
Φ 0.17 0.33

qy/qπ 0.032 0.032

r̄ 0.04 0.04
r -0.02 -0.02
ρ 0.9 0.9

Table 1: Parameter values for the numerical examples.

bance, that temporarily causes the natural rate of interest to be negative. We shall illustrate

what can happen using a numerical example, upon which we elaborate in later sections.

The numerical parameter values that we assume are given in the first column of Table 1.19

We assign values to the parameters β, σ, ω, θ, and κ in the same way as in Eggertsson and

Woodford (2003). In our baseline case, the new parameters sb ≡ b̄/Ȳ , sG ≡ Ḡ/Ȳ , and

sζ ≡ ζ̄/Ȳ are assigned the values already discussed above. The value of the steady-state

wage markup µ̄w is taken from Benigno and Woodford (2003), as are the values of sb and τ̄

in the “high-debt” calibration (discussed in section 2.3 below). The remaining values listed

in the table are then the values for other parameters implied by these ones.20

19Note that periods of our model are interpreted as referring to quarters.
20Note that the value quoted for the relative weight qy/qπ assumes a normalization of the target variables

in which the inflation rate is measured in percentage points per annum, while the output gap is measured in
percentage points. Note also that while the larger steady-state distortions in the high-debt case affect the
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Figure 1: Consequences of a temporary decline in the natural rate of interest: the case of a
strict inflation target and tax smoothing.

In our numerical examples, we consider a real disturbance of the following sort. Our

parameter values imply that the steady-state natural rate of interest r̄ is equal to 4 percent

per annum (.01 per quarter). We assume that prior to quarter 0, the economy has been

in the optimal steady state. In quarter 0, an unexpected shock lowers the natural rate of

interest to a temporary value of r = -2 percent per annum. The natural rate then remains at

this lower level each quarter with probability ρ = 0.9, while with a ten percent probability

it returns to the steady-state level. After it returns to the steady-state level, it is expected

to remain there thereafter.

In the case of the policy rules (1.33) – (1.34), the occurrence of the disturbance will cause

the zero lower bound to bind, and the central bank will be unable to prevent deflation and a

absolute magnitudes of qπ and qy, they do not affect the ratio of the two, which is all that matters for the
definition of the optimal policies, assuming that both weights remain positive, as is true in both cases shown
in the table.
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negative output gap. However, to first order this has no consequences for the government’s

budget in our baseline case, and the fiscal rule still implies that τ̂t = 0 for all t. The

consequences for inflation and output are then the same as in Eggertsson and Woodford

(2003), where a strict zero inflation target is considered under the assumption of lump-sum

taxation (so that the aggregate-supply relation is not shifted by any changes in tax policy).

Both πt and yt fall to negative levels, which they maintain for as long as rn
t = r. Once the

natural rate of interest returns to its normal level, at the random date T1, the zero bound

ceases to bind, and monetary policy again succeeds at maintaining zero inflation from that

date onward. The price level is again stabilized, but at a permanently lower level than existed

prior to the disturbance (and that is lower the longer the disturbance lasts); the output gap

is again zero from date T1 onward. Figure 1 plots the state-contingent paths of inflation,

the output gap, the nominal interest rate, and the price level in this solution, for each of the

possible realizations of T1, in the case of the parameter values listed in Table 1. (The figure

superimposes the paths for T1 = 1, T1 = 2, and so on. The same format is used to display

the economy’s state-contingent evolution under alternative policies below.)

We see from the figure that even a slightly negative natural rate of interest can have dire

consequences under a policy rule of this sort,21 even though the policy is one that might

seem reasonable, and that indeed would be optimal in the case of disturbances small enough

that the zero bound would not bind.22 However, these unfortunate consequences of the zero

21During the entire period (of random length) for which the natural rate of interest is negative, deflation
occurs at a rate of -10.4 percent per annum, and aggregate output is 14.6 percentage points below its target
level.

22The size of the contraction indicated in Figure 1 might seem implausibly large, but in fact the degree
of intertemporal substitutability of private expenditure that we have assumed — and hence the implied
interest-sensitivity of aggregate demand — is quite modest. (It should be recalled that in our model,
“Ct” stands not solely for nondurable consumer expenditure, but for all private expenditure, and consumer
durables purchases and investment spending are even more intertemporally substitutable than is non-durable
consumer expenditure. The output contraction shown in Figure 1 is large, not because we have assumed
an extreme degree of interest-sensitivity, but because the zero bound is expected to bind (and real interest
rates are therefore expected to exceed the natural rate of interest) for many quarters, which implies a large
reduction in current expenditure, in the case of intertemporal substitution over an infinite horizon. Our
model is arguably unrealistic in failing to incorporate habit persistence or other types of adjustment costs in
private expenditure; such a modification would imply a more gradual decline in output during the liquidity
trap, rather than an immediate fall in output to a constant, low level as shown in Figure 1. But the eventual
contraction of output would still be large in the case of a persistent disturbance of the kind assumed here.
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bound can be substantially mitigated, at least in principle, through commitment to monetary

and fiscal policies of a more sophisticated type. The kind of policy commitments that are

required are treated next.

2 Optimal Policy Commitments

We now turn to the characterization of optimal monetary and fiscal policy commitments,

in the case that (1.26) is an additional binding constraint on what policy can achieve. We

begin by considering the case in which both monetary and fiscal policy are chosen optimally,

and then (in section 3) compare this ideal case to suboptimal alternatives.

2.1 Optimal Policy with Zero Initial Public Debt

We first consider the baseline model already introduced in section 1.4, characterized by zero

initial public debt, zero government purchases, and a zero steady-state tax rate, so that the

intertemporal government solvency condition (1.20) reduces to (1.32). We thus consider the

problem of choosing state-contingent paths {πt, yt, τ̂t, b̂t} to minimize (1.16) subject to the

constraints that (1.19), (1.27), and (1.32) be satisfied each period, together with the initial

constraints (1.22), given an initial public debt b̂t0−1. We consider the optimal response to

fluctuations in the natural rate of interest rn
t that affect the tightness of the constraint (1.27),

but the term τ̂ ∗t in the constraint (1.19) is assumed always to equal zero.

The Lagrangian for this optimization problem is of the form

Lt0 = Et0

∞∑

t=t0

βt−t0{1

2
qππ2

t +
1

2
qyy

2
t + ϕ1t[yt − yt+1 − σπt+1] + ϕ2t[πt − κ(yt + ψτ̂t)− βπt+1]

+ϕ3t[b̂t−1 − τ̂t − βb̂t]} − [β−1σϕ1,t0−1 + ϕ2,t0−1]πt0 − β−1ϕ1,t0−1yt0 ,

where ϕ1t is the Lagrange multiplier associated with constraint (1.27), ϕ2t is the Lagrange

multiplier associated with constraint (1.19), and ϕ3t is the Lagrange multiplier associated

with constraint (1.32).23 The final two terms of the Lagrangian correspond to the initial con-

23In forming the Lagrangian, we have used the flow form of (1.32), i.e., the relation analogous to (1.21) in
the case of a zero-debt economy.
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Figure 2: Optimal responses to a decline in the natural rate of interest: the baseline case.

straints (1.22).24 The notation chosen for the multipliers corresponding to these constraints

gives the first-order conditions below a time-invariant form; and this interpretation of the

multipliers indicates how the values of these multipliers should be determined if optimal

policy from t0 onward is to represent the continuation of an optimal policy chosen at an

earlier date.

Differentiation of the Lagrangian leads to the following first-order conditions for an op-

timal policy commitment. The equalities

qππt − β−1σϕ1,t−1 + ϕ2t − ϕ2,t−1 = 0, (2.1)

qyyt + ϕ1t − β−1ϕ1,t−1 − κϕ2t = 0, (2.2)

κψϕ2t + ϕ3t = 0, (2.3)

24In fact, in the results reported below, we assume the values ϕ1,t0−1 = ϕ2,t0−1 = 0, so our conclusions
regarding optimal policy are the same as if we were to assume no initial constraints at all.
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Figure 3: Optimal responses of fiscal variables: the baseline case.

and

ϕ3t = Etϕ3,t+1 (2.4)

must hold for each t ≥ t0. In addition, the inequality

ϕ1t ≥ 0 (2.5)

must hold for each t ≥ 0, together with the complementary slackness condition that each

period either (1.27) or (2.5) must hold with equality, i.e., ϕ1t is nonzero only if the zero lower

bound on interest rates is binding. The optimal state-contingent evolution of the endogenous

variables {πt, yt, b̂t, τ̂t} is then characterized by these first-order conditions together with the

constraints and the complementary slackness condition.

We ensure satisfaction of the tranversality condition for optimality by selecting the non-

explosive solution to these equations, which is the one in which the zero bound ceases to bind
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Figure 4: Optimal responses when the disturbance lasts exactly 10 quarters.

after some finite number of periods (that depends on the random realization of the number

of periods for which the natural rate of interest is negative), and hence the equilibrium

corresponds after a finite number of periods to a steady state with zero inflation. We assume

an initial public debt bt−0−1 equal to the constant value b̄ in the steady state around which

we approximate our objective and constraints,25 so that we set b̂t0−1 = 0. Finally, we specify

the initial lagged Lagrange multipliers to be those that would have been associated with

an optimal commitment chosen prior to date t0, assuming that at that time the occurrence

of the decline in the natural rate of interest was assigned a negligible probability (though

an optimal commitment was made about what should happen if the low-probability event

were to occur). In a previously anticipated optimal steady state with a constant public debt

level b̂t = 0, the Lagrange multipliers would have constant values equal to zero; hence we set

25Here that value is b̄ = 0, but the same comment applies to the way in which we set b̂t−0−1 in our later
example with b̄ > 0.
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ϕ1,t0−1 = ϕ2,t0−1 = 0.

We again assume the numerical parameter values given in the first column of Table 1,

and again consider the effects of a real disturbance of the same kind as in Figure 1. Figures

2-4 display the optimal responses to this kind of disturbance. The solution to the first-order

conditions characterizing optimal policy is of the following form. For the first T1 quarters

(where T1 is random and equal at least to 1), rn
t = r < 0, and the zero bound is binding.

Hence (1.27) holds with equality, with the value r substituted for rn
t each period, and ϕ1t > 0.

In quarter T1 and thereafter, rn
t = r̄ > 0. But in quarters T1 through T2− 1, the zero bound

continues to bind, so that (1.27) holds with equality, now substituting the value r̄ for rn
t .

From quarter T2 onward (where the value of T2 ≥ T1 is known with certainty once T1 is

realized), the zero bound ceases to bind. For these periods, we solve the system of equations

in which the requirement that (1.26) hold with equality is replaced by the requirement that

(2.5) hold with equality.

Because the dynamics from quarter T1 onward are completely deterministic, (2.4) requires

that ϕ3t be constant for all t ≥ T1. Condition (2.3) then requires that ϕ2t be constant for

all t ≥ T1 as well. Since ϕ1t = 0 for all t ≥ T2, it then follows from (2.1) that πt = 0 for all

t ≥ T2 + 1, and from (2.2) that yt take some constant value for all t ≥ T2 + 1. It then follows

from (1.19) that τ̂t is constant for all t ≥ T2 + 1, and from (1.32) that b̂t is constant for all

t ≥ T2 + 1. Thus for all t ≥ T2 + 1, the economy is again in a zero-inflation steady state,

possibly involving different long-run values of b̂t, τ̂t, and yt than in the initial steady state.

Figures 2 and 3 plot the state-contingent paths of inflation, the output gap, the nominal

interest rate, the tax rate, and the level of public debt in this solution, for each of the possible

realizations of T1.
26 (As in Figure 1, these figures superimpose the paths for T1 = 1, T1 = 2,

and so on.) To clarify what happens under a typical contingency, Figure 4 shows the paths

for the nominal interest rate, the output gap, and inflation in the case that T1 = 10 quarters.

(In this case, T2 = 14 quarters.) The first panel of Figure 4 also plots the path of the natural

rate of interest (the dotted line), showing that it falls to the level r in quarter zero, remains

26These are computed using the approach explained in Appendix A of Eggertsson and Woodford (2003).
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there for 10 quarters, and returns to the steady-state level r̄ again in quarter 10.

Several features of the optimal policy are worthy of comment. First of all, while it would

be possible for policy to restore the economy to an optimal steady state from quarter T1

onward — this would involve zero inflation and maintaining a constant level of public debt,

at whatever level of would have been accumulated by that date — and while there are no

disturbances from that date onward to justify a non-stationary policy, an optimal policy

involves a commitment not to behave in this way. Thus optimal policy is history-dependent,

as in the analysis of Eggertsson and Woodford (2003). Here we see that when both monetary

and fiscal policy are chosen optimally, both are history-dependent: the inflation rate, the

nominal interest rate, and the tax rate all temporarily take values different from what their

eventual long-run values will be, that depend on the duration and severity of the previous

decline in the natural rate of interest.

The way in which optimal monetary policy is history-dependent is again similar to the

conclusions obtained in Eggertsson and Woodford (2003). Optimal policy involves a com-

mitment to keep nominal interest rates low for a period of time after the natural rate returns

to its normal level; for example, in the case that T1 = 10, the natural rate returns to its

normal level in quarter 10, but optimal policy maintains a zero interest rate for three more

quarters (quarters 10-12), and a nominal interest rate far below the natural rate in quarter

13 as well. Monetary policy remains loose for several more quarters despite a strong output

boom in quarter 10 and continued inflation; however, both the price level and the output

gap are stabilized a few quarters later.

Our results do, however, show that there is also a role for tax policy in responding to

a liquidity trap, even if it would not be desirable to vary tax rates in response to cyclical

disturbances that are not severe enough to cause the zero lower bound to bind. In our present

model, the optimal response to the kind of disturbance considered would involve no change

in tax rates (as well as no change in the inflation target) as long as r were non-negative.

Instead, in the case of a disturbance large enough to cause the zero bound to bind, we find

that it is optimal for tax policy to respond to the shock, as proposed by Feldstein (2002).
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But the optimal fiscal response is quite different from the conventional wisdom: we find that

an optimal policy involves raising tax rates during the liquidity trap, while committing to cut

them once the natural rate of interest is positive again, even though the latter commitment

requires taxes to be cut during an inflationary boom.

Our unconventional conclusions regarding optimal tax policy are actually a fairly straight-

forward consequence of the role of taxes in our model. The tax rate matters for inflation

and output determination (and hence, for those variables that appear in the loss function

(1.16)) only through its effect on the aggregate-supply relation (1.19): a higher tax rate

increases the real marginal cost of supply for any given level of output, and so increases

the inflation rate associated with a given level of output and given inflation expectations.

The value of departures from complete tax smoothing depends on the value of being able

to shift the location of this aggregate-supply relation. In Eggertsson and Woodford (2003),

we consider optimal monetary policy under the assumption that there is no policy instru-

ment that can shift this constraint — which is equivalent to assuming that constraint (1.19)

applies, but that the tax rate cannot be changed — and that constraint (1.27) is shifted

by the disturbance to the natural rate of interest in exactly the same way as is assumed

here. Thus the optimal state-contingent paths of inflation, output and interest rates in that

paper represent a constrained-optimal solution to the problem considered here, where the

constraint is that tax rates remain at their initial level. (Since this path of taxes is consistent

with constraint (1.32), the problem corresponds to precisely the problem considered here,

but under an additional constraint.)

We can then ask what the value to a planner would be, in the equilibrium computed

in that paper, of shifting the aggregate-supply relation. This is indicated by the Lagrange

multiplier associated with that constraint in the problem solved in Eggertsson and Woodford

(2003). The state-contingent paths of the Lagrange multiplier ϕ2t in that equilibrium, for

each possible realization of T1, are shown in Figure 5. We see that in the equilibrium

computed in the earlier paper,27 the value of ϕ2t is positive during the period of the liquidity

27The values plotted here are for the solution to our previous model using the parameter values reported
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Figure 5: The evolution of ϕ2t in the equilibrium of Eggertsson and Woodford (2003).

trap, and then negative later, before eventually approaching zero. This means that welfare

would be improved if a positive cost-push shock were to occur during the time that the

natural rate of interest is negative, followed by a negative cost-push shock after the natural

rate becomes positive again. Once it is possible to use the VAT rate for stabilization purposes,

an instrument is available that can be used to shift the constraint in both of these ways,

subject only to the constraint that any changes in the path of the tax rate still satisfy the

intertemporal government solvency condition (1.32). The fact that there is only a present-

value constraint on the path of the tax rate implies that the shadow value ϕ2t of shifting the

AS relation should be smoothed over time; relative to Figure 5, this would mean lowering it

during the period that the natural rate of interest is negative, and raising it in the early period

following the return of the natural rate to its normal level. This direction of adjustment of

in the first column of Table 1.
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the shadow value of further shifts in the AS relation requires that taxes be raised initially,

and in exchange be lowered later.

2.2 Optimal Policy with Additional Fiscal Instruments

In the baseline case just considered, we assume that only a single type of public debt can

be issued (riskless nominal one-period Treasury bills), and that only a single tax rate can be

varied (a proportional sales tax such as a VAT). There is then a unidimensional fiscal policy

decision to make each period: the fiscal authority must choose the tax rate, which implies a

certain level of tax revenues and hence a certain quantity of Treasury bills in circulation. In

reality, fiscal policy can be varied along multiple dimensions, because of the existence both

of multiple taxes and of multiple forms of government debt. Here we consider the extent to

which improved stabilization would be possible using additional fiscal instruments, and the

extent to which this might eliminate the need for history-dependent monetary policy.

We first consider the consequences of multiple forms of public debt. In the most favorable

case, suppose that the government can issue state-contingent securities of an arbitrary form.

In this case, bt−1 is no longer a single quantity determined at date t−1, but may instead take

a value that depends on the exogenous disturbances realized at date t.28 The intertemporal

government solvency condition is then a single constraint, rather than a separate constraint

for each state that may be realized at any date t. Condition (2.4) then becomes

ϕ3,t+1 = ϕ3t

for each possible state at date t + 1; the Lagrange multiplier associated with the solvency

condition never changes. Since this multiplier is zero in the steady state that is assumed to

exist prior to the occurrence of the disturbance to the natural rate of interest in period t0, it

follows that, under any optimal policy commitment entered into prior to date t0, the value

of bt0−1 will vary with the disturbance at date t0 in such a way that the multiplier continues

to equal zero, and so ϕ3t = 0 for all t ≥ t0. It follows from (2.3) that ϕ2t = 0 as well.

28In this case, the notation with a subscript t − 1 is unappealing, but the variable enters the budget
constraints in the same way as before, so we do not propose alternative notation.
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Thus the optimal evolution of inflation and of the output gap are characterized by equa-

tions (2.1) and (2.2), with the ϕ2 terms eliminated, together with (1.27), (2.5), and the

complementary slackness relation between these last two inequalities. (We solve these equa-

tions under the initial condition ϕ1,t0−1 = 0.) Condition (1.19) can then be solved for the

implied evolution of the tax rate, and condition (1.20) for the implied evolution of the state-

contingent value of government debt maturing each period.

The solution to these equations is exactly the one already shown in Figures 2-4, since

the solution to our previous system of equations already involved ϕ2t = ϕ3t = 0 for all

t ≥ t0. To see why this is so, consider first the solution under the assumption that arbitrarily

state-contingent public debt is possible. Since ϕ2t = 0 each period in this case, (2.2) can be

integrated forward to yield

ϕ1,t0−1 = qyEt0

∞∑

t=t0

βt−t0+1yt.

But since ϕ1,t0−1 = 0, on the assumption that the zero bound was not binding prior to the

occurrence of the shock at date t0, it follows that

Et0

∞∑

t=t0

βt−t0yt = 0 (2.6)

under an optimal policy. Similarly, (1.18) can be integrated forward to yield

πt0 = κEt0

∞∑

t=t0

βt−t0 [yt + ψτ̂t + ut].

Furthermore, given that ϕ2,t0 = 0 under an optimal policy (and that the initial lagged

multipliers are zero, if the economy was at the steady state in period t0 − 1), (2.1) implies

that πt0 = 0. Then in the case of a shock with no cost-push effect (as in the present case),

(2.6) implies that

Et0

∞∑

t=t0

βt−t0 τ̂t = 0 (2.7)

as well.

But it follows from (2.7) that (1.32) is satisfied at date t0, even though we did not impose

this constraint in deriving the optimal policy. Similar reasoning can be used at any later
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date t to show that

Et

∞∑

T=t

βT−tτ̂T

must have a value that is unaffected by any random events at date t,29 i.e., this must be

a predetermined variable. Hence it is possible to compute a state-contingent evolution for

the public debt {b̂t} for dates t ≥ t0 such that (1.32) is satisfied at all dates. Thus the

additional constraint (1.32) that must be imposed in the case that the government can issue

only riskless one-period nominal debt does not actually bind in this case.

It follows that even if the government can issue state-contingent debt of arbitrary type,

the optimal state-contingent evolution of inflation, the nominal interest rate, the tax rate,

and so on are exactly the same as in the previous section. Thus both optimal monetary policy

and optimal tax policy continue to be history-dependent, as shown above. The same result

will be obtained, of course, in the event that there are multiple forms of government debt, but

not enough types to span all states of nature. For in fact the result just obtained shows that

optimal policy, even in the event of fully state-contingent government debt, requires only

that riskless one-period nominal debt be issued. The optimal paths of all of the variables

shown in Figures 2-4 are therefore those shown in those figures regardless of the types of

debt that can be issued by the government, as long as a riskless one-period nominal bill is

one of the possible types.30

Similarly, our results in the previous section would be unchanged by allowing for the

existence of alternative forms of taxes. As we have seen, it is already true in our baseline case

that the intertemporal government solvency condition does not preclude a state-contingent

evolution of the VAT tax rate of the kind that would be chosen in the absence of any such

constraint (this is the meaning of the result that ϕ3t = 0 at all times). As a consequence, the

VAT tax rate can be used to shift the aggregate-supply relation in whichever way may be

29In this case, one can no longer argue that the Lagrange multipliers dated t−1 must equal zero; but their
values must be independent of any random events that occur at date t.

30This irrelevance result is special to the case of zero initial public debt, assumed here as in the previous
section. However, the special case considered here suffices to show that the mere existence of a large range
of types of government debt does not eliminate the need for a commitment to history-dependent monetary
policy.
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desired in each possible state of the world at each date. The AS relation is then no constraint

on the possible state-contingent evolution of inflation and output (this is the meaning of the

result that ϕ2t = 0 at all times). Given this, there is no possibility of achieving a better

outcome by varying the path of some other distorting tax (say, a tax on labor income) that

also shifts the AS relation to some extent; nor is there a need for a tax that can achieve

some different relation between the size of state-contingent shifts in the AS relation and

the state-contingent changes in government revenues. In our baseline analysis, the only

binding constraint on the achievable paths for inflation and output (the only two variables

that matter for the stabilization objective) is (1.27), which binds until the random date

T2. Hence additional fiscal instruments are relevant only to the extent that they affect this

constraint, which the VAT does not.

The only additional fiscal instrument that would make a difference is thus one that could

affect the desired timing of private expenditure for a given expected path of real interest

rates. An example would be an American-style sales tax, that is paid by the consumer in

addition to the posted (sticky) price, rather than being included in the posted price as with

a VAT.31 If we let τ s
t be the proportional sales tax in period t, then the Euler equation (1.9)

generalizes to

1 + it = β−1 ũc(Yt −Gt; ξt)((1 + τ s
t )Pt)

−1

Et[ũc(Yt+1 −Gt+1; ξt+1)((1 + τ s
t+1)Pt+1)−1]

. (2.8)

It follows that (1.27) takes the more general form

yt ≤ Etyt+1 + σ[rn
t + Etπt+1 + Et(τ̂

s
t+1 − τ̂ s

t )], (2.9)

where τ̂ s
t ≡ log(1 + τ s

t /1 + τ̄ s).

We see that the effect of a decline in the natural rate of interest on the tightness of the

constraint (2.9) can be offset by reducing the sales tax relative to its expected future value

— either by temporarily lowering the tax rate, or by promising to raise it in the future.32 In

31The two types of sales taxes have different consequences in our model only because of the stickiness of
prices. When prices are sticky, it matters whether it is the pre-tax price or the price inclusive of tax that is
sticky.

32This is essentially the proposal of Feldstein (2002), except that he argues that an expected increase in a
VAT rate will have the desired effect, which we find not to be the case.
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particular, one can completely offset the effects of any stochastic variation in the natural rate

of interest by adjusting the sales tax rate (relative to its steady-state level) in proportion to

variations in the infinite-duration natural rate of interest, according to the formula33

τ̂ s
t =

∞∑

T=t

Et[r
n
T − r̄]. (2.10)

Under this rule for adjustment of the sales tax rate, zero inflation and a zero output gap at

all times will be consistent with the Euler equation (1.24) as long as the nominal interest

rate is always equal to r̄ > 0, a requirement that can never be in conflict with the zero lower

bound.

The effects of the variations in an American-style sales tax required by (2.10) on the

aggregate-supply relation can in turn be neutralized by offsetting variations in the VAT

rate. Because of the effect of the sales tax on the marginal utility of wage income, and hence

on labor supply, the aggregate-supply relation (1.18) generalizes to

πt = κ[yt + ψ(τ̂t + τ̂ s
t ) + ut] + βEtπt+1. (2.11)

Hence if the VAT tax rate satisfies

τ̂t = −τ̂ s
t ,

so that the amount of the tax that is included in the posted price is varied without any

change in the total tax wedge, the change in tax policy has no effect on the aggregate-supply

relation.34 A shift in tax policy of this kind is also revenue-neutral, and so will not imply

any violation of the intertemporal government solvency constraint (1.20).35

33Feldstein (2002) proposes instead a commitment to steadily raise the sales tax rate relative to its initial
level, eventually reaching a permanently higher rate. Feldstein’s proposal has the disadvantage that, in the
event that the length of time that the natural rate is negative is stochastic, the eventual cumulative increase
in the sales tax rate would also have to be stochastic, so that the eventual long-run tax rate is uncertain.
Furthermore, if a similar disturbance were to occur several times over a sufficiently long period of time, and
were to be dealt with each time in accordance with the Feldstein proposal, the sales tax would eventually
reach a very high level. Under our proposal, instead, the sales tax rate is always expected to eventually
return to a fixed long-run tax rate τ̄s.

34Auerbach and Obstfeld (2004) criticize the proposal of Feldstein (2002), on the ground that in their
optimizing model a commitment to increase the sales tax rate over time while the economy is in a “liquidity
trap” lowers welfare. But this reduction in welfare results from the adverse supply-side effects of a higher
sales tax that is not offset by lowering some other tax, as proposed by Feldstein. Our analysis here shows
that it is possible to achieve the effect on demand sought by Feldstein without any supply-side effect, through
a coordinated change in the expected paths of two different taxes.
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Hence when both kinds of taxes exist and can be adjusted in a state-contingent fashion

with sufficient flexibility, it is possible to achieve both zero inflation and a zero output gap at

all times (and so a first-best outcome) even when the natural rate of interest is occasionally

negative. In such a case, there is no need for monetary policy to be history-dependent —

neither the inflation target nor the level of nominal interest rates should depend on the past

history of disturbances (nor on current or anticipated future disturbances, for that matter).

However, this is a case in which fiscal policy can be used to ensure that the zero bound never

binds. It remains quite generally true that if the zero bound sometimes binds, an optimal

monetary policy involves a commitment to looser policy than would be associated with a

strict zero inflation target for a period of time after it again becomes feasible to target zero

inflation.

It is also unclear how realistic it is to suppose that a sales tax can be adjusted in the

fashion required to eliminate the problem of the zero bound under all circumstances. Few

countries have a sales tax of the particular type required to offset the effects on the in-

tertemporal Euler equation of variations in the natural rate of interest. Even in the case

of the U.S., sales taxes of this kind are imposed at the state or local level, but not by the

federal government, so that variations in a sales tax rate is not a potential tool of national

fiscal policy. Furthermore, sales taxes would have to be fairly large to be used in the way

proposed above. In the case of the real disturbance considered in our numerical examples

above, equation (2.10) requires that the sales tax be reduced by 15 percentage points when

the real disturbance occurs that lowers the natural rate of interest to -2 percent. This would

not be possible, supposing that the tax rate must be non-negative at all times, unless τ̄ s is

at least 15 percent. Hence a substantial portion of government revenues would have to be

raised by the sales tax under normal circumstances; and even granting that, it would have to

35The argument here relies on the non-existence of fiscal stress effects of the real disturbance that shifts
the natural rate of interest. Since the case described in the text involves no variation in interest rates in
response to the disturbance, there will be no fiscal stress effect, even in an economy with a positive initial
debt, as long as the disturbance has no effect on the target level of output Ŷ ∗

t . Even when Ŷ ∗
t is changed,

the existence of a sufficient number of fiscal instruments may make it possible for a policy consistent with
(2.10) to also have no effect on the aggregate-supply relation or on intertemporal government solvency.
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be possible to dramatically alter the tax rate temporarily in response to the real disturbance.

Barring such favorable circumstances, it seems unlikely that tax policy can be used to fully

undo the consequences of variation in the natural rate of interest, and hence to eliminate

the need for history-dependent monetary policy.36

2.3 Optimal Policy with Public Debt and Tax Distortions

We now consider the robustness of our results to the consideration of a situation in which

there exists a positive level of public debt, and accordingly a positive steady-state tax rate.

In this (more realistic) case, we must take account of the first-order effects on the govern-

ment budget of variations in inflation, interest rates, or the size of the real tax base. The

intertemporal government solvency constraint accordingly takes the more general form (1.20)

rather than (1.32).

A similar Lagrangian method can be used in this more general case. The first-order

conditions (2.1) – (2.2) must be replaced by

qππt − β−1σϕ1,t−1 + ϕ2t − ϕ2,t−1 − sbϕ3t + sbϕ3,t−1 = 0, (2.12)

qyyt + ϕ1t − β−1ϕ1,t−1 − κϕ2t − sb(1− β(1− σ−1))ϕ3t + sbσ
−1ϕ3,t−1 = 0, (2.13)

while conditions (2.3) – (2.5) and the complementary slackness relation apply as before.

Once again, we solve these conditions using initial conditions ϕj,t0−1 = 0 for j = 1, 2, 3.

As a numerical example with a level of public debt similar to that of a number of industrial

economies, we now calibrate our model with the parameter values indicated in the second

column of Table 1. The only changes are our assumption now of an initial public debt,

and hence a steady-state public debt b̄, equal to 60 percent of steady-state annual GDP, or

2.4 quarters’ GDP; and our assumption of steady-state government transfers of a size that

require steady-state tax collections to equal 20 percent of national income,37 along with the

36Other kinds of tax incentives might affect the timing of expenditure as well, such as enactment of an
investment tax credit during the period that the natural rate of interest is negative. Here we have emphasized
what can be achieved with a variable sales tax rate, both because it is simple to analyze in the context of
our model, and because it allows us to discuss Feldstein’s (2002) proposal.
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Figure 6: Optimal responses to a decline in the natural rate of interest: a case with positive
debt but no fiscal stress effect.

implied changes in other parameters that depend on the values of these. We consider the

optimal response to the same kind of disturbance to the natural rate of interest as in Figures

2-4, and for the sake of simplicity we shall first consider a disturbance that has no fiscal

stress effect, just as in the earlier figures.

The optimal responses under this variation in parameter values are shown in Figures 6

and 7, which have the same format as Figures 2 and 3. The optimal equilibrium in this case

has many similarities to the one displayed in Figures 2 and 3 for the baseline model. Most

notably, the optimal policy again involves a commitment to create an inflationary boom

(using both monetary and fiscal stimulus) in the period immediately following the return of

37This parameterization differs from the one used in Benigno and Woodford (2003) in that government
spending is assumed to consist entirely of transfers rather than of purchases of goods and services by the
government. Here we maintain the assumption that sG = 0 even in our high-debt case, so that our real
disturbances still have no cost-push effects, in order not to introduce a further complication into our discussion
of optimal policy.
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Figure 7: Optimal responses of fiscal variables: a case with positive debt but no fiscal stress
effect.

the natural rate of interest to its normal level. And as in Figure 3, we again see in Figure

7 that it is optimal to raise the tax rate during the period in which the natural rate is low,

while committing to lower it once the natural rate returns to its normal level.

Optimal policy for the high-debt economy differs quantitatively, however. In particular,

the optimal degree of inflation that should be created in the periods in which the natural

rate of interest is negative is greater in the case of a positive initial public debt. This

indicates that the existence of a positive nominal public debt (and the availability only of

distorting taxes as a source of government revenue) increases the desirability of responding

to a decline in the natural rate of interest through an inflationary policy. Furthermore, this

result does not reflect an incentive to inflate away the value of nominal public debt ex post

that a policymaker would instead wish to commit itself in advance not to yield to. For

the responses shown in Figures 6 and 7 represent the responses to a real disturbance that
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Figure 8: Optimal responses to a decline in the natural rate of interest: a case with positive
debt and a negative fiscal stress effect.

lowers the natural rate of interest under the continuation of an optimal state-contingent

commitment that would have been chosen prior to quarter zero, and thus prior to learning

that the disturbance would occur.

In the case of a positive steady-state debt level, it is still theoretically possible for a real

disturbance to lower the natural rate of interest while having no effect on fiscal stress, as

maintained in the last numerical example. However, as discussed in section 1.3, it is more

plausible that a disturbance that could lower the natural rate of interest sufficiently for the

zero bound to bind would also reduce fiscal stress. We accordingly consider an example of

that more realistic kind. Specifically, we now assume that the real disturbance that lowers

the natural rate of interest has no effect on the target level of output Ŷ ∗
t . This implies that

the fiscal stress is lowered to a value f < 0 when the natural rate of interest falls to the level

r, and that ft = f for as many quarters as rn
t = r, while ft = 0 again once rn

t = r̄.38
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Figure 9: Optimal responses of fiscal variables: a case with positive debt and a negative
fiscal stress effect.

In order to determine optimal policy in this case, we solve the same system of equations

(and with the same parameter values) as in the case of Figures 6-7, except that in equation

(1.20) we now set ft = f in periods zero through T1 − 1. The optimal responses to this type

of real disturbance are shown in Figures 8 and 9, which have the same format as Figures 6

and 7.

The fact that in this case the real disturbance also lowers fiscal stress has a number of

consequences for the way that optimal policy responds to the shock. Not surprisingly, taxes

do not need to be increased as much in this case, and it is possible to permanently lower

both the tax rate and the level of public debt as a result of the disturbance. During the

period over which the effects of the real disturbance on both the natural rate of interest

and fiscal stress persist, inflation increases less and the output gap falls less, as a result of

38In our numerical example, f = -0.33.
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the smaller increase in the tax rate. But despite these quantitative differences, the general

character of the optimal state-contingent evolution is similar to what we obtained in the

baseline analysis.

Thus our main results in the baseline case continue to hold when we allow for a fairly

substantial positive level of public debt and for fiscal stress effects of a plausible magnitude.

We again find that tax policy should be adjusted in response to a real disturbance that

causes the zero lower bound on interest rates to bind, even when the disturbance is of a type

that would not justify any change in tax rates otherwise. But — at least when the available

tax instrument affects the economy primarily through its supply-side effect on the marginal

cost of supplying output — the optimal tax response is actually to raise taxes in the event

of such a disturbance, while committing to lower them during the inflationary boom that

monetary policy will also facilitate once the natural rate of interest returns to a normal level.

And optimal monetary continues to be history-dependent in the same way as in the analysis

of Eggertsson and Woodford (2003). The distortion created by the binding zero lower bound

on interest rates should be mitigated through a commitment to use both monetary and fiscal

policy to create a temporary output boom and rise in prices following the end of the real

disturbance, though the price level should be stabilized again fairly soon. Such a policy will

involve keeping nominal interest rates lower for several quarters than the level that would

be required to maintain price stability.

3 The Cost of Purely Forward-Looking Policy

Our analysis of an optimal policy commitment in the previous section has shown that it would

be history-dependent. But how much does history-dependence of policy actually matter? A

purely forward-looking approach to the conduct of policy, which would suffice in the event

that the zero bound does not bind,39 will clearly entail some additional distortions relative

to the optimal policy characterized above in the event that the zero bound is temporarily

39Here we assume, as in our baseline case, that the real disturbances under consideration have no cost-push
effects and no fiscal stress effects.
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binding. Here we consider the nature of these distortions, and how much they matter

quantitatively.

3.1 Optimal Forward-Looking Policies

We begin by considering the best possible policy rules to which the monetary and fiscal

authorities might commit themselves, subject to the restriction that both monetary and

fiscal policy be purely forward-looking.40 By purely forward-looking policy we mean a rule

of conduct which takes account only of the possible future evolution of the target variables

(inflation and the output gap) given current conditions, and hence is independent of any

past conditions that no longer affect inflation or output determination (Woodford, 2000).

In the case of the policy problem considered here, we observe that optimal policy, as

characterized in section 2.1,41 has the property that the variables πt,

ỹt ≡ yt + (1− β)ψb̂t−1,

τ̃t ≡ τ̂t − (1− β)b̂t−1,

∆t ≡ b̂t − b̂t−1

each evolve in response to exogenous disturbances in a way that is independent of the level

of the public debt (though the absolute levels of both the tax rate and the output gap

depend on the level of the debt). That is, a unit increase in the initial public debt results,

under an optimal policy commitment, in a permanently higher public debt by that amount,

a permanently higher tax rate by the amount necessary to pay the interest on the additional

public debt, a permanently lower level of output by the amount by which the flexible-price

equilibrium level of output is reduced by the higher taxes, and no changes otherwise.

40While discretionary fiscal policy is purely forward-looking, if we consider only the case of a Markov perfect
equilibrium, we do not here assume that the policymakers must be discretionary optimizers. Thus we allow
commitment to policy rules that may be superior to the conduct of policy by discretionary optimizers, in
order to identify the advantages of history-dependent policy rather than the benefits of commitment as such.

41For the sake of simplicity, the discussion here is conducted under the same simplifying assumptions as in
section 2.1, though a similar definition of the optimal purely forward-looking policy would be possible under
more general assumptions.
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Figure 10: Responses to a decline in the natural rate of interest under optimal purely forward-
looking policies.

This shows that the optimal policy problem is actually independent of the level of the

public debt, once written in terms of these transformed variables. Hence it makes sense

to further require, in order for a policy to count as purely forward-looking, that the paths

determined for these transformed variables should depend only on conditions that affect their

possible evolution from the current date onward — which is to say, that the paths chosen

for the transformed variables should be independent of the level of public debt.

In terms of the transformed variables, (1.19) becomes

πt = κ[ỹt + ψ(τ̃t − τ̂ ∗t )] + βEtπt+1, (3.1)

(1.21) becomes

∆t = −β−1τ̃t, (3.2)
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Figure 11: Responses of fiscal variables under optimal purely forward-looking policies.

and (1.27) becomes

ỹt ≤ Etyt+1 − (1− β)ψ∆t + σ(rn
t + Etπt+1). (3.3)

Thus the possible state-contingent evolutions {πt, ỹt, τ̃t, ∆t} from some date t onward depend

only on the evolution of the process {rn
t } from that date onward. In the case that the natural

rate of interest follows a Markov process, as assumed here, the only aspect of the economy’s

state at date t that is relevant for the possible equilibrium values of the transformed variables

at that date or later is the current value rn
t . We therefore define a purely forward-looking

policy as one under which πt, ỹt, τ̃t, and ∆t each period will depend only on the value of rn
t

in that period. (It then follows that it will depend only on the current value of rn
t as well.)

In the case of the specific Markov process for the natural rate of interest considered in

the numerical examples of section 2, a purely forward-looking policy can be fully specified

by 8 numerical values, the values (π̄, ȳ, τ̄ , ∆̄) for the transformed variables whenever rn
t = r̄,
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and the values (π, y, τ , ∆) whenever rn
t = r. An optimal purely forward-looking policy is one

in which these coefficients have been chosen so as to minimize the expected losses (1.16).

We shall suppose furthermore that at the time that this optimal commitment is chosen,

the occurrence of the state in which rn
t = r is regarded as highly unlikely. It then follows that

the policy commitment for the normal state should be chosen so as to maximize steady-state

welfare, i.e., to minimize qππ̄2+qyȳ
2. Hence the optimal forward-looking policy would involve

a commitment to implement the optimal (zero-inflation) steady state as long as rn
t = r̄; thus

π̄ = ȳ = τ̄ = ∆̄ = 0, and ī = r̄.42

Given this solution, the policy commitment for the state in which rn
t = r is chosen so as

to minimize expected discounted losses conditional on being in that state, taking as given

the commitment to pursue zero inflation as soon as the natural rate returns to its normal

level. Under this stipulation, the policy commitments (π, y, τ , ∆) that are feasible are those

that satisfy the conditions

π =
κ

1− βρ
(y + ψτ), (3.4)

∆t = −β−1τ , (3.5)

and

(1− ρ)y ≤ ∆ + σ(r + ρπ), (3.6)

implied by (3.1) – (3.3) respectively. These three conditions then identify the set of purely

forward-looking policies.

Under the same assumptions, expected discounted losses looking forward from a date t0

at which rn
t = r are equal to

Et0

∞∑

t=t0

βt
[
qπ

2
π2

t +
qy

2
y2

t

]
=

1

1− βρ

[
qπ

2
π2

]

+
qy

2

∞∑

j=0

βjρj(y − j(1− β)ψ∆)2 +
qy

2

∞∑

j=1

βjρj−1 1− ρ

1− β
(j(1− β)ψ∆)2

42The same conclusion about the conduct of policy once the natural rate returns to its normal level would
also be reached under the assumption of discretionary optimization, independently of the probability that
might have initially been assigned to the occurrence of the disturbance that temporarily lowers the natural
rate of interest.
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=
1

1− βρ

[
qπ

2
π2 +

qy

2
y2

]
− βρ

(1− βρ)2
qy(1− β)ψy∆ +

β(1− β)(1− β2ρ2)

(1− βρ)3

qy

2
ψ2∆2

≡ L(π, y, ∆).

The optimal purely forward-looking policy is then defined by the values (π, y, τ , ∆) that

minimize L(π, y, ∆) subject to constraints (3.4) – (3.6).

It is easily shown that the function L(π, y, ∆) reaches its global minimum at π = y = ∆ =

0. These values also satisfy (3.4) and (3.5), and they satisfy (3.6) as well if and only if r ≥ 0.

Hence if r ≥ 0, the optimal purely forward-looking policy involves a constant zero inflation

rate and a constant tax rate, regardless of the fluctuations in the natural rate of interest, and

a nominal interest rate that perfectly tracks the natural rate of interest. Instead, if r < 0,

the zero lower bound binds in the low-natural-rate state.

In our baseline numerical example, considered in section 2.1 above, the optimal purely

forward-looking policy would lead to responses of the form shown in Figures 10 and 11.43

Under an optimal forward-looking policy, the tax rate would be raised while the economy is

in the “liquidity trap,” with the consequence that tax rates are then permanently lower once

the economy exits from the trap, as a result of the reduction in the public debt. This is once

more contrary to conventional wisdom, but in conformity with our results above regarding

optimal fiscal policy when policy is not constrained to be purely forward-looking. As in

the case of fully optimal policy, the optimal forward-looking regime actually creates a slight

degree of inflation during the period that the zero bound is binding.

Even under the constraint that policy be purely forward-looking, we see that it is possible

to improve greatly upon the outcome with pure tax smoothing, the case shown in Figure

1. (Note that the monetary policy assumed in Figure 1, a strict zero inflation target, is

the optimal purely forward-looking monetary policy, given tax smoothing, since the zero

lower bound does not allow any more inflationary policy in the periods when the natural

rate of interest is negative.) An appropriate adjustment of the tax rate in response to the

43In this example, the optimal forward-looking policy involves π = .07 percentage points per annum,
y = −2.2 percentage points, τ = 5.7 percentage points, and ∆ = −5.7 percentage points per quarter.
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real disturbance — specifically, raising taxes while the natural rate of interest is negative,

so that lower taxes will be anticipated once the natural rate returns to its normal level —

can greatly improve the stabilization of both inflation and the output gap.

It may be surprising that the use of fiscal policy for stabilization purposes can have such

a strong effect even when it is constrained to be purely forward-looking, whereas the optimal

purely forward-looking monetary is unable to prevent severe deflation and an output collapse.

The reason this is possible is that the size of the public debt is a state variable that naturally

conditions future policy, and hence current fiscal policy can be used, in effect, to commit

future policy to be more expansionary, even when future policy will be purely forward-

looking. Our result here is reminiscent of the finding of Eggertsson (2004a) that (Markov-

perfect) discretionary policy does not lead to nearly so bad an outcome when monetary and

fiscal policy are both chosen by an optimizing policy authority as when monetary policy

is chosen under discretion while fiscal policy is not used for stabilization purposes; in that

analysis (based on a different model of tax distortions), fiscal policy is effective only because

it provides a way in which current policy can be used to influence the expected future conduct

of policy.

However, the way in which fiscal policy should be used to influence expectations regarding

future policy is different in the present case; because future policy is not expected to be

determined under discretion, there is no possibility of creating expectations of inflation

following the return of the natural rate to its normal level by increasing the size of the nominal

debt. Instead, the size of the public debt carried into the future is expected to influence the

future level of taxes, that will in turn influence real activity and real incomes for supply-side

reasons. But the expectation of a future output boom has important consequences for pricing

and spending decisions while the economy is in the liquidity trap, allowing a considerable

improvement in stabilization.

The tax increases while the economy is in the liquidity trap also help more directly, by

providing a cost-push incentive for prices not to be cut. But here as well, it is not the

immediate effect of the increase in supply costs that is beneficial, but rather the expectation
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that supply costs will remain high in future periods, if the disturbance continues, so that

there is no ground for deflationary expectations; hence it is the commitment to keep taxes

high in future periods, if the disturbance continues, rather than the current level of taxes as

such, that is crucial to the effectiveness of the policy. Thus clear communication with the

public about the way current conditions affect the outlook for future policy continues to be

an essential element of effective policy, just as in the discussion of optimal monetary policy

in Eggertsson and Woodford (2003).

Our results here suggest that Krugman’s (1998) emphasis on the importance of creating

expectations of inflation following the economy’s exit from the “trap” is somewhat exag-

gerated. Mitigating the distortions created by the zero lower bound on interest rates (or

for that matter, some other, possibly higher, lower bound) does depend critically upon the

creation of expectations of a more expansionary policy in the future as a consequence of the

current disturbance. However, expectations of a supply-side boom (while monetary policy

is used to maintain stable prices) can also reduce distortions resulting from the trap to a

considerable extent. Expectations of high future real incomes will reduce the incentives for

either price cuts or low spending during the period of the trap. And once it ceases to be

expected that prices will decline sharply while the zero bound binds, real interest rates will

no longer be perceived to be so high relative to the current natural rate of interest; it is this

mechanism that makes changes in expectations regarding future policy such a potent tool in

our model.44

3.2 Optimal Fiscal Policy but a Strict Inflation Target

Finally, we consider the costs associated with the pursuit of a forward-looking monetary

policy, in the case that an optimal, history-dependent fiscal policy is allowed. In this way we

consider the best possible outcome under a monetary policy of this kind. In particular, we

allow fiscal policy to be chosen so as to mitigate the consequences of the simple monetary

44For similar reasons, variations in the expected level of government purchases can have a substantial
“multiplier” effect during a liquidity trap, as shown by Eggertsson (2004b).
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Figure 12: Responses to a decline in the natural rate of interest: optimal fiscal policy with
a strict inflation target.

policy rule.

Specifically, we shall suppose that monetary policy is described by a strict zero inflation

target, that is pursued to the extent that the zero lower bound on nominal interest rates

allows the target to be attained. Thus we again impose the requirement that (1.34) holds each

period, along with (1.27), and that at least one of these holds with equality in any period. We

note that this rule for monetary policy would be optimal in the event of disturbances small

enough for the zero lower bound to be consistent with zero inflation; and that it is also the

monetary policy pursued under an optimal purely forward-looking regime, as characterized in

the preceding section. We now consider the consequences of choosing fiscal policy optimally

(and in a history-dependent way) under the constraint that monetary policy will be of this

kind.

Optimization subject to the additional constraint (1.34) requires only a small modification
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Figure 13: Optimal responses of fiscal variables in the case of a strict inflation target.

of the approach discussed in section 2.1. Our numerical results in the case of our baseline

parameter values are plotted in Figures 12 and 13. Since the optimal policy in the absence of

this constraint never involves deflation, and positive inflation over the entire period for which

the zero bound is binding (see the first panel of Figure 2), it is perhaps not surprising that for

our baseline parameter values, we find that the optimal policy subject to constraint (1.34)

is one with zero inflation at all times. Fiscal policy is then used to achieve the minimum

possible expected discounted sum of squared output gaps, consistent with the maintenance

of zero inflation. Because of constraint (1.27), a zero output gap at all times is not possible;

and a commitment to the creation of a positive output gap immediately after the natural

rate of interest returns to its normal level reduces the extent to which this constraint requires

the output gap to be negative while rn
t = r.

Thus optimal fiscal policy is history-dependent: it involves a commitment to cut taxes
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inflation target, tax smoothing 100.0000
optimal forward-looking policies 0.1333
optimal monetary, tax smoothing 0.0311
inflation target, optimal fiscal [VAT only] 0.0211
optimal monetary and fiscal [VAT only] 0.0208
inflation target, optimal fiscal [two taxes] 0
optimal monetary and fiscal [two taxes] 0

Table 2: Relative expected losses under alternative policies.

as soon as rn
t = r̄ again, so as to create an output boom even though monetary policy

targets zero inflation. Taxes are instead raised while the natural rate of interest is negative,

in order to build up the government assets that allow the commitment to later cut taxes to

be consistent with intertemporal government solvency. The general character of the optimal

fiscal commitment is similar to what we had obtained when both monetary and fiscal policy

are optimally history-dependent (compare Figure 13 with Figure 3). However, the tax cuts

that must be promised after the natural rate returns to its normal level are somewhat larger

in the present case, as inflationary monetary policy cannot be used to help create the boom,

the anticipation of which reduces the extent to which the zero bound requires a negative

output gap in the earlier period. The extent to which the output gap can be stabilized

through the use of history-dependent fiscal policy alone remains somewhat less than when

both monetary and fiscal policy commitments are optimally chosen.

Table 2 summarizes our conclusions regarding the welfare consequences of alternative

assumptions about the conduct of monetary and fiscal policy. (All values reported are for our

baseline case with zero initial public debt.) In each case, the value of the loss function (1.16)

is reported, conditional upon the occurrence in period t0 of the real disturbance that lowers

the natural rate of interest to r, under the rational-expectations equilibrium associated with

the given policy regime. The losses are normalized so that 100 means the level of expected

loss associated with the naive policy of strict inflation targeting combined with simple tax

smoothing (discussed in section 1.4).45

45A loss of 100 corresponds to the same reduction in expected utility for the representative household as
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It is clear that even when only a VAT rate can be adjusted — or more generally, when the

only available tax instruments are ones that have purely supply-side effects — an appropriate

use of tax policy for stabilization purposes can be quite beneficial when the zero lower

bound on interest rates binds. When only purely forward-looking policies are considered,

the best fiscal rule of this type is a considerable improvement over the outcome with pure

tax smoothing (the case shown in Figure 1): expected discounted losses fall by a factor of

750. In the case that monetary policy is assumed to adhere to a strict zero inflation target,

an optimal fiscal commitment can do even better, cutting expected discounted losses by an

additional factor of more than 6, so that losses are reduced to only 0.02 percent of what they

would be with complete tax smoothing. With sufficient fiscal instruments — specifically, if

it is possible to adjust both an American-style sales tax as well as a VAT rate with sufficient

flexibility in response to real disturbances — even the remaining distortions can in principle

be completely eliminated under a strict zero inflation target for monetary policy.

While we have found that except in the ideal case of the two taxes that are each adjusted

optimally, optimal monetary policy continues to be characterized by the kind of history

dependence stressed in Eggertsson and Woodford (2003), this sophisticated form of monetary

policy commitment only matters greatly for welfare when fiscal policy is not used (or not

properly used) for stabilization purposes. Even when only a VAT rate can be adjusted, if

tax policy responds optimally to the real disturbance that makes the natural rate of interest

temporarily negative, fiscal policy can eliminate most of the distortions associated with the

“liquidity trap” scenario shown in Figure 1 even when monetary policy adheres to a strict

zero inflation target. The further stabilization that can be obtained through an optimal

monetary policy commitment only reduces expected discounted losses by an additional 1.3

percent. If fiscal policy can be adjusted in more flexible ways, the additional welfare gains

from history-dependent monetary policy are even smaller (zero in the case of ideally flexible

a permanent reduction of consumption by 3.7 percentage points; this is thus a substantial welfare loss. On
the other hand, the losses associated with the other policies in Table 2 are quite small. For example, under
the optimal forward-looking policies, the remaining deadweight loss is equivalent to a permanent reduction
of consumption by only 0.005 percent.

58



fiscal policy).

On the other hand, if fiscal policy does not respond to cyclical developments at all (the

case of pure tax smoothing), a history-dependent monetary policy commitment can greatly

improve stabilization, as shown in Eggertsson and Woodford (2003).46 Hence the degree to

which it is essential for a central bank to respond to a negative natural rate of interest by

committing itself to a temporary loosening of policy later depends to an important extent on

the degree to which it can expect fiscal policy to be adjusted in a way that serves stabilization

purposes or not.

46Optimal monetary policy in the case of perfect tax smoothing results in an equilibrium of exactly the
kind displayed in Figures 3-5 of Eggertsson and Woodford (2003), which we do not reproduce here, though
we list the associated expected losses in Table 2.
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