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Abstract

We propose an integrated treatment of the problems of optimal monetary
and fiscal policy, for an economy in which prices are sticky (so that the supply-
side effects of tax changes are more complex than in standard fiscal analyses)
and the only available sources of government revenue are distorting taxes (so
that the fiscal consequences of monetary policy must be considered alongside
the usual stabilization objectives). Our linear-quadratic approach allows us
to nest both conventional analyses of optimal monetary stabilization policy
and analyses of optimal tax-smoothing as special cases of our more general
framework. We show how a linear-quadratic policy problem can be derived
which yields a correct linear approximation to the optimal policy rules from the
point of view of the maximization of expected discounted utility in a dynamic
stochastic general-equilibrium model. Finally, in addition to characterizing the
optimal dynamic responses to shocks under an optimal policy, we derive policy
rules through which the monetary and fiscal authorities may implement the
optimal equilibrium. These take the form of optimal targeting rules, specifying
an appropriate target criterion for each authority.
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While there are by now substantial literatures seeking to characterize optimal

monetary and fiscal policy respectively, the two literatures have largely developed

in isolation, and upon apparently contradictory foundations. The modern literature

on dynamically optimal fiscal policy often abstracts from monetary aspects of the

economy altogether, and so implicitly allows for no useful role for monetary policy.

When monetary policy is considered within the theory of optimal fiscal policy, it is

most often in the context of models with flexible prices; in these models, monetary

policy matters only (i) because the level of nominal interest rates (and hence the op-

portunity cost of holding money) determines the size of certain distortions that result

from the attempt to economize on money balances, and (ii) because the way in the

price level varies in response to real disturbances determines the state-contingent real

payoffs on (riskless) nominally-denominated government debt, which may facilitate

tax-smoothing in the case that explicitly state-contingent debt is not available. The

literature on optimal monetary policy has instead been mainly concerned with quite

distinct objectives for monetary stabilization policy, namely the minimization of the

distortions that result from prices or wages that do not adjust quickly enough to clear

markets. At the same time, this literature typically ignores the fiscal consequences of

alternative monetary policies; the characterizations of optimal monetary policy that

are obtained are thus strictly correct only for a world in which lump-sum taxes are

available.

Here we wish to consider the way in which the conclusions reached in each of

these two familiar literatures must be modified if one takes simultaneous account of

the basic elements of the policy problems addressed in each literature. On the one

hand, we wish to consider how conventional conclusions with regard to the nature of

an optimal monetary policy rule must be modified if one recognizes that the govern-

ment’s only sources of revenue are distorting taxes, so that the fiscal consequences

of monetary policy matter for welfare. And on the other hand, we wish to consider

how conventional conclusions with regard to optimal tax policy must be modified

if one recognizes that prices do not instantaneously clear markets, so that output

determination depends on aggregate demand, in addition to the supply-side factors

stressed in the conventional theory of optimal taxation.

A number of recent papers have also sought to jointly consider optimal monetary

and fiscal policy, in the context of models with sticky prices; important examples

include Correia et al., (2001), Schmitt-Grohé and Uribe (2001), and Siu (2001). Our

approach differs from those taken in these papers, however, in several respects. First,
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we model price stickiness in a different way than in any of these papers, namely, by

assuming staggered pricing of the kind introduced by Calvo (1983). This particular

form of price stickiness has been widely used both in analyses of optimal monetary

policy in models with explicit microfoundations (e.g., Goodfriend and King, 1997;

Clarida et al., 1999; Woodford, 2003) and in the empirical literature on optimizing

models of the monetary transmission mechanism (e.g., Rotemberg and Woodford,

1997; Gali and Gertler, 1999; Sbordone, 2002).

Perhaps more importantly, we obtain analytical results rather than purely nu-

merical ones. To obtain these results, we propose a linear-quadratic approach to the

characterization of optimal monetary and fiscal policy, that allows us to nest both con-

ventional analyses of optimal monetary policy, such as that of Clarida et al. (1999),

and analyses of optimal tax-smoothing in the spirit of Barro (1979), Lucas and Stokey

(1983), and Aiyagari et al. (2002) as special cases of our more general framework.

We show how a linear-quadratic policy problem can be derived which yields a correct

linear approximation to the optimal policy rules from the point of view of the max-

imization of expected discounted utility in a dynamic stochastic general-equilibrium

model, building on the work of Benigno and Woodford (2003) for the case of optimal

monetary policy when lump-sum taxes are available.

Finally, we do not content ourselves with merely characterizing the optimal dy-

namic responses of our policy instruments (and other state variables) to shocks under

an optimal policy, given one assumption or another about the nature and statistical

properties of the exogenous disturbances to our model economy. Instead, we also

wish to derive policy rules that the monetary and fiscal authorities may reasonably

commit themselves to follow, as a way of implementing the optimal equilibrium. In

particular, we seek to characterize optimal policy in terms of optimal targeting rules

for monetary and fiscal policy, of the kind proposed in the case of monetary policy by

Svensson (1999), Svensson and Woodford (2003), and Giannoni and Woodford (2002,

2003). The rules are specified in terms of a target criterion for each authority; each

authority commits itself to use its policy instrument each period in whatever way is

necessary in order to allow it to project an evolution of the economy consistent with its

target criterion. As discussed in Giannoni and Woodford (2002), we can derive rules

of this form that are not merely consistent with the desired equilibrium responses

to disturbances, but that in addition (i) imply a determinate rational-expectations

equilibrium, so that there are not other equally possible (but less desirable) equilibria
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consistent with the same policy; and (ii) bring about optimal responses to shocks

regardless of the character of and statistical properties of the exogenous disturbances

in the model.

1 The Policy Problem

Here we describe our assumptions about the economic environment and pose the

optimization problem that jointly optimal monetary and fiscal policies are intended

to solve. The approximation method that we use to characterize the solution to this

problem is then presented in the following section. Further details of the derivation

of the structural equations of our model of nominal price rigidity can be found in

Woodford (2003, chapter 3).

The goal of policy is assumed to be the maximization of the level of expected utility

of a representative household. In our model, each household seeks to maximize

Ut0 ≡ Et0

∞∑
t=t0

βt−t0

[
ũ(Ct; ξt)−

∫ 1

0

ṽ(Ht(j); ξt)dj

]
, (1.1)

where Ct is a Dixit-Stiglitz aggregate of consumption of each of a continuum of

differentiated goods,

Ct ≡
[∫ 1

0

ct(i)
θ

θ−1 di

] θ−1
θ

, (1.2)

with an elasticity of substitution equal to θ > 1, and Ht(j) is the quantity supplied

of labor of type j. Each differentiated good is supplied by a single monopolistically

competitive producer. There are assumed to be many goods in each of an infinite

number of “industries”; the goods in each industry j are produced using a type of

labor that is specific to that industry, and also change their prices at the same time.

The representative household supplies all types of labor as well as consuming all types

of goods.1 To simplify the algebraic form of our results, we restrict attention in this

paper to the case of isoelastic functional forms,

ũ(Ct; ξt) ≡
C1−σ̃−1

t C̄ σ̃−1

t

1− σ̃−1 ,

1We might alternatively assume specialization across households in the type of labor supplied; in
the presence of perfect sharing of labor income risk across households, household decisions regarding
consumption and labor supply would all be as assumed here.
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ṽ(Ht; ξt) ≡
λ

1 + ν
H1+ν

t H̄−ν
t ,

where σ̃, ν > 0, and {C̄t, H̄t} are bounded exogenous disturbance processes. (We use

the notation ξt to refer to the complete vector of exogenous disturbances, including

C̄t and H̄t.)

We assume a common technology for the production of all goods, in which (industry-

specific) labor is the only variable input,

yt(i) = Atf(ht(i)) = Atht(i)
1/φ,

where At is an exogenously varying technology factor, and φ > 1. Inverting the

production function to write the demand for each type of labor as a function of the

quantities produced of the various differentiated goods, and using the identity

Yt = Ct + Gt

to substitute for Ct, where Gt is exogenous government demand for the composite

good, we can write the utility of the representative household as a function of the

expected production plan {yt(i)}.2
We can furthermore express the relative quantities demanded of the differentiated

goods each period as a function of their relative prices. This allows us to write the

utility flow to the representative household in the form U(Yt, ∆t; ξt), where

∆t ≡
∫ 1

0

(
pt(i)

Pt

)−θ(1+ω)

di ≥ 1 (1.3)

is a measure of price dispersion at date t, in which Pt is the Dixit-Stiglitz price index

Pt ≡
[∫ 1

0

pt(i)
1−θdi

] 1
1−θ

, (1.4)

and the vector ξt now includes the exogenous disturbances Gt and At as well as the

preference shocks. Hence we can write our objective (1.1) as

Ut0 = Et0

∞∑
t=t0

βt−t0U(Yt, ∆t; ξt). (1.5)

2The government is assumed to need to obtain an exogenously given quantity of the Dixit-Stiglitz
aggregate each period, and to obtain this in a cost-minimizing fashion. Hence the government
allocates its purchases across the suppliers of differentiated goods in the same proportion as do
households, and the index of aggregate demand Yt is the same function of the individual quantities
{yt(i)} as Ct is of the individual quantities consumed {ct(i)}, defined in (1.2).
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The producers in each industry fix the prices of their goods in monetary units for

a random interval of time, as in the model of staggered pricing introduced by Calvo

(1983). We let 0 ≤ α < 1 be the fraction of prices that remain unchanged in any

period. A supplier that changes its price in period t chooses its new price pt(i) to

maximize

Et

{ ∞∑
T=t

αT−tQt,T Π(pt(i), p
j
T , PT ; YT , τT , ξT )

}
, (1.6)

where Qt,T is the stochastic discount factor by which financial markets discount ran-

dom nominal income in period T to determine the nominal value of a claim to such

income in period t, and αT−t is the probability that a price chosen in period t will

not have been revised by period T . In equilibrium, this discount factor is given by

Qt,T = βT−t ũc(CT ; ξT )

ũc(Ct; ξt)

Pt

PT

. (1.7)

The function Π(p, pj, P ; Y, τ , ξ), defined in the appendix, indicates the after-tax

nominal profits of a supplier with price p, in an industry with common price pj, when

the aggregate price index is equal to P , aggregate demand is equal to Y , and sales

revenues are taxed at rate τ . Profits are equal to after-tax sales revenues net of the

wage bill, and the real wage demanded for labor of type j is assumed to be given by

wt(j) = µw
t

ṽh(Ht(j); ξ)

ũc(Ct; ξt)
, (1.8)

where µw
t ≥ 1 is an exogenous markup factor in the labor market (allowed to vary

over time, but assumed common to all labor markets),3 and firms are assumed to be

wage-takers. We allow for wage markup variations in order to include the possibility

of a “pure cost-push shock” that affects equilibrium pricing behavior while implying

no change in the efficient allocation of resources. Note that variation in the tax rate

τ t has a similar effect on this pricing problem (and hence on supply behavior); this

is the sole distortion associated with tax policy in the present model.

Each of the suppliers that revise their prices in period t choose the same new

price p∗t . Under our assumed functional forms, the optimal choice has a closed-form

solution
p∗t
Pt

=

(
Kt

Ft

) 1
1+ωθ

, (1.9)

3In the case that we assume that µw
t = 1 at all times, our model is one in which both households

and firms are wage-takers, or there is efficient contracting between them.
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where ω ≡ φ(1 + ν)− 1 > 0 is the elasticity of real marginal cost in an industry with

respect to industry output, and Ft and Kt are functions of current aggregate output

Yt, the current tax rate τ t, the current exogenous state ξt,
4 and the expected future

evolution of inflation, output, taxes and disturbances, defined in the appendix.

The price index then evolves according to a law of motion

Pt =
[
(1− α)p∗1−θ

t + αP 1−θ
t−1

] 1
1−θ , (1.10)

as a consequence of (1.4). Substitution of (1.9) into (1.10) implies that equilibrium

inflation in any period is given by

1− αΠθ−1
t

1− α
=

(
Ft

Kt

) θ−1
1+ωθ

, (1.11)

where Πt ≡ Pt/Pt−1. This defines a short-run aggregate supply relation between

inflation and output, given the current tax rate τ t, current disturbances ξt, and ex-

pectations regarding future inflation, output, taxes and disturbances. Because the

relative prices of the industries that do not change their prices in period t remain the

same, we can also use (1.10) to derive a law of motion of the form

∆t = h(∆t−1, Πt) (1.12)

for the dispersion measure defined in (1.3). This is the source in our model of welfare

losses from inflation or deflation.

We abstract here from any monetary frictions that would account for a demand for

central-bank liabilities that earn a substandard rate of return; we nonetheless assume

that the central bank can control the riskless short-term nominal interest rate it,
5

which is in turn related to other financial asset prices through the arbitrage relation

1 + it = [EtQt,t+1]
−1.

We shall assume that the zero lower bound on nominal interest rates never binds

under the optimal policies considered below,6 so that we need not introduce any

4The disturbance vector ξt is now understood to include the current value of the wage markup
µw

t .
5For discussion of how this is possible even in a “cashless” economy of the kind assumed here,

see Woodford (2003, chapter 2).
6This can be shown to be true in the case of small enough disturbances, given that the nominal

interest rate is equal to r̄ = β−1 − 1 > 0 under the optimal policy in the absence of disturbances.
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additional constraint on the possible paths of output and prices associated with a

need for the chosen evolution of prices to be consistent with a non-negative nominal

interest rate.

Our abstraction from monetary frictions, and hence from the existence of seignor-

age revenues, does not mean that monetary policy has no fiscal consequences, for

interest-rate policy and the equilibrium inflation that results from it have implica-

tions for the real burden of government debt. For simplicity, we shall assume that all

public debt consists of riskless nominal one-period bonds. The nominal value Bt of

end-of-period public debt then evolves according to a law of motion

Bt = (1 + it−1)Bt−1 + Ptst, (1.13)

where the real primary budget surplus is given by

st ≡ τ tYt −Gt − ζt. (1.14)

Here τ t, the share of the national product that is collected by the government as

tax revenues in period t, is the key fiscal policy decision each period; the real value

of (lump-sum) government transfers ζt is treated as exogenously given, as are gov-

ernment purchases Gt. (We introduce the additional type of exogenously given fiscal

needs so as to be able to analyze the consequences of a “purely fiscal” disturbance,

with no implications for the real allocation of resources beyond those that follow from

its effect on the government budget.)

Rational-expectations equilibrium requires that the expected path of government

surpluses must satisfy an intertemporal solvency condition

bt−1
Pt−1

Pt

= Et

∞∑
T=t

Rt,T sT (1.15)

in each state of the world that may be realized at date t,7 where Rt,T ≡ Qt,T PT /Pt is

the stochastic discount factor for a real income stream, and This condition restricts

7See Woodford (2003, chapter 2) for derivation of this condition from household optimization
together with market clearing. The condition should not be interpreted as an a priori constraint on
possible government policy rules, as discussed in Woodford (2001). However, when we consider the
problem of choosing an optimal plan from the among the possible rational-expectations equilibria,
this condition must be imposed among the constraints on the set of equilibria that one may hope to
bring about.
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the possible paths that may be chosen for the tax rate {τ t}. Monetary policy can

affect this constraint, however, both by affecting the period t inflation rate (which

affects the left-hand side) and (in the case of sticky prices) by affecting the discount

factors {Rt,T}.
Under the standard (Ramsey) approach to the characterization of an optimal

policy commitment, one chooses among state-contingent paths {Πt, Yt, τ t, bt, ∆t} from

some initial date t0 onward that satisfy (1.11), (1.12), and (1.15) for each t ≥ t0,

given initial government debt bt0−1 and price dispersion ∆t0−1, so as to maximize

(1.5). Such a t0−optimal plan requires commitment, insofar as the corresponding

t−optimal plan for some later date t, given the conditions bt−1, ∆t−1 obtaining at

that date, will not involve a continuation of the t0−optimal plan. This failure of

time consistency occurs because the constraints on what can be achieved at date t0,

consistent with the existence of a rational-expectations equilibrium, depend on the

expected paths of inflation, output and taxes at later dates; but in the absence of a

prior commitment, a planner would have no motive at those later dates to choose a

policy consistent with the anticipations that it was desirable to create at date t0.

However, the degree of advance commitment that is necessary to bring about an

optimal equilibrium is of only a limited sort. Let

Wt ≡ Et

∞∑
T=t

βT−tũc(YT −GT ; ξT )sT ,

and let F be the set of values for (bt−1, ∆t−1, Ft, Kt,Wt) such that there exist paths

{ΠT , YT , τT , bT , ∆T} for dates T ≥ t that satisfy (1.11), (1.12), and (1.15) for each

T , that are consistent with the specified values for Ft, Kt, and Wt, and that im-

ply a well-defined value for the objective Ut defined in (1.5). Furthermore, for any

(bt−1, ∆t−1, Ft, Kt,Wt) ∈ F , let V (bt−1, ∆t−1, Xt; ξt) denote the maximum attainable

value of Ut among the state-contingent paths that satisfy the constraints just men-

tioned, where Xt ≡ (Ft, Kt,Wt).
8 Then the t0−optimal plan can be obtained as the

solution to a two-stage optimization problem, as shown in the appendix.

In the first stage, values of the endogenous variables xt0 , where xt ≡ (Πt, Yt, τ t, bt, ∆t),

and state-contingent commitments Xt0+1(ξt0+1) for the following period, are chosen,

8In our notation for the value function V, ξt denotes not simply the vector of disturbances in
period t, but all information in period t about current and future disturbances. This corresponds to
the disturbance vector ξt referred to earlier in the case that the disturbance vector follows a Markov
process.
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subject to a set of constraints stated in the appendix, including the requirement that

the choices (bt0 , ∆t0 , Xt0+1) ∈ F for each possible state of the world ξt0+1. These

variables are chosen so as to maximize the objective Ĵ [xt0 , Xt0+1(·)](ξt0), where we

define the functional

Ĵ [xt, Xt+1(·)](ξt) ≡ U(Yt, ∆t; ξt) + βEtV (bt, ∆t, Xt+1; ξt+1). (1.16)

In the second stage, the equilibrium evolution from period t0 + 1 onward is chosen to

solve the maximization problem that defines the value function V (bt0 , ∆t0 , Xt0+1; ξt0+1),

given the state of the world ξt0+1 and the precommitted values for Xt0+1 associated

with that state. The key to this result is a demonstration that there are no restric-

tions on the evolution of the economy from period t0 + 1 onward that are required

in order for this expected evolution to be consistent with the values chosen for xt0 ,

except consistency with the commitments Xt0+1(ξt0+1) chosen in the first stage.

The optimization problem in stage two of this reformulation of the Ramsey prob-

lem is of the same form as the Ramsey problem itself, except that there are additional

constraints associated with the precommitted values for the elements of Xt0+1(ξt0+1).

Let us consider a problem like the Ramsey problem just defined, looking forward from

some period t0, except under the constraints that the quantities Xt0 must take certain

given values, where (bt0−1, ∆t0−1, Xt0) ∈ F . This constrained problem can similarly

be expressed as a two-stage problem of the same form as above, with an identical

stage two problem to the one described above. Stage two of this constrained problem

is thus of exactly the same form as the problem itself. Hence the constrained problem

has a recursive form. It can be decomposed into an infinite sequence of problems, in

which in each period t, (xt, Xt+1(·)) are chosen to maximize Ĵ [xt, Xt+1(·)](ξt), subject

to the constraints of the stage one problem, given the predetermined state variables

(bt−1, ∆t−1) and the precommitted values Xt.

Our aim here is to characterize policy that solves this constrained optimization

problem (stage two of the original Ramsey problem), i.e., policy that is optimal from

some date t onward given precommitted values for Xt. Because of the recursive form of

this problem, it is possible for a commitment to a time-invariant policy rule from date

t onward to implement an equilibrium that solves the problem, for some specification

of the initial commitments Xt. A time-invariant policy rule with this property is said

by Woodford (2003, chapter 7) to be “optimal from a timeless perspective.”9 Such

9See also Woodford (1999) and Giannoni and Woodford (2002).
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a rule is one that a policymaker that solves a traditional Ramsey problem would be

willing to commit to eventually follow, though the solution to the Ramsey problem

involves different behavior initially, as there is no need to internalize the effects of

prior anticipation of the policy adopted for period t0.
10 One might also argue that it

is desirable to commit to follow such a rule immediately, even though such a policy

would not solve the (unconstrained) Ramsey problem, as a way of demonstrating

one’s willingness to accept constraints that one wishes the public to believe that one

will accept in the future.

2 A Linear-Quadratic Approximate Problem

In fact, we shall here characterize the solution to this problem (and similarly, derive

optimal time-invariant policy rules) only for initial conditions near certain steady-

state values, allowing us to use local approximations in characterizing optimal pol-

icy.11 We establish that these steady-state values have the property that if one starts

from initial conditions close enough to the steady state, and exogenous disturbances

thereafter are small enough, the optimal policy subject to the initial commitments

remains forever near the steady state. Hence our local characterization would de-

scribe the long run character of Ramsey policy, in the event that disturbances are

small enough, and that deterministic Ramsey policy would converge to the steady

state.12 Of greater interest here, it describes policy that is optimal from a timeless

perspective in the event of small disturbances.

We first must show the existence of a steady state, i.e., of an optimal policy (under

10For example, in the case of positive initial nominal government debt, the t0−optimal policy
would involve a large inflation in period t0, in order to reduce the pre-existing debt burden, but a
commitment not to respond similarly to the existence of nominal government debt in later periods.

11Local approximations of the same sort are often used in the literature in numerical character-
izations of Ramsey policy. Strictly speaking, however, such approximations are valid only in the
case of initial commitments Xt0 near enough to the steady-state values of these variables, and the
t0−optimal (Ramsey) policy need not involve values of Xt0 near the steady-state values, even in the
absence of random disturbances.

12Benigno and Woodford (2003) gives an example of an application in which Ramsey policy
does converge asymptotically to the steady state, so that the solution to the approximate problem
approximates the response to small shocks under the Ramsey policy, at dates long enough after t0.
We cannot make a similar claim in the present application, however, because of the unit root in the
dynamics associated with optimal policy.
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appropriate initial conditions) that involves constant values of all variables. To this

end we consider the purely deterministic case, in which the exogenous disturbances

C̄t, Gt, H̄t, At, µw
t , ζt each take constant values C̄, Ḡ, H̄, Ā, µ̄w > 0 and ζ̄ ≥ 0 for

all t ≥ t0, and assume an initial real public debt bt0−1 = b̄ > 0. We wish to find

an initial degree of price dispersion ∆t0−1 and initial commitments Xt0 = X̄ such

that the solution to the “stage two” problem defined above involves a constant policy

xt = x̄, Xt+1 = X̄ each period, in which b̄ is equal to the initial real debt and ∆̄ is

equal to the initial price dispersion. We show in the appendix that the first-order

conditions for this problem admit a steady-state solution of this form, and we verify

below that the second-order conditions for a local optimum are also satisfied.

Regardless of the initial public debt b̄, we show that Π̄ = 1 (zero inflation), and

correspondingly that ∆̄ = 1 (zero price dispersion). Note that our conclusion that

the optimal steady-state inflation rate is zero generalizes the result of Benigno and

Woodford (2003) for the case in which taxes are lump-sum at the margin. We may

furthermore assume without loss of generality that the constant values of C̄ and H̄

are chosen (given the initial government debt b̄) so that in the optimal steady state,

Ct = C̄ and Ht = H̄ each period.13 The associated steady-state tax rate is given by

τ̄ = sG +
ζ̄ + (1− β)b̄

Ȳ
,

where Ȳ = C̄ + Ḡ > 0 is the steady-state output level, and sG ≡ Ḡ/Ȳ < 1 is the

steady-state share of output purchased by the government. As shown in the appendix,

this solution necessarily satisfies 0 < τ̄ < 1.

We next wish to characterize the optimal responses to small perturbations of

the initial conditions and small fluctuations in the disturbance processes around the

above values. To do this, we compute a linear-quadratic approximate problem, the

solution to which represents a linear approximation to the solution to the “stage two”

policy problem, using the method introduced in Benigno and Woodford (2003). An

important advantage of this approach is that it allows direct comparison of our results

with those obtained in other analyses of optimal monetary stabilization policy. Other

advantages are that it makes it straightforward to verify whether the second-order

conditions hold that are required in order for a solution to our first-order conditions

to be at least a local optimum,14 and that it provides us with a welfare measure with

13Note that we may assign arbitrary positive values to C̄, H̄ without changing the nature of the
implied preferences, as long as the value of λ is appropriately adjusted.
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which to rank alternative sub-optimal policies, in addition to allowing computation

of the optimal policy.

We begin by computing a Taylor-series approximation to our welfare measure

(1.5), expanding around the steady-state allocation defined above, in which yt(i) = Ȳ

for each good at all times and ξt = 0 at all times.15 As a second-order (logarithmic)

approximation to this measure, we obtain16

Ut0 = Y ūc · Et0

∞∑
t=t0

βt−t0ΦŶt − 1

2
uyyŶ

2
t + Ŷtuξξt − u∆∆̂t

+ t.i.p. +O(||ξ||3), (2.1)

where Ŷt ≡ log(Yt/Ȳ ) and ∆̂t ≡ log ∆t measure deviations of aggregate output and

the price dispersion measure from their steady-state levels, the term “t.i.p.” collects

terms that are independent of policy (constants and functions of exogenous distur-

bances) and hence irrelevant for ranking alternative policies, and ||ξ|| is a bound on

the amplitude of our perturbations of the steady state.17 Here the coefficient

Φ ≡ 1− θ − 1

θ

1− τ̄

µ̄w
< 1

measures the steady-state wedge between the marginal rate of substitution between

consumption and leisure and the marginal product of labor, and hence the inefficiency

of the steady-state output level Ȳ . Under the assumption that b̄ > 0, we necessarily

14Benigno and Woodford (2003) show that these conditions can fail to hold, so that a small amount
of arbitrary randomization of policy is welfare-improving, but argue that the conditions under which
this occurs in their model are not empirically plausible.

15Here the elements of ξt are assumed to be c̄t ≡ log(C̄t/C̄), h̄t ≡ log(H̄t/H̄), at ≡ log(At/Ā), µ̂w
t ≡

log(µw
t /µ̄w), Ĝt ≡ (Gt−Ḡ)/Ȳ , and ζ̂t ≡ (ζt−ζ̄)/Ȳ , so that a value of zero for this vector corresponds

to the steady-state values of all disturbances. The perturbations Ĝt and ζt are not defined to be
logarithmic so that we do not have to assume positive steady-state values for these variables.

16See the appendix for details. Our calculations here follow closely those of Woodford (2003,
chapter 6) and Benigno and Woodford (2003).

17Specifically, we use the notation O(||ξ||k) as shorthand for O(||ξ, b̂t0−1, ∆̂
1/2
t0−1, X̂t0 ||k), where in

each case hats refer to log deviations from the steady-state values of the various parameters of the
policy problem. We treat ∆̂1/2

t0 as an expansion parameter, rather than ∆̂t0 because (1.12) implies
that deviations of the inflation rate from zero of order ε only result in deviations in the dispersion
measure ∆t from one of order ε2. We are thus entitled to treat the fluctuations in ∆t as being only
of second order in our bound on the amplitude of disturbances, since if this is true at some initial
date it will remain true thereafter.
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have Φ > 0, meaning that steady-state output is inefficiently low. The coefficients

uyy, uξ and u∆ are defined in the appendix.

Under the Calvo assumption about the distribution of intervals between price

changes, we can relate the dispersion of prices to the overall rate of inflation, allowing

us to rewrite (2.1) as

Ut0 = Y ūc · Et0

∞∑
t=t0

βt−t0 [ΦŶt − 1

2
uyyŶ

2
t + Ŷtuξξt − uππ2

t ]

+ t.i.p. +O(||ξ||3), (2.2)

for a certain coefficient uπ > 0 defined in the appendix, where πt ≡ log Πt is the

inflation rate. Thus we are able to write our stabilization objective purely in terms

of the evolution of the aggregate variables {Ŷt, πt} and the exogenous disturbances.

We note that when Φ > 0, there is a non-zero linear term in (2.2), which means

that we cannot expect to evaluate this expression to second order using only an

approximate solution for the path of aggregate output that is accurate only to first

order. Thus we cannot determine optimal policy, even up to first order, using this

approximate objective together with approximations to the structural equations that

are accurate only to first order. Rotemberg and Woodford (1997) avoid this problem

by assuming an output subsidy (i.e., a value τ̄ < 0) of the size needed to ensure

that Φ = 0. Here we do not wish to make this assumption, because we assume that

lump-sum taxes are unavailable, in which case Φ = 0 would be possible only in the

case of a particular initial level of government assets b̄ < 0. Furthermore, we are more

interested in the case in which government revenue needs are more acute than that

would imply.

Benigno and Woodford (2003) propose an alternative way of dealing with this

problem, which is to use a second-order approximation to the aggregate-supply rela-

tion to eliminate the linear terms in the quadratic welfare measure. In the model that

they consider, where taxes are lump-sum (and so do not affect the aggregate supply

relation), a forward-integrated second-order approximation to this relation allows one

to express the expected discounted value of output terms ΦŶt as a function of purely

quadratic terms (except for certain transitory terms that do not affect the “stage

two” policy problem). In the present case, the level of distorting taxes has a first-

order effect on the aggregate-supply relation (see equation (2.6) below), so that the

forward-integrated relation involves the expected discounted value of the tax rate as

13



well as the expected discounted value of output. However, as shown in the appendix,

a second-order approximation to the intertemporal solvency condition (1.15)18 pro-

vides another relation between the expected discounted values of output and the tax

rate and a set of purely quadratic terms. These two second-order approximations to

the structural equations that appear as constraints in our policy problem can then

be used to express the expected discounted value of output terms in (2.2) in terms of

purely quadratic terms.

In this manner, we can rewrite (2.2) as

Ut0 = −ΩEt0

∞∑
t=t0

βt−t0

{
1

2
qy(Ŷt − Ŷ ∗

t )2 +
1

2
qππ2

t

}
+ Tt0 + t.i.p. +O(||ξ||3), (2.3)

where again the coefficients are defined in the appendix. The expression Ŷ ∗
t indicates

a function of the vector of exogenous disturbances ξt defined in the appendix, while

Tt0 is a transitory component. In the case that the alternative policies from date t0

onward to be evaluated must be consistent with a vector of prior commitments Xt0 ,

one can show that the value of the term Tt0 is implied (to a second-order approxima-

tion) by the value of Xt0 . Hence for purposes of characterizing optimal policy from a

timeless perspective, it suffices that we rank policies according to the value that they

imply for the loss function

Et0

∞∑
t=t0

βt−t0

{
1

2
qy(Ŷt − Ŷ ∗

t )2 +
1

2
qππ2

t

}
, (2.4)

where a lower value of (2.4) implies a higher value of (2.3). Because this loss function

is purely quadratic (i.e., lacking linear terms), it is possible to evaluate it to second

order using only a first-order approximation to the equilibrium evolution of inflation

and output under a given policy. Hence log-linear approximations to the structural

relations of our model suffice, yielding a standard linear-quadratic policy problem.

In order for this linear-quadratic problem to have a bounded solution (which then

approximates the solution to the exact problem), we must verify that the quadratic

18Since we are interested in providing an approximate characterization of the “stage two” policy
problem, in which a precommitted value of Wt appears as a constraint, it is actually a second-order
approximation to that constraint that we need. However, this latter constraint has the same form
as (1.15); the difference is only in which quantities in the relation are taken to have predetermined
values.
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objective (2.4) is convex. We show in the appendix that qy, qπ > 0, so that the

objective is convex, as long as the steady-state tax rate τ̄ and share of government

purchases sG in the national product are below certain positive bounds. We shall here

assume that these conditions are satisfied, i.e., that the government’s fiscal needs are

not too severe. Note that in this case, our quadratic objective turns out to be of a form

commonly assumed in the literature on monetary policy evaluation; that is, policy

should seek to minimize the discounted value of a weighted sum of squared deviations

of inflation from an optimal level (here zero) and squared fluctuations in an “output

gap” yt ≡ Ŷt−Ŷ ∗
t , where the target output level Ŷ ∗

t depends on the various exogenous

disturbances in a way discussed in the appendix. It is also perhaps of interest to note

that a “tax smoothing” objective of the kind postulated by Barro (1979) and Bohn

(1990) does not appear in our welfare measure as a separate objective. Instead, tax

distortions are relevant only insofar as they result in “output gaps” of the same sort

that monetary stabilization policy aims to minimize.

We turn next to the form of the log-linear constraints in the approximate policy

problem. A first-order Taylor series expansion of (1.11) around the zero-inflation

steady state yields the log-linear aggregate-supply relation

πt = κ[Ŷt + ψτ̂ t + c′ξξt] + βEtπt+1, (2.5)

for certain coefficients κ, ψ > 0. This is the familiar “New Keynesian Phillips curve”

relation,19 extended here to take account of the effects of variations in the level of

distorting taxes on supply costs.

It is useful to write this approximate aggregate-supply relation in terms of the

welfare-relevant output gap yt. Equation (2.5) can be equivalently be written as

πt = κ[yt + ψτ̂ t + ut] + βEtπt+1, (2.6)

where ut is composite “cost-push” disturbance, indicating the degree to which the

various exogenous disturbances included in ξt preclude simultaneous stabilization of

inflation, the welfare-relevant output gap, and the tax rate. Alternatively we can

write

πt = κ[yt + ψ(τ̂ t − τ̂ ∗t )] + βEtπt+1, (2.7)

19See, e.g., Clarida et al. (1999) or Woodford (2003, chapter 3).
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where τ̂ ∗t ≡ −ψ−1ut indicates the tax change needed at any time to offset the“cost-

push” shock, in order to allow simultaneous stabilization of inflation and the output

gap (the two stabilization objectives reflected in (2.4)).

The effects of the various exogenous disturbances in ξt on the “cost-push” term

ut are explained in the appendix. It is worth noting that under certain conditions ut

is unaffected by some disturbances. In the case that Φ = 0, the cost-push term is

given by

ut = uξ5µ̂
w
t , (2.8)

where in this case, uξ5 = q−1
y > 0. Thus the cost-push term is affected only by varia-

tions in the wage markup µ̂t; it does not vary in response to taste shocks, technology

shocks, government purchases, or variations in government transfers. The reason is

that when Φ = 0 and neither taxes nor the wage markup vary from their steady-

state values, the flexible-price equilibrium is efficient; it follows that level of output

consistent with zero inflation is also the one that maximizes welfare, as discussed in

Woodford (2003, chapter 6).

Even when Φ > 0, if there are no government purchases (so that sG = 0) and

no fiscal shocks (meaning that Ĝt = 0 and ζ̂t = 0), then the ut term is again of the

form (2.8), but with uξ5 = (1−Φ)q−1
y , as discussed in Benigno and Woodford (2003).

Hence in this case neither taste or technology shocks have “cost-push” effects. The

reason is that in this “isoelastic” case, if neither taxes nor the wage markup ever vary,

the flexible-price equilibrium value of output and the efficient level vary in exactly

the same proportion in response to each of the other types of shocks; hence inflation

stabilization also stabilizes the gap between actual output and the efficient level.

Another special case is the limiting case of linear utility of consumption (σ−1 = 0); in

this case, ut is again of the form (2.8), for a different value of uξ5. In general, however,

when Φ > 0 and sG > 0, all of the disturbances shift the flexible-price equilibrium

level of output (under a constant tax rate) and the efficient level of output to differing

extents, resulting in “cost-push” contributions from all of these shocks.

The other constraint on possible equilibrium paths is the intertemporal govern-

ment solvency condition. A log-linear approximation to (1.15) can be written in the

form

b̂t−1 − πt − σ−1yt = −ft + (1− β)Et

∞∑
T=t

βT−t[byyT + bτ (τ̂T − τ̂ ∗T )], (2.9)
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where σ > 0 is the intertemporal elasticity of substitution of private expenditure,

and the coefficients by, bτ are defined in the appendix, as is ft, a composite measure

of exogenous “fiscal stress.” Here we have written the solvency condition in terms of

the same output gap and “tax gap” as equation (2.7), to make clear the extent to

which complete stabilization of the variables appearing in the loss function (2.4) is

possible. The constraint can also be written in a “flow” form,

b̂t−1−πt−σ−1yt+ft = (1−β)[byyt+bτ (τ̂ t−τ̂ ∗t )]+βEt[b̂t−πt+1−σ−1yt+1+ft+1], (2.10)

together with a transversality condition.20

We note that the only reason why it should not be possible to completely stabilize

both inflation and the output gap from some date t onward is if the sum b̂t−1+ft is non-

zero. The composite disturbance ft therefore completely summarizes the information

at date t about the exogenous disturbances that determines the degree to which

stabilization of inflation and output is not possible; and under an optimal policy, the

state-contingent evolution of the inflation rate, the output gap, and the real public

debt depend solely on the evolution of the single composite disturbance process {ft}.
This result contrasts with the standard literature on optimal monetary stabiliza-

tion policy, in which (in the absence of a motive for interest-rate stabilization, as

here) it is instead the cost-push term ut that summarizes the extent to which exoge-

nous disturbances require that fluctuations in inflation and in the output gap should

occur. Note that in the case that there are no government purchases and no fiscal

shocks, ut corresponds simply to (2.8). Thus, for example, it is concluded (in a model

with lump-sum taxes) that there should be no variation in inflation in response to a

technology shock (Khan et al., 2002; Benigno and Woodford, 2003). But even in this

simple case, the fiscal stress is given by an expression of the form

ft ≡ h′ξξt − (1− β)Et

∞∑
T=t

βT−tf ′ξξT , (2.11)

where the expressions h′ξξt and f ′ξξt both generally include non-zero coefficients on

preference and technology shocks, in addition to the markup shock, as shown in the

appendix. Hence many disturbances that do not have cost-push effects nonetheless

result in optimal variations in both inflation and the output gap.

20If we restrict attention to bounded paths for the endogenous variables, then a path satisfies (2.9)
in each period t ≥ t0 if and only if it satisfies the flow budget constraint (2.10) in each period.
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Finally, we wish to consider optimal policy subject to the constraints that Ft0 , Kt0

and Wt0 take given (precommitted) values. Again, only log-linear approximations to

these constraints matter for a log-linear approximate characterization of optimal pol-

icy. As discussed in the appendix, the corresponding constraints in our approximate

model are precommitments regarding the state-contingent values of πt0 and yt0 .

To summarize, our approximate policy problem involves the choice of state-contingent

paths for the endogenous variables {πt, yt, τ̂ t, b̂t} from some date t0 onward so as to

minimize the quadratic loss function (2.4), subject to the constraint that conditions

(2.7) and (2.9) be satisfied each period, given an initial value b̂t0−1 and subject also to

the constraints that πt0 and yt0 equal certain precommitted values (that may depend

on the state of the world in period t0). We shall first characterize the state-contingent

evolution of the endogenous variables in response to exogenous shocks, in the rational-

expectations equilibrium that solves this problem. We then turn to the derivation of

optimal policy rules, commitment to which should implement an equilibrium of this

kind.

3 Optimal Responses to Shocks: The Case of Flex-

ible Prices

In considering the solution to the problem of stabilization policy just posed, it may

be useful to first consider the simple case in which prices are fully flexible. This is

the limiting case of our model in which α = 0, with the consequence that qπ = 0

in (2.4), and that κ−1 = 0 in (2.7). Hence our optimization problem reduces to the

minimization of
1

2
qyEt0

∞∑
t=t0

βt−t0y2
t (3.1)

subject to the constraints

yt + ψ(τ̂ t − τ̂ ∗t ) = 0 (3.2)

and (2.9). It is easily seen that in this case, the optimal policy is one that achieves

yt = 0 at all times. Because of (3.2), this requires that τ̂ t = τ̂ ∗t at all times. The

inflation rate is then determined by the requirement of government intertemporal

solvency,

πt = b̂t−1 + ft.
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This last equation implies that unexpected inflation must equal the innovation in

the fiscal stress,

πt − Et−1πt = ft − Et−1ft.

Expected inflation, and hence the evolution of nominal government debt, are inde-

terminate. If we add to our assumed policy objective a small preference for inflation

stabilization, when this has no cost in terms of other objectives,21 then the optimal

policy will be one that involves Etπt+1 = 0 each period, so that the nominal public

debt must evolve according to

b̂t = −Etft+1.

If, instead, we were to assume the existence of small monetary frictions (and zero

interest on money), the tie would be broken by the requirement that the nominal

interest rate equal zero each period.22 The required expected rate of inflation (and

hence the required evolution of the nominal public debt) would then be determined

by the variation in the equilibrium real rate of return implied by a real allocation in

which Ŷt = Ŷ ∗
t each period. That is, one would have Etπt+1 = −r∗t , where r∗t is the

(exogenous) real rate of interest associated output at the target level each period,

and so

b̂t = −r∗t − Etft+1.

We thus obtain simple conclusions about the determinants of fluctuations in infla-

tion, output and the tax rate under optimal policy. Unexpected inflation variations

occur as needed in order to prevent taxes from ever having to be varied in order to

respond to variations in fiscal stress, as in the analyses of Bohn (1990) and Chari

and Kehoe (1999). This allows a model with only riskless nominal government debt

21Note that this preference can be justified in terms of our model, in the case that α is positive
though extremely small. For there will then be a very small positive value for qπ, implying that
reduction of the expected discounted value of inflation is preferred to the extent that this does not
require any increase in the expected discounted value of squared output gaps.

22The result relies upon the fact that the distortions created by the monetary frictions are mini-
mized in the case of a zero opportunity cost of holding money each period, as argued by Friedman
(1969). Neither the existence of effects of nominal interest rates on supply costs (so that an interest-
rate term should appear in the aggregate-supply relation (3.2)) nor the contribution of seignorage
revenues to the government budget constraint make any difference to the result, since unexpected
changes in revenue needs can always be costlessly obtained through unexpected inflation, while any
desired shifts in the aggregate-supply relation to offset cost-push shocks can be achieved by varying
the tax rate.
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to achieve the same state-contingent allocation of resources as the government would

choose to bring about if it were able to issue state-contingent debt, as in the model

of Lucas and Stokey (1983).

Because taxes do not have to adjust in response to variations in fiscal stress, as

in the tax-smoothing model of Barro (1979), it is possible to “smooth” them across

states as well as over time. However, the sense in which it is desirable to “smooth”

tax rates is that of minimizing variation in the gap τ̂ t − τ̂ ∗t , rather than variation in

the tax rate itself.23 In other words, it is really the “tax gap” τ̂ t − τ̂ ∗t that should be

smoothed. Under certain special circumstances, it will not be optimal for tax rates

to vary in response to shocks; these are the conditions, discussed above, under which

shocks have no cost-push effects, so that there is no change in τ̂ ∗t . For example, if

there are no government purchases and there is no variation in the wage markup,

this will be the case. But more generally, all disturbances will have some cost-push

effect, and result in variations in τ̂ ∗t . There will then be variations in the tax rate in

response to these shocks under an optimal policy. However, there will be no unit root

in the tax rate, as in the Barro (1979) model of optimal tax policy. Instead, as in

the analysis of Lucas and Stokey (1983), the optimal fluctuations in the tax rate will

be stationary, and will have the same persistence properties as the real disturbances

(specifically, the persistence properties of the composite cost-push shock).

Variations in fiscal stress will instead require changes in the tax rate, as in the

analysis of Barro (1979), if we suppose that the government issues only riskless in-

dexed debt, rather than the riskless nominal debt assumed in our baseline model.

(Again, for simplicity we assume that only one-period riskless debt is issued.) In

this case the objective function (2.4) and the constraints (2.9) and (3.2) remain the

same, but b
¯

t−1 ≡ b̂t−1 − πt, the real value of private claims on the government at the

beginning of period t, is now a predetermined variable. This means that unexpected

inflation variations are no longer able to relax the intertemporal government solvency

23A number of authors (e.g., Chari et al., 1991, 1994; Hall and Krieger, 2000; Aiyagari et al.,

2002) have found that in calibrated flexible-price models with state-contingent government debt,
the optimal variation in labor tax rates is quite small. Our results indicate this as well, in the
case that real disturbances have only small cost-push effects, and we have listed earlier various
conditions under which this will be the case. But under some circumstances, optimal policy may
involve substantial volatility of the tax rate, and indeed, more volatility of the tax rate than of
inflation. This would be the case if shocks occur that have large cost-push effects while having
relatively little effect on fiscal stress.
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condition. In fact, rewriting the constraint (2.9) in terms of b
¯t−1, we see that the

path of inflation is now completely irrelevant to welfare.

The solution to this optimization problem is now less trivial, as complete stabi-

lization of the output gap is not generally possible. The optimal state-contingent

evolution of output and taxes can be determined using a Lagrangian method, as in

Woodford (2003, chapter 7). The Lagrangian for the present problem can be written

as

Lt0 = Et0

∞∑
t=t0

βt−t0{1

2
qyy

2
t + ϕ1t[yt + ψτ̂ t] + ϕ2t[(b¯t−1 − σ−1yt)

−(1− β)(byyt + bτ τ̂ t)− β(b
¯t − σ−1yt+1)]}+ σϕ2,t0−1yt0 , (3.3)

where ϕ1t, ϕ2t are Lagrange multipliers associated with constraints (3.2) and (2.10)

respectively,24 for each t ≥ t0, and σϕ2,t0−1 is the notation used for the multiplier

associated with the additional constraint that yt0 = ȳt0 . The latter constraint is added

in order to characterize optimal policy from a timeless perspective, as discussed at

the end of section 2; the particular notation used for the multiplier on this constraint

results in a time-invariant form for the first-order conditions, as seen below.25 We

have dropped terms from the Lagrangian that are not functions of the endogenous

variables yt and τ̂ t, i.e., products of multipliers and exogenous disturbances, as these

do not affect our calculation of the implied first-order conditions.

The resulting first-order condition with respect to yt is

qyyt = −ϕ1t + [(1− β)by + σ−1]ϕ2t − σ−1ϕ2,t−1; (3.4)

that with respect to τ̂ t is

ψϕ1t = (1− β)bτϕ2t; (3.5)

and that with respect to b
¯

t is

ϕ2t = Etϕ2,t+1. (3.6)

24Alternatively, ϕ2t is the multiplier associated with constraint (2.9).
25It should be recalled that in order for policy to be optimal from a timeless perspective, the state-

contingent initial commitment ȳt0 must be chosen in a way that conforms to the state-contingent
commitment regarding yt that will be chosen in all later periods, so that the optimal policy can be
implemented by a time-invariant rule. Hence it is convenient to present the first-order conditions in
a time-invariant form.
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Each of these conditions must be satisfied for each t ≥ t0, along with the structural

equations (3.2) and (2.9) for each t ≥ t0, for given initial values b
¯t0−1 and yt0 . We

look for a bounded solution to these equations, so that (in the event of small enough

disturbances) none of the state variables leave a neighborhood of the steady-state

values, in which our local approximation to the equilibrium conditions and our welfare

objective remain accurate.26 Given the existence of such a bounded solution, the

transversality condition is necessarily satisfied, so that the solution to these first-

order conditions represents an optimal plan.

An analytical solution to these equations is easily given. Using equation (3.2) to

substitute for τ̂ t in the forward-integrated version of (2.9), then equations (3.4) and

(3.5) to substitute for yt as a function of the path of ϕ2t, and finally using (3.6) to

replace all terms of the form Etϕ2,t+j (for j ≥ 0) by ϕ2t, we obtain an equation that

can be solved for ϕ2t. The solution is of the form

ϕ2t =
mb

mb + nb

ϕ2,t−1 −
1

mb + nb

[ft + b
¯t−1],

coefficients mb, nb are defined in the appendix. The implied dynamics of the govern-

ment debt are then given by

b
¯t = −Etft+1 − nbϕ2t.

This allows a complete solution for the evolution of government debt and the multi-

plier, given the composite exogenous disturbance process {ft}, starting from initial

conditions b
¯t0−1 and ϕ2,t0−1.

27 Given these solutions, the optimal evolution of the

26In the only such solution, the variables τ̂ t , b
¯t and yt are all permanently affected by shocks, even

when the disturbances are all assumed to be stationary (and bounded) processes. Hence a bounded
solution exists only under the assumption that random disturbances occur only in a finite number

of periods. However, our characterization of optimal policy does not depend on a particular bound
on the number of periods in which there are disturbances, or which periods these are; in order to
allow disturbances in a larger number of periods, we must assume a tighter bound on the amplitude
of disturbances, in order for the optimal paths of the endogenous variables to remain within a given
neighborhood of the steady-state values. Aiyagari et al. (2002) discuss the asymptotic behavior of
the optimal plan in the exact nonlinear version of a problem similar to this one, in the case that
disturbances occur indefinitely.

27The initial condition for ϕ2,t0−1 is in turn chosen so that the solution obtained is consistent
with the initial constraint yt0 = ȳt0 . Under policy that is optimal from a timeless perspective, this
initial commitment is in turn chosen in a self-consistent fashion, as discussed further in section 5.
Note that the specification of ϕ2,t0−1 does not affect our conclusions about the optimal responses
to shocks, emphasized in this section.
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output gap and tax rate are given by

yt = mϕϕ2t + nϕϕ2,t−1,

τ̂ t = τ̂ ∗t − ψ−1yt,

where mϕ, nϕ are again defined in the appendix. The evolution of inflation remains

indeterminate. If we again assume a preference for inflation stabilization when it is

costless, optimal policy involves πt = 0 at all times.

In this case, unlike that of nominal debt, inflation is not affected by a pure fiscal

shock (or indeed any other shock) under the optimal policy, but instead the output

gap and the tax rate are. Note also that in the above solution, the multiplier ϕ2t, the

output gap, and the tax rate all follow unit root processes: a temporary disturbance

to the fiscal stress permanently changes the level of each of these variables, as in the

analysis of the optimal dynamics of the tax rate in Barro (1979) and Bohn (1990).

However, the optimal evolution of the tax rate is not in general a pure random walk

as in the analysis of Barro and Bohn. Instead, the tax gap is an IMA(1,1) process,

as in the local analysis of Aiyagari et al. (2002); the optimal tax rate τ̂ t may have

more complex dynamics, in the case that τ̂ ∗t exhibits stationary fluctuations. In the

special case of linear utility (σ−1 = 0), nϕ = 0, and both the output gap and the tax

gap follow random walks (as both co-move with ϕ2t). If the only disturbances are

fiscal disturbances (Ĝt and ζ̂t), then there are also no fluctuations in τ̂ ∗t in this case,

so that the optimal tax rate follows a random walk.

More generally, we observe that optimal policy “smooths” ϕ2t, the value (in units

of marginal utility) of additional government revenue in period t, so that it follows

a random walk. This is the proper generalization of the Barro tax-smoothing result,

though it only implies smoothing of tax rates in fairly special cases. We find a similar

result in the case that prices are sticky, even when government debt is not indexed,

as we now show.

4 Optimal Responses to Shocks: The Case of Sticky

Prices

We turn now to the characterization of the optimal responses to shocks in the case

that prices are sticky (α > 0). The optimization problem that provides a first-
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order characterization of optimal responses in this case is that of choosing processes

{πt, yt, τ̂ t, b̂t} from date t0 onward to minimize (2.4), subject to the constraints (2.7)

and (2.9) for each t ≥ t0, together with initial constraints of the form

πt0 = π̄t0 , yt0 = ȳt0 ,

given the initial condition b̂t0−1 and the exogenous evolution of the composite distur-

bances {τ̂ ∗t , ft}. The Lagrangian for this problem can be written as

Lt0 = Et0

∞∑
t=t0

βt−t0{1

2
qyy

2
t +

1

2
qππ2

t + ϕ1t[−κ−1πt + yt + ψτ̂ t + κ−1βπt+1] +

+ϕ2t[b̂t−1 − πt − σ−1yt − (1− β)(byyt + bτ τ̂ t)− β(b̂t − πt+1 − σ−1yt+1)]}
+[κ−1ϕ1,t0−1 + ϕ2,t0−1]πt0 + σ−1ϕ2,t0yt0 ,

by analogy with (3.3).

The first-order condition with respect to πt is given by

qππt = κ−1(ϕ1t − ϕ1,t−1) + (ϕ2t − ϕ2,t−1); (4.1)

that with respect to yt is given by

qyyt = −ϕ1t + [(1− β)by + σ−1]ϕ2t − σ−1ϕ2,t−1; (4.2)

that with respect to τ̂ t is given by

ψϕ1t = (1− β)bτϕ2t; (4.3)

and finally that with respect to b̂t is given by

ϕ2t = Etϕ2,t+1. (4.4)

These together with the two structural equations and the initial conditions are to

be solved for the state-contingent paths of {πt, Ŷt, τ t, b̂t, ϕ1t, ϕ2t}. Note that the last

three first order conditions are the same as for the flexible-price model with indexed

debt; the first condition (4.1) replaces the previous requirement that πt = 0. Hence

the solution obtained in the previous section corresponds to a limiting case of this

problem, in which qπ is made unboundedly large; for this reason the discussion above

of the more familiar case with flexible prices and riskless indexed government debt

provides insight into the character of optimal policy in the present case as well.
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In the unique bounded solution to these equations, the dynamics of government

debt and of the shadow value of government revenue ϕ2t are again of the form

ϕ2t =
m̃b

m̃b + nb

ϕ2,t−1 −
1

m̃b + nb

[ft + b̂t−1],

b̂t = −Etft+1 − nbϕ2t,

though the coefficient m̃b now differs from mb, in a way also described in the appendix.

The implied dynamics of inflation and output gap are then given by

πt = −ωϕ(ϕ2t − ϕ2,t−1), (4.5)

yt = mϕϕ2t + nϕϕ2,t−1, (4.6)

where mϕ, nϕ are defined as before, and ωϕ is defined in the appendix. The optimal

dynamics of the tax rate are those required to make these inflation and output-

gap dynamics consistent with the aggregate-supply relation (2.7). Once again, the

optimal dynamics of inflation, the output gap, and the public debt depend only on the

evolution of the fiscal stress variable {ft}; the dynamics of the tax rate also depend

on the evolution of {τ̂ ∗t}.
We now discuss the optimal response of the variables to a disturbance to the

level of fiscal stress. The laws of motion just derived for government debt and the

Lagrange multiplier imply that temporary disturbances to the level of fiscal stress

cause a permanent change in the level of both the Lagrange multiplier and the public

debt. This then implies a permanent change in the level of output as well, which in

turn requires (since inflation is stationary) a permanent change in the level of the tax

rate. Since inflation is proportional to the change in the Lagrange multiplier, the price

level moves in proportion to the multiplier, which means a temporary disturbance to

the fiscal stress results in a permanent change in the price level, as in the flexible-

price case analyzed in the previous section. Thus in this case, the price level, output

gap, government debt, and tax rate all have unit roots, combining features of the

two special cases considered in the previous section.28 Both price level and ϕ2t are

random walks. They jump immediately to new permanent level in response to change

in fiscal stress. In the case of purely transitory (white noise) disturbances, government

28Schmitt-Grohé and Uribe (2001) similarly observe that in a model with sticky prices, the optimal
response of the tax rate is similar to what would be optimal in a flexible-price model with riskless
indexed government debt.
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Figure 1: Impulse response of the public debt to a pure fiscal shock, for alternative

degrees of price stickiness.

debt also jumps immediately to a new permanent level. Given the dynamics of the

price level and government debt, the dynamics of output and tax rate then jointly

determined by the aggregate-supply relation and the government budget constraint.

We further find that the degree to which fiscal stress is relieved by a price-

level jump (as in the flexible-price, nominal-debt case) as opposed to an increase

in government debt and hence a permanently higher tax rate (as in the flexible-

price, indexed-debt case) depends on the degree of price stickiness. We illustrate

this with a numerical example. We calibrate a quarterly model by assuming that

β = 0.99, ω = 0.473, σ−1 = 0.157, and κ = 0.0236, in accordance with the estimates

of Rotemberg and Woodford (1997). We furthermore assume an elasticity of substi-

tution among alternative goods of θ = 10, an overall level of steady-state distortions

Φ = 1/3, a steady-state tax rate of τ̄ = 0.2, and a steady-state debt level b̄/Ȳ = 2.4

(debt equal to 60 percent of a year’s GDP). Given the assumed degree of market

power of producers (a steady-state gross price markup of 1.11) and the assumed size
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Figure 2: Impulse response of the tax rate to a pure fiscal shock.

of the tax wedge, the value Φ = 1/3 corresponds to a steady-state wage markup of

µ̄w = 1.08. If we assume that there are no government transfers in the steady state,

then the assumed level of tax revenues net of debt service would finance steady-state

government purchases equal to a share sG = 0.176 of output.

Let us suppose that the economy is disturbed by an exogenous increase in transfer

programs ζ̂t, equal to one percent of aggregate output, and expected to last only for

the current quarter. Figure 1 shows the optimal impulse response of the government

debt b̂t to this shock (where quarter zero is the quarter of the shock), for each of 7

different values for κ, the slope of the short-run aggregate-supply relation, maintaining

the values just stated for the other parameters of the model. The solid line indicates

the optimal response in the case of our baseline value for κ, based on the estimates

of Rotemberg and Woodford; the other cases represent progressively greater degrees

of price flexibility, up to the limiting case of fully flexible prices (the case κ = ∞).

Figures 2 and 3 similarly show the optimal responses of the tax rate and the inflation
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Figure 3: Impulse response of the inflation rate to a pure fiscal shock.

rate to the same disturbance, for each of the same 7 cases.29

We see that the volatility of both inflation and tax rates under optimal policy

depends greatly on the degree of stickiness of prices. Table 1 reports the initial

quarter’s response of the inflation rate, and the long-run response of the tax rate, for

each of the 7 cases. The table also indicates for each case the implied average time

(in weeks) between price changes, T ≡ (− log α)−1, where 0 < α < 1 is the fraction

of prices unchanged for an entire quarter implied by the assumed value of κ.30 We

29In figure 1, a response of 1 means a one percent increase in the value of bt, from 60 percent to
60.6 percent of a year’s GDP. In figure 2, a response of 1 means a one percent decrease in τ t, from
20 percent to 20.2 percent. In figure 3, a response of 1 means a one percent per annum increase
in the inflation rate, or an increase of the price level from 1 to 1.0025 over the course of a quarter
(given that our model is quarterly). The responses reported in Table 1 are measured in the same
way.

30We have used the relation between α and T for a continuous-time version of the Calvo model
in order to express the degree of price stickiness in terms of an average time between price changes.
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Table 1: Immediate responses for alternative degrees of price stickiness.

κ T τ̂∞ π0

.024 29 .072 .021

.05 20 .076 .024

.10 14 .077 .030

.25 9 .078 .044

1.0 5.4 .075 .113

25 2.4 .032 .998

∞ 0 0 1.651

first note that our baseline calibration implies that price changes occur only slightly

less frequently than twice per year, which is consistent with survey evidence.31 Next,

we observe that even were we to assume an aggregate-supply relation several times

as steep as the one estimated using U.S. data, our conclusions with regard to the size

of the optimal responses of the (long-run) tax rate and the inflation rate would be

fairly similar. At the same time, the optimal responses with fully flexible prices are

quite different: the response of inflation is 80 times as large as under the baseline

sticky-price calibration (implying a variance of inflation 6400 times as large), while the

long-run tax rate does not respond at all in the flexible-price case.32 But even a small

degree of stickiness of prices makes a dramatic difference in the optimal responses;

for example, if prices are revised only every five weeks on average, the variance of

inflation is reduced by a factor of more than 200, while the optimal response of the

long-run tax rate to the increased revenue need is nearly the same size as under the

31The indicated average time between price changes for the baseline case is shorter than that
reported in Rotemberg and Woodford (1997), both because we here assume a slightly larger value
of θ, implying a smaller value of α, and because of the continuous-time method used here to convert
α into an implied average time interval.

32The tax rate does respond in the quarter of the shock in the case of flexible prices, but with the
opposite sign to that associated with optimal policy under our baseline calibration. Under flexible
prices, as discussed above, the tax rate does not respond to variations in fiscal stress at all. Because
the increase in government transfers raises the optimal level of output Ŷ ∗

0 , for reasons explained
in the appendix, the optimal tax rate τ̂∗0 actually falls, in order to induce equilibrium output to
increase; and under flexible prices, this is the optimal response of τ̂0.
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baseline degree of price stickiness. Thus we find, as do Schmitt-Grohé and Uribe

(2001) in the context of a calibrated model with convex costs of price adjustment,

that the conclusions of the flexible-price analysis are quite misleading if prices are

even slightly sticky. Under a realistic calibration of the degree of price stickiness,

inflation should be quite stable, even in response to disturbances with substantial

consequences for the government’s budget constraint, while tax rates should instead

respond substantially (and with a unit root) to variations in fiscal stress.

We can also compare our results with those that arise when taxes are lump-sum.

In this case, ψ = 0, and the first-order condition (4.3) requires that ϕ2t = 0. The

remaining first-order conditions reduce to

qππt = κ−1(ϕ1t − ϕ1,t−1),

qyyt = −ϕ1t

for each t ≥ t0 as in Clarida et al. (1999) and Woodford (2003, chapter 7). In this

case the fiscal stress is no longer relevant for inflation or output-gap determination.

Instead, only the cost-push shock ut is responsible for incomplete stabilization. The

determinants of the cost-push effects of underlying disturbances, and of the target

output level Ŷ ∗
t are also somewhat different, because in this case ϑ1 = 0. For example,

a pure fiscal shock has no cost-push effect, nor any effect on Ŷ ∗
t , and hence no effect

on the optimal evolution of either inflation or output.33 Furthermore, as shown in the

references just mentioned, the price level no longer follows a random walk; instead,

it is a stationary variable. Increases in the price level due to a cost-push shock are

subsequently undone by period of deflation.

Note that the familiar case from the literature on monetary stabilization policy

does not result simply from assuming that sources of revenue that do not shift the

aggregate-supply relation are available; it is also important that the sort of tax that

does shift the AS relation (like the sales tax here) is not available. We could nest

both the standard model and our present baseline case within a single, more general

framework by assuming that revenue can be raised using either the sales tax or a lump-

sum tax, but that there is an additional convex cost (perhaps representing “collection

costs”, assumed to reduce the utility of the representative household but not using

33See Benigno and Woodford (2003) for detailed analysis of the determinants of ut and Ŷ ∗
t in this

case.
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real resources) of increases in either tax rate. The standard case would then appear as

the limiting case of this model in which the collection costs associated with the sales

tax are infinite, while those associated with the lump-sum tax are zero; the baseline

model here would correspond to an alternative limiting case in which the collection

costs associated with the lump-sum tax are infinite, while those associated with the

sales tax are zero. In intermediate cases, we would continue to find that fiscal stress

affects the optimal evolution of both inflation and the output gap, as long as there is

a positive collection cost for the lump-sum tax. At the same time, the result that the

shadow value of additional government revenue follows a random walk under optimal

policy (which would still be true) will not in general imply, as it does here, that the

price level should also be a random walk; for the perfect co-movement of ϕ1t and

ϕ2t that characterizes optimal policy in our baseline case will not be implied by the

first-order conditions except in the case that there are no collection costs associated

with the sales tax. Nonetheless, the price level will generally contain a unit root

under optimal policy, even if it will not generally follow a random walk.

We also obtain results more similar to those in the standard literature on monetary

stabilization policy if we assume (realistically) that it is not possible to adjust tax

rates on such short notice in response to shocks as is possible with monetary policy.

As a simple way of introducing delays in the adjustment of tax policy, suppose that

the tax rate τ t has to be fixed in period t− d. In this case, the first-order conditions

characterizing optimal responses to shocks are the same as above, except that (4.3)

is replaced by

ψEtϕ1,t+d = (1− β)bτEtϕ2,t+d (4.7)

for each t ≥ t0. In this case, the first-order conditions imply that Etπt+d+1 = 0, but no

longer imply that changes in the price level must be unforecastable from one period

to the next. As a result, price-level increases in response to disturbances are typically

partially, but not completely, undone in subsequent periods. Yet there continues to

be a unit root in the price level (of at least a small innovation variance), even in the

case of an arbitrarily long delay d in the adjustment of tax rates.
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5 Optimal Targeting Rules for Monetary and Fis-

cal Policy

We now wish to characterize the policy rules that the monetary and fiscal authorities

can follow in order to bring about the state-contingent responses to shocks described

in the previous section. One might think that it suffices to solve for the optimal state-

contingent paths for the policy instruments. But in general this is not a desirable

approach to the specification of a policy rule, as discussed in Svensson (2003) and

Woodford (2003, chapter 7). A description of optimal policy in these terms would

require enumeration of all of the types of shocks that might be encountered later,

indefinitely far in the future, which is not feasible in practice. A commitment to

a state-contingent instrument path, even when possible, also may not determine the

optimal equilibrium as the locally unique rational-expectations equilibrium consistent

with this policy; many other (much less desirable) equilibria may also be consistent

with the same state-contingent instrument path.

Instead, we here specify targeting rules in the sense of Svensson (1999, 2003)

and Giannoni and Woodford (2003). These targeting rules are commitments on the

part of the policy authorities to adjust their respective instruments so as to ensure

that the projected paths of the endogenous variables satisfy certain target criteria.

We show that under an appropriate choice of these target criteria, a commitment

to ensure that they hold at all times will determine a unique non-explosive rational-

expectations equilibrium, in which the state-contingent evolution of inflation, output

and the tax rate solves the optimization problem discussed in the previous section.

Moreover, we show that it is possible to obtain a specification of the policy rules that

is robust to alternative specifications of the exogenous shock processes.

We apply the general approach of Giannoni and Woodford (2002), which allows

the derivation of optimal target criteria with the properties just stated. In addition,

Giannoni and Woodford show that such target criteria can be formulated that re-

fer only to the projected paths of the target variables (the ones in terms of which

the stabilization objectives of policy are defined — here, inflation and the output

gap). Briefly, the method involves constructing the target criteria by eliminating

the Lagrange multipliers from the system of the system of first-order conditions that

characterize the optimal state-contingent evolution, regardless of character of the (ad-

ditive) disturbances. We are left with linear relations among the target variables, that
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do not involve the disturbances and with coefficients independent of the specification

of the disturbances, that represent the desired target criteria.

Recall that the first-order conditions that characterize the optimal state-contingent

paths in the problem considered in the previous section are given by (4.1) – (4.4). As

explained in the previous section, the first three of these conditions imply that the

evolution of inflation and of the output gap must satisfy (4.5) – (4.6) each period.

We can solve (4.5) – (4.6) for the values of ϕ2t, ϕ2,t−1 implied by the values of πt, yt

that are observed in an optimal equilibrium. We can then replace ϕ2,t−1 in these

two relations by the multiplier implied in this way by observed values of πt−1, yt−1.

Finally, we can eliminate ϕ2t from these two relations, to obtain a necessary relation

between πt and yt, given πt−1 and yt−1, given by

πt +
nϕ

mϕ

πt−1 +
ωϕ

mϕ

(yt − yt−1) = 0. (5.1)

This target criterion has the form of a “flexible inflation target,” similar to the optimal

target criterion for monetary policy in model with lump-sum taxation (Woodford,

2003, chapter 7). It is interesting to note that, as in all of the examples of optimal

target criteria for monetary policy derived under varying assumptions in Giannoni

and Woodford (2003), it is only the projected rate of change of the output gap that

matters for determining the appropriate adjustment of the near-term inflation target;

the absolute level of the output gap is irrelevant.

The remaining first-order condition from the previous section, not used in the

derivation of (5.1), is (4.4). By similarly using the solutions for ϕ2,t+1, ϕ2t implied

by observations of πt+1, yt+1 to substitute for the multipliers in this condition, one

obtains a further target criterion

Etπt+1 = 0 (5.2)

(Note that the fact that this always holds in the optimal equilibrium — i.e., that

the price level must follow a random walk — has already been noted in the previous

section.) We show in the appendix that policies that ensure that (5.1) – (5.2) hold

for all t ≥ t0 determine a unique non-explosive rational-expectations equilibrium.

Moreover, this equilibrium solves the above first-order conditions for a particular

specification of the initial lagged multipliers ϕ1,t0−1, ϕ2,t0−1, which are inferred from

the initial values πt0−1, yt0−1 in the way just explained. Hence this equilibrium mini-

mizes expected discounted losses (2.4) given b̂t0−1 and subject to constraints on initial
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outcomes of the form

πt0 = π̄(πt0−1, yt0−1), (5.3)

yt0 = ȳ(πt0−1, yt0−1). (5.4)

Furthermore, these constraints are self-consistent in the sense that the equilibrium

that solves this problem is one in which πt, yt are chosen to satisfy equations of

this form in all periods t > t0. Hence these time-invariant policy rules are optimal

from a timeless perspective.34 And they are optimal regardless of the specification

of disturbance processes. Thus we have obtained robustly optimal target criteria, as

desired.

We have established a pair of target criteria with the property that if they are

expected to be jointly satisfied each period, the resulting equilibrium involves the

optimal responses to shocks. This result in itself, however, does not establish which

policy instrument should be used to ensure satisfaction of which criterion. Since the

variables referred to in both criteria can be affected by both monetary and fiscal

policy, there is not a uniquely appropriate answer to that question. However, the

following represents a relatively simple example of a way in which such a regime could

be institutionalized through separate targeting procedures on the part of monetary

and fiscal authorities.

Let the central bank be assigned the task of maximizing social welfare through

its adjustment of the level of short-term interest rates, taking as given the state-

contingent evolution of the public debt {b̂t}, which depends on the decisions of the

fiscal authority. Thus the central bank treats the evolution of the public debt as

being outside its control, just like the exogenous disturbances {ξt}, and simply seeks

to forecast its evolution in order to correctly model the constraints on its own policy.

Here we do not propose a regime under which it is actually true that the evolution of

the public debt would be unaffected by a change in monetary policy. But there is no

inconsistency in the central bank’s assumption (since a given bounded process {b̂t}
will continue to represent a feasible fiscal policy regardless of the policy adopted by

the central bank), and we shall show that the conduct of policy under this assumption

does not lead to a suboptimal outcome, as long as the state-contingent evolution of

the public debt is correctly forecasted by the central bank.

34See Woodford (2003, chapters 7, 8) for further discussion of the self-consistency condition that
the initial constraints are required to satisfy.
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The central bank then seeks to bring about paths for {πt, yt, τ̂ t} from date t0

onward that minimize (2.4), subject to the constraints (2.7) and (2.9) for each t ≥ t0,

together with initial constraints of the form (5.3) – (5.4), given the evolution of the

processes {τ̂ ∗t , ft, b̂t}. The first-order conditions for this optimization problem are

given by (4.1), (4.2) and (4.4) each period, which in turn imply that (5.1) must

hold each period, as shown above. One can further show that a commitment by

the central bank to ensure that (5.1) holds each period determines the equilibrium

evolution that solves this problem, in the case of an appropriate (self-consistent)

choice of the initial constraints (5.3) – (5.4). Thus (5.1) is an optimal target criterion

for a policy authority seeking to solve the kind of problem just posed; and since the

problem takes as given the evolution of the public debt, it is obviously a more suitable

assignment for the central bank than for the fiscal authority. The kind of interest-rate

reaction function that can be used to implement a “flexible inflation target” of this

kind is discussed in Svensson and Woodford (2003) and Woodford (2003, chapter 7).

Correspondingly, let the fiscal authority be assigned the task of choosing the level

of government revenue each period that will maximize social welfare, taking as given

the state-contingent evolution of output {yt}, which it regards as being determined by

monetary policy. (Again, it need not really be the case that the central bank ensures

a particular state-contingent path of output, regardless of what the fiscal authority

does. But again, this assumption is not inconsistent with our model of the economy,

since it is possible for the central bank to bring about any bounded process {yt} that

it wishes, regardless of fiscal policy, in the case that prices are sticky.) If the fiscal

authority regards the evolution of output as outside its control, its objective reduces

to the minimization of

Et0

∞∑
t=t0

βt−t0π2
t . (5.5)

But this is a possible objective for fiscal policy, given the effects of tax policy on

inflation dynamics (when taxes are not lump-sum) indicated by (2.7).

Forward integration of (2.7) implies that

πt = κEt

∞∑
T=t

βT−tyT + κψEt

∞∑
T=t

βT−t(τ̂T − τ̂ ∗T ). (5.6)

Thus what matters about fiscal policy for current inflation determination is the

present value of expected tax rates; but this in turn is constrained by the intertempo-

ral solvency condition (2.9). Using (2.9) to substitute for the present value of taxes
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in (5.6), we obtain a relation of the form

πt = µ1[b̂t−1 − σ−1yt + ft] + µ2Et

∞∑
T=t

βT−tyT , (5.7)

for certain coefficients µ1, µ2 > 0 defined in the appendix. If the fiscal authority

takes the evolution of output as given, then this relation implies that its policy in

period t can have no effect on πt. However, it can affect inflation in the following

period through the effects the current government budget on b̂t. Furthermore, since

the choice of b̂t has no effect on inflation in later periods (given that it places no

constraint on the level of public debt that may be chosen in later periods), b̂t should

be chosen so as to minimize Etπ
2
t+1.

The first-order condition for the optimal choice of b̂t is then simply (5.2), which

we find is indeed a suitable target criterion for the fiscal authority. The decision rule

implied by this target criterion is seen to be

b̂t = −Etft+1 + σ−1Etyt+1 − (µ2/µ1)Et

∞∑
T=t+1

βT−t−1yT ,

which expresses the optimal level of government borrowing as a function of the fiscal

authority’s projections of the exogenous determinants of fiscal stress and of future

real activity. It is clearly possible for the fiscal authority to implement this target

criterion, and doing so leads to a determinate equilibrium path for inflation, given

the path of output. We thus obtain a pair of targeting rules, one for the central bank

and one for the fiscal authority, that if both pursued will implement an equilibrium

that is optimal from a timeless perspective. Furthermore, each individual rule can be

rationalized as a solution to a constrained optimization problem that the particular

policy authority is assigned to solve.

6 Conclusion

We have shown that it is possible to jointly analyze optimal monetary and fiscal policy

within a single framework. The two problems, often considered in isolation, turn out

to be more closely related than might have been expected. In particular, we find that

variations in the level of distorting taxes should be chosen to serve the same objectives

as those emphasized in the literature on monetary stabilization policy: stabilization
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of inflation and of a (properly defined) output gap. A single output gap can be

defined that measures the total distortion of the level of economic activity, resulting

both from the stickiness of prices (and the consequent variation in markups) and from

the supply-side effects of tax distortions. It is this cumulative gap that one wishes

to stabilize, rather than the individual components resulting from the two sources;

and both monetary policy and tax policy can be used to affect it. Both monetary

policy and tax policy also matter for inflation determination in our model, because

of the effects of the tax rate on real marginal cost and hence on the aggregate-supply

relation. Indeed, we have exhibited a pair of robustly optimal targeting rules for the

monetary and fiscal authorities respectively, under which both authorities consider

the consequences of their actions for near-term inflation projections in determining

how to adjust their instruments.

And not only should the fiscal authority use tax policy to serve the traditional

goals of monetary stabilization policy; we also find that the monetary authority should

take account of the consequences of its actions for the government budget. In the

present model, that abstracts entirely from transactions frictions, these consequences

have solely to do with the implications of alternative price-level and interest-rate paths

for the real burden of interest payments on the public debt, and not any contribution

of seignorage to government revenues. Nonetheless, under a calibration of our model

that assumes a debt burden and a level of distorting taxes that would not be unusual

for an advanced industrial economy, taking account of the existence of a positive

shadow value of additional government revenue (owing to the non-existence of lump-

sum taxes) makes a material difference for the quantitative characterization of optimal

monetary policy. In fact, we have found that the crucial summary statistic that

indicates the degree to which various types of real disturbances should be allowed to

affect short-run projections for either inflation or the output gap is not the degree to

which these disturbances shift the aggregate-supply curve for a given tax rate (i.e., the

extent to which they represent “cost-push” shocks), but rather the degree to which

they create fiscal stress (shift the intertemporal government solvency condition).

Our conclusion that monetary policy should take account of the requirements for

government solvency does not imply anything as strong as the result of Chari and

Kehoe (1999) for a flexible-price economy with nominal government debt, according

to which surprise variations in the inflation rate should be used to completely offset

variations in fiscal stress, so that tax rates need not vary (other than as necessary to
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stabilize the output gap). We find that in the case of even a modest degree of price

stickiness — much less than what seems to be consistent with empirical evidence

for the U.S. — it is not optimal for inflation to respond to variations in fiscal stress

by more than a tiny fraction of the amount that would be required to eliminate

the fiscal stress (and that would be optimal with fully flexible prices); instead, a

substantial part of the adjustment should come through a change in the tax rate.

But the way in which the acceptable short-run inflation projection should be affected

by variations in the projected output gap is substantially different in an economy with

only distorting taxes than would be the case in the presence of lump-sum taxation.

For with distorting taxes, the available tradeoff between variations in inflation and in

the output gap depends not only on the way these variables are related to one another

through the aggregate-supply relation, but also on the way that each of them affects

the government budget.
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A Appendix

A.1 Derivation of the aggregate-supply relation (equation

(1.11))

In this section, we derive equation (1.11) in the main text and we define the variables

Ft and Kt. In the Calvo model, a supplier that changes its price in period t chooses

a new price pt(i) to maximize

Et

{ ∞∑
T=t

αT−tQt,T Π(pt(i), p
j
T , PT ; YT , τT , ξT )

}
,

where αT−t is the probability that the price set at time t remains fixed in period T ,

Qt,T is the stochastic discount factor given by (1.7), and the profit function Π(·) is

defined as

Π(p, pj, P ; Y, τ , ξ) ≡ (1−τ)pY (p/P )−θ−µw ṽh(f
−1(Y (pj/P )−θ/A); ξ)

ũc(Y −G; ξ)
P ·f−1(Y (p/P )−θ/A).

(A.8)

Here Dixit-Stiglitz monopolistic competition implies that the individual supplier

faces a demand curve each period of the form

yt(i) = Yt(pt(i)/Pt)
−θ,

so that after-tax sales revenues are the function of p given in the first term on the

right-hand side of (A.8). The second term indicates the nominal wage bill, obtained by

inverting the production function to obtain the required labor input, and multiplying

this by the industry wage for sector j. The industry wage is obtained from the labor

supply equation (1.8), under the assumption that each of the firms in industry j

(other than i, assumed to have a negligible effect on industry labor demand) charges

the common price pj. (Because all firms in a given industry are assumed to adjust

their prices at the same time, in equilibrium the prices of firms in a given industry are

always identical. We must nonetheless define the profit function for the case in which

firm i deviates from the industry price, in order to determine whether the industry

price is optimal for each individual firm.)

We note that supplier i’s profits are a concave function of the quantity sold yt(i),

since revenues are proportional to y
θ−1

θ
t (i) and hence concave in yt(i), while costs are
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convex in yt(i). Moreover, since yt(i) is proportional to pt(i)
−θ, the profit function is

also concave in pt(i)
−θ. The first-order condition for the optimal choice of the price

pt(i) is the same as the one with respect to pt(i)
−θ; hence the first-order condition

with respect to pt(i) is both necessary and sufficient for an optimum.

For this first-order condition, we obtain

Et

{ ∞∑
T=t

αT−tQt,T

(
pt(i)

PT

)−θ

YT ΨT (pt(i), p
j
t)

}
= 0,

with

ΨT (p, pj) ≡
[
(1− τT )− θ

θ − 1
µw

T

ṽh(f
−1(YT (pj/PT )−θ/AT ); ξT )

ũc(YT −GT ; ξT ) · AT f ′(f−1(YT (p/PT )−θ/AT ))

PT

p

]

Using the definitions

u(Yt; ξt) ≡ ũ(Yt −Gt; ξt),

v(yt(i); ξt) ≡ ṽ(f−1(yt(i)/At); ξt) = ṽ(Ht(i); ξt),

and noting that each firm in an industry will set the same price, so that pt(i) = pj
t =

p∗t , the common price of all goods with prices revised at date t, we can rewrite the

above first-order condition as

Et

{ ∞∑
T=t

(αβ)T−tQt,T

(
p∗t
PT

)−θ

YT

[
(1− τT )− θ

θ − 1
µw

T

vy(YT (p∗t /PT )−θ; ξT )

uc(YT ; ξT )

PT

p∗t

]}
= 0.

Substituting the equilibrium value for the discount factor, we finally obtain

Et

{ ∞∑
T=t

αT−tuc(YT ; ξT )

(
p∗t
PT

)−θ

YT

[
p∗t
PT

(1− τT )− θ

θ − 1
µw

T

vy(YT (p∗t /PT )−θ; ξT )

uc(YT ; ξT )

]}
= 0.

(A.9)

Using the isoelastic functional forms given in the text, we obtain a closed-form

solution to (A.9), given by

p∗t
Pt

=

(
Kt

Ft

) 1
1+ωθ

, (A.10)

where Ft and Kt are aggregate variables of the form

Ft ≡ Et

∞∑
T=t

(αβ)T−t(1− τT )f(YT ; ξT )

(
PT

Pt

)θ−1

, (A.11)
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Kt ≡ Et

∞∑
T=t

(αβ)T−tk(YT ; ξT )

(
PT

Pt

)θ(1+ω)

, (A.12)

in which expressions

f(Y ; ξ) ≡ uc(Y ; ξ)Y, (A.13)

k(Y ; ξ) ≡ θ

θ − 1
µwvy(Y ; ξ)Y, (A.14)

and where in the function k(·), the vector of shocks has been extended to include the

shock µw
t . Substitution of (A.10) into the law of motion for the Dixit-Stiglitz price

index

Pt =
[
(1− α)p∗1−θ

t + αP 1−θ
t−1

] 1
1−θ (A.15)

yields a short-run aggregate-supply relation between inflation and output of the form

(1.11) in the text.

A.2 Recursive formulation of the policy problem

Under the standard (Ramsey) approach to the characterization of an optimal policy

commitment, one chooses among state-contingent paths {Πt, Yt, τ t, bt, ∆t} from some

initial date t0 onward that satisfy

1− αΠθ−1
t

1− α
=

(
Ft

Kt

) θ−1
1+ωθ

, (A.16)

∆t = h(∆t−1, Πt), (A.17)

bt−1
Pt−1

Pt

= Et

∞∑
T=t

Rt,T sT , (A.18)

where

st ≡ τ tYt −Gt − ζt (A.19)

for each t ≥ t0, given initial government debt bt0−1 and price dispersion ∆t0−1, so as

to maximize

Ut0 = Et0

∞∑
t=t0

βt−t0U(Yt, ∆t; ξt). (A.20)

Here we note that the definition (1.3) of the index of price dispersion implies the law

of motion

∆t = α∆t−1Π
θ(1+ω)
t + (1− α)

(
1− αΠθ−1

t

1− α

)− θ(1+ω)
1−θ

, (A.21)
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which can be written in the form (A.17); this is the origin of that constraint.

We now show that the t0−optimal plan (Ramsey problem) can be obtained as the

solution to a two-stage optimization problem. To this purpose, let

Wt ≡ Et

∞∑
T=t

βT−tũc(YT −GT ; ξT )sT ,

and let F be the set of values for (bt−1, ∆t−1, Ft, Kt,Wt) such that there exist paths

{ΠT , YT , τT , bT , ∆T} for dates T ≥ t that satisfy (A.16), (A.17) and (A.18) for each T ,

that are consistent with the specified values for Ft, Kt, defined in (A.23) and (A.24),

and Wt, and that imply a well-defined value for the objective Ut defined in (A.20).

Furthermore, for any (bt−1, ∆t−1, Ft, Kt,Wt) ∈ F , let V (bt−1, ∆t−1, Xt; ξt) denote the

maximum attainable value of Ut among the state-contingent paths that satisfy the

constraints just mentioned, where Xt ≡ (Ft, Kt,Wt).
35 Among these constraints is

the requirement that

Wt =
bt−1

Πt

ũc(Yt −Gt; ξt), (A.22)

in order for (A.18) to be satisfied. Thus a specified value for Wt implies a restriction

on the possible values of Πt and Yt, given the predetermined real debt bt−1 and the

exogenous disturbances.

The two-stage optimization problem is the following. In the first stage, values

of the endogenous variables xt0 , where xt ≡ (Πt, Yt, τ t, bt, ∆t), and state-contingent

commitments Xt0+1(ξt0+1) for the following period, are chosen so as to maximize

an objective defined below. In the second stage, the equilibrium evolution from

period t0 + 1 onward is chosen to solve the maximization problem that defines the

value function V (bt0 , ∆t0 , Xt0+1; ξt0+1), given the state of the world ξt0+1 and the

precommitted values for Xt0+1 associated with that state.

In defining the objective for the first stage of this equivalent formulation of the

Ramsey problem, it is useful to let Π(F,K) denote the value of Πt that solves (A.16)

for given values of Ft and Kt, and to let s(x; ξ) denote the real primary surplus st

defined by (A.19) in the case of given values of xt and ξt. We also define the functional

relationships

Ĵ [x,X(·)](ξt) ≡ U(Yt, ∆t; ξt) + βEtV (bt, ∆t, Xt+1; ξt+1),

35As stated in the text, in our notation for the value function V, ξt denotes not simply the vector
of disturbances in period t, but all information in period t about current and future disturbances.
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F̂ [x,X(·)](ξt) ≡ (1− τ t)f(Yt; ξt) + αβEt{Π(Ft+1, Kt+1)
θ−1Ft+1},

K̂[x,X(·)](ξt) ≡ k(Yt; ξt) + αβEt{Π(Ft+1, Kt+1)
θ(1+ω)Kt+1},

Ŵ [x,X(·)](ξt) ≡ ũc(Yt −Gt; ξt)s(xt; ξt) + βEtWt+1,

where f(Y ; ξ) and k(Y ; ξ) are defined in (A.13) and (A.14).

Then in the first stage, xt0 and Xt0+1(·) are chosen so as to maximize

Ĵ [xt0 , Xt0+1(·)](ξt0) (A.23)

over values of xt0 and Xt0+1(·) such that

(i) Πt0 and ∆t0 satisfy (A.17);

(ii) the values

Ft0 = F̂ [xt0 , Xt0+1(·)](ξt0), (A.24)

Kt0 = K̂[xt0 , Xt0+1(·)](ξt0) (A.25)

satisfy

Πt0 = Π(Ft0 , Kt0); (A.26)

(iii) the value

Wt0 = Ŵ [xt0 , Xt0+1(·)](ξt0) (A.27)

satisfies (A.22) for t = t0; and

(iv) the choices (bt0 , ∆t0 , Xt0+1) ∈ F for each possible state of the world ξt0+1.

These constraints imply that the objective Ĵ [xt0 , Xt0+1(·)](ξt0) is well-defined, and

that values (xt0 , Xt0+1(·)) are chosen for which the stage two problem will be well-

defined, whichever state of the world is realized in period t0 + 1. Furthermore, in

the case of any stage-one choices consistent with the above constraints, and any

subsequent evolution consistent with the constraints of the stage-two problem, (A.26)

implies that (A.16) is satisfied in period t0, while (A.22) implies that (A.18) is satisfied

in period t0. Constraint (i) above implies that (A.17) is also satisfied in period t0.

Finally, the constraints of the stage-two problem imply that both (A.16), (A.17) and

(A.18) are satisfied in each period t ≥ t0 + 1; thus the state-contingent evolution

that solves the two-stage problem is a rational-expectations equilibrium. Conversely,

one can show that any possible rational-expectations equilibrium satisfies all of these

constraints.

One can then reformulate the Ramsey problem, replacing the set of requirements

for rational-expectations equilibrium by the stage-one constraints plus the stage-two
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constraints. Since no aspect of the evolution from period t0+1 onward, other than the

specification of Xt0+1(·), affects the stage-one constraints, the optimization problem

decomposes into the two stages defined above, where the objective (A.23) corresponds

to the maximization of Ut0 in the first stage.

The optimization problem in stage two of this reformulation of the Ramsey prob-

lem is of the same form as the Ramsey problem itself, except that there are additional

constraints associated with the precommitted values for the elements of Xt0+1(ξt0+1).

Let us consider a problem like the Ramsey problem just defined, looking forward from

some period t0, except under the constraints that the quantities Xt0 must take certain

given values, where (bt0−1, ∆t0−1, Xt0) ∈ F . This constrained problem can similarly

be expressed as a two-stage problem of the same form as above, with an identical

stage two problem to the one described above. The stage one problem is also identical

to stage one of the Ramsey problem, except that now the plan chosen in stage one

must be consistent with the given values Xt0 , so that conditions (A.24), (A.25) and

(A.27) are now added to the constraints on the possible choices of (xt0 , Xt0+1(·)) in

stage one. (The stipulation that (bt0−1, ∆t0−1, Xt0) ∈ F implies that the constraint

set remains non-empty despite these additional restrictions.)

Stage two of this constrained problem is thus of exactly the same form as the prob-

lem itself. Hence the constrained problem has a recursive form. It can be decomposed

into an infinite sequence of problems, in which in each period t, (xt, Xt+1(·)) are cho-

sen to maximize Ĵ [xt, Xt+1(·)](ξt), given the predetermined state variables (bt−1, ∆t−1)

and the precommitted values Xt, subject to the constraints that

(i) Πt is given by (A.26), Yt is then given by (A.22), and ∆t is given by (A.17);

(ii) the precommitted values Xt are fulfilled, i.e.,

F̂ [xt, Xt+1(·)](ξt) = Ft, (A.28)

K̂[xt, Xt+1(·)](ξt) = Kt, (A.29)

Ŵ [xt, Xt+1(·)](ξt) = Wt; (A.30)

and

(iii) the choices (bt, ∆t, Xt+1) ∈ F for each possible state of the world ξt+1.

Our aim in the paper is to provide a local characterization of policy that solves

this recursive optimization, in the event of small enough disturbances, and initial

conditions (bt0−1, ∆t0−1, Xt) ∈ F that are close enough to consistency with the steady

state characterized in the next section of this appendix.
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A.3 The deterministic steady state

Here we show the existence of a steady state, i.e., of an optimal policy (under appro-

priate initial conditions) of the ‘recursive policy problem just defined that involves

constant values of all variables. We now consider a deterministic problem in which

the exogenous disturbances C̄t, Gt, H̄t, At, µw
t , ζt each take constant values C̄, H̄, Ā,

µ̄w > 0 and Ḡ, ζ̄ ≥ 0 for all t ≥ t0, and we start from initial conditions bt0−1 = b̄ > 0.

(The value of b̄ is arbitrary, subject to an upper bound discussed below.) We wish

to find an initial degree of price dispersion ∆t0−1 and initial commitments Xt0 = X̄

such that the recursive (or “stage two”) problem involves a constant policy xt0 = x̄,

Xt+1 = X̄ each period, in which b̄ is equal to the initial real debt and ∆̄ is equal to

the initial price dispersion.

We thus consider the problem of maximizing

Ut0 =
∞∑

t=t0

βt−t0U(Yt, ∆t) (A.31)

subject to the constraints

Ktp(Πt)
1+ωθ
θ−1 = Ft, (A.32)

Ft = (1− τ t)f(Yt) + αβΠθ−1
t+1Ft+1, (A.33)

Kt = k(Yt) + αβΠ
θ(1+ω)
t+1 Kt+1, (A.34)

Wt = uc(Yt)(τ tYt − Ḡ− ζ̄) + βWt+1, (A.35)

Wt =
uc(Yt)bt−1

Πt

, (A.36)

∆t = α∆t−1Π
θ(1+ω)
t + (1− α)p(Πt)

− θ(1+ω)
1−θ , (A.37)

and given the specified initial conditions bt0−1, ∆t0−1, Xt0 , where we have defined

p(Πt) ≡
(

1− αΠθ−1
t

1− α

)
.

We introduce Lagrange multipliers φ1t through φ6t corresponding to constraints

(A.32) through (A.37) respectively. We also introduce multipliers dated t0 corre-

sponding to the constraints implied by the initial conditions Xt0 = X̄; the latter

multipliers are normalized in such a way that the first-order conditions take the same
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form at date t0 as at all later dates. The first-order conditions of the maximization

problem are then the following. The one with respect to Yt is

Uy(Yt, ∆t)− (1− τ t)fy(Yt)φ2t − ky(Yt)φ3t − τ tfy(Yt)φ4t+

+ucc(Yt)(Ḡ + ζ̄)φ4t − ucc(Yt)bt−1Π
−1
t φ5t = 0; (A.38)

that with respect to ∆t is

U∆(Yt, ∆t) + φ6t − αβΠ
θ(1+ω)
t+1 φ6,t+1 = 0; (A.39)

that with respect to Πt is

1 + ωθ

θ − 1
p(Πt)

(1+ωθ)
θ−1

−1pπ(Πt)Ktφ1,t − α(θ − 1)Πθ−2
t Ftφ2,t−1

−θ(1 + ω)αΠ
θ(1+ω)−1
t Ktφ3,t−1 + uc(Yt)bt−1Π

−2
t φ5t+

−θ(1 + ω)α∆t−1Π
θ(1+ω)−1
t φ6t −

θ(1 + ω)

θ − 1
(1− α)p(Πt)

(1+ωθ)
θ−1 pπ(Πt)φ6t = 0; (A.40)

that with respect to τ t is

φ2t − φ4t = 0; (A.41)

that with respect to Ft is

−φ1t + φ2t − αΠθ−1
t φ2,t−1 = 0; (A.42)

that with respect to Kt is

p(Πt)
1+ωθ
θ−1 φ1t + φ3t − αΠ

θ(1+ω)
t φ3,t−1 = 0; (A.43)

that with respect to Wt is

φ4t − φ4,t−1 + φ5t = 0; (A.44)

and finally, that with respect to bt is

φ5t = 0. (A.45)

We search for a solution to these first-order conditions in which Πt = Π̄, ∆t =

∆̄, Yt = Ȳ , τ t = τ̄ and bt = b̄ at all times. A steady-state solution of this kind

also requires that the Lagrange multipliers take constant values. We furthermore

conjecture the existence of a solution in which Π̄ = 1, as stated in the text. Note
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that such a solution implies that ∆̄ = 1, p(Π̄) = 1, pπ(Π̄) = −(θ − 1)α/(1− α), and

K̄ = F̄ . Using these substitutions, we find that (the steady-state version of) each of

the first-order conditions (A.38) – (A.45) is satisfied if the steady-state values satisfy

φ1 = (1− α)φ2,

[fy(Ȳ )− ky(Ȳ )− ucc(Ȳ − Ḡ)(Ḡ + ζ̄)]φ2 = Uy(Ȳ , 1),

φ3 = −φ2,

φ4 = φ2,

φ5 = 0,

(1− αβ)φ6 = −U∆(Ȳ , 1).

These equations can obviously be solved (uniquely) for the steady-state multipliers,

given any value Ȳ > 0.

Similarly, (the steady-state versions of) the constraints (A.32) – (A.37) are satis-

fied if

(1− τ̄)uc(Ȳ − Ḡ) =
θ

θ − 1
µ̄wvy(Ȳ ), (A.46)

τ̄ Ȳ = Ḡ + ζ̄ + (1− β)b̄, (A.47)

K̄ = F̄ = (1− αβ)−1k(Ȳ ),

W̄ = uc(Ȳ − Ḡ)b̄.

Equations (A.46) – (A.47) provide two equations to solve for the steady-state values

Ȳ and τ̄ . Under standard (Inada-type) boundary conditions on preferences, equation

(A.46) has a unique solution Y1(τ) > Ḡ for each possible value of 0 ≤ τ < 1;36 this

value is a decreasing function of τ , and approaches Ḡ as τ approaches 1. We note

furthermore that at least in the case of all small enough values of Ḡ, there exists

a range of tax rates 0 < τ 1 < τ < τ 2 ≤ 1 over which Y1(τ) > Ḡ/τ.37 Given our

assumption that b̄ > 0 and that Ḡ, ζ̄ ≥ 0, (A.47) is satisfied only by positive values of

36There is plainly no possibility of positive supply of output by producers in the case that τ t ≥ 1
in any period; hence the steady state must involve τ̄ < 1.

37This is true for any tax rate at which (1 − τ)uc(Ḡ(τ−1 − 1)) exceeds (θ/(θ − 1))µ̄wvy(Ḡ/τ).
Fixing any value 0 < τ < 1, our Inada conditions imply that this inequality holds for all small
enough values of Ḡ. And if the inequality holds for some 0 < τ < 1, then by continuity it must hold
for an open interval of values of τ .
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τ̄ ; and for each τ̄ > 0, this equation has a unique solution Y2(τ). We note furthermore

that the locus Y1(τ) is independent of the values of ζ̄ and b̄, while Y2(τ) approaches

Ḡ/τ as ζ̄ and b̄ approach zero. Fixing the value of Ḡ (at a value small enough for the

interval (τ 1, τ 2) to exist), we then observe that for any small enough values of b̄ > 0

and ζ̄ ≥ 0, there exist values 0 < τ < 1 at which Y2(τ) < Y1(τ). On the other hand,

for all small enough values of τ > 0, Y2(τ) > Y1(τ). Thus by continuity, there must

exist a value 0 < τ̄ < 1 at which Y1(τ̄) = Y2(τ̄).38 This allows us to obtain a solution

for 0 < τ̄ < 1 and Ȳ > 0, in the case of any small enough values of Ḡ, ζ̄ ≥ 0 and

b̄ > 0. The remaining equations can then be solved (uniquely) for K̄ = F̄ and for W̄ .

We have thus verified that a constant solution to the first-order conditions exists.

With a method to be explained below, we check that this solution is indeed at least

a local optimum. Note that as asserted in the text, this deterministic steady state

involves zero inflation, and a steady-state tax rate 0 < τ̄ < 1.

A.4 A second-order approximation to utility (equations (2.1)

and (2.2))

We derive here equations (2.1) and (2.2) in the main text, taking a second-order ap-

proximation to (equation (A.20)) following the treatment in Woodford (2003, chapter

6). We start by approximating the expected discounted value of the utility of the

representative household

Ut0 = Et0

∞∑
t=t0

βt−t0

[
u(Yt; ξt)−

∫ 1

0

v(yt(i); ξt)di

]
. (A.48)

First we note that
∫ 1

0

v(yt(i); ξt)di =
λ

1 + ν

Y 1+ω
t

A1+ω
t H̄ν

t

∆t = v(Yt; ξt)∆t

where ∆t is the measure of price dispersion defined in the text. We can then write

38In fact, there must exist at least two such solutions, since the Inada conditions also imply
that Y2(τ) > Y1(τ) for all τ close enough to 1. These multiple solutions correspond to a “Laffer
curve” result, under which two distinct tax rates result in the same equilibrium level of government
revenues. We select the lower-tax, higher-output solution as the one around which we compute our
Taylor-series expansions; this is clearly the higher-utility solution.
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(A.48) as

Ut0 = Et0

∞∑
t=t0

βt−t0 [u(Yt; ξt)− v(Yt; ξt)∆t] . (A.49)

The first term in (A.49) can be approximated using a second-order Taylor expan-

sion around the steady state defined in the previous section as

u(Yt; ξt) = ū + ūcỸt + ūξξt +
1

2
ūccỸ

2
t + ūcξξtỸt +

1

2
ξ′tūξξξt +O(||ξ||3)

= ū + Ȳ ūc · (Ŷt +
1

2
Ŷ 2

t ) + ūξξt +
1

2
Ȳ ūccŶ

2
t +

+Ȳ ūcξξtŶt +
1

2
ξ′tūξξξt +O(||ξ||3)

= Ȳ ucŶt +
1

2
[Ȳ ūc + Ȳ 2ūcc]Ŷ

2
t − Ȳ 2ūccgtŶt + t.i.p. +O(||ξ||3)

= Ȳ ūc

{
Ŷt +

1

2
(1− σ−1)Ŷ 2

t + σ−1gtŶt

}
+

+t.i.p. +O(||ξ||3), (A.50)

where a bar denotes the steady-state value for each variable, a tilde denotes the

deviation of the variable from its steady-state value (e.g., Ỹt ≡ Yt−Ȳ ), and a hat refers

to the log deviation of the variable from its steady-state value (e.g., Ŷt ≡ ln Yt/Ȳ ).

We use ξt to refer to the entire vector of exogenous shocks,

ξ′t ≡
[

ζ̂t Ĝ gt qt µ̂w
t

]
,

in which ζ̂t ≡ (ζt − ζ)/Y , Ĝt ≡ (Gt −G)/Y , gt ≡ Ĝt + sC c̄t, ωqt ≡ νh̄t + φ(1 + ν)at,

µ̂w
t ≡ ln µw

t /µ̄w, c̄t ≡ ln C̄t/C̄, at ≡ ln At/Ā, h̄t ≡ ln H̄t/H̄. Moreover, we use the

definitions σ−1 ≡ σ̃−1s−1
C with sC ≡ C̄/Y and sC + sG = 1. We have used the Taylor

expansion

Yt/Ȳ = 1 + Ŷt +
1

2
Ŷ 2

t +O(||ξ||3)

to get a relation for Ỹt in terms of Ŷt. Finally the term “t.i.p.” denotes terms that

are independent of policy, and may accordingly be suppressed as far as the welfare

ranking of alternative policies is concerned.
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We may similarly approximate v(Yt; ξt)∆t by

v(Yt; ξt)∆t = v̄ + v̄(∆t − 1) + v̄y(Yt − Ȳ ) + v̄y(∆t − 1)(Yt − Ȳ ) + (∆t − 1)v̄ξξt +

+
1

2
v̄yy(Yt − Ȳ )2 + (Yt − Ȳ )v̄yξξt +O(||ξ||3)

= v̄(∆t − 1) + v̄yȲ

(
Ŷt +

1

2
Ŷ 2

t

)
+ v̄y(∆t − 1)Ȳ Ŷt + (∆t − 1)v̄ξξt +

+
1

2
v̄yyȲ

2Ŷ 2
t + Ȳ Ŷtv̄yξξt + t.i.p.+O(||ξ||3)

= v̄yȲ [
∆t − 1

1 + ω
+ Ŷt +

1

2
(1 + ω)Ŷ 2

t + (∆t − 1)Ŷt − ωŶtqt +

−∆t − 1

1 + ω
ωqt] + t.i.p.+O(||ξ||3).

We take a second-order expansion of (A.21), obtaining

∆̂t = α∆̂t−1 +
α

1− α
θ(1 + ω)(1 + ωθ)

π2
t

2
+ t.i.p.+O(||ξ||3). (A.51)

This in turn allows us to approximate v(Yt; ξt)∆t as

v(Yt; ξt)∆t = (1− Φ)Ȳ uc

{
∆̂t

1 + ω
+ Ŷt +

1

2
(1 + ω)Ŷ 2

t − ωŶtqt

}
+ t.i.p. +O(||ξ||3),

(A.52)

where we have used the steady state relation v̄y = (1−Φ)ūc to replace v̄y by (1−Φ)ūc,

and where

Φ ≡ 1−
(

θ − 1

θ

)(
1− τ̄

µ̄w

)
< 1

measures the inefficiency of steady-state output Ȳ .

Combining (A.50) and (A.52), we finally obtain equation (2.1) in the text,

Ut0 = Y ūc · Et0

∞∑
t=t0

βt−t0ΦŶt − 1

2
uyyŶ

2
t + Ŷtuξξt − u∆∆̂t

+ t.i.p. +O(||ξ||3), (A.53)

where

uyy ≡ (ω + σ−1)− (1− Φ)(1 + ω),

uξξt ≡ [σ−1gt + (1− Φ)ωqt],

u∆ ≡ (1− Φ)

1 + ω
.
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We finally observe that (A.51) can be integrated to obtain

∞∑
t=t0

βt ∆̂t =
α

(1− α)(1− αβ)
θ(1 + ω)(1 + ωθ)

∞∑
t=t0

βt π2
t + t.i.p. +O(||ξ||3). (A.54)

By substituting (A.54) into (A.53), we obtain

Ut0 = Y ūc · Et0

∞∑
t=t0

βt−t0 [ΦŶt − 1

2
uyyŶ

2
t + Ŷtuξξt − uππ2

t ]

+t.i.p. +O(||ξ||3).

This coincides with equation (2.2) in the text, where we have further defined

κ ≡ (1− αβ)(1− α)

α

(ω + σ−1)

(1 + θω)
, uπ ≡ θ(ω + σ−1)(1− Φ)

κ
.

A.5 A second-order approximation to the AS equation (equa-

tion (1.11))

We now compute a second-order approximation to the aggregate supply equation

(A.16), or equation (1.11) in the main text. We start from (A.10) that can be written

as

p̃t =

(
Kt

Ft

) 1
1+ωθ

,

where p̃t ≡ p∗t /Pt. As shown in Benigno and Woodford (2003), a second-order expan-

sion of this can be expressed in the form

(1 + ωθ)

(1− αβ)
ˆ̃pt = zt + αβ

(1 + ωθ)

(1− αβ)
Et(ˆ̃pt+1 − P̂t,t+1) +

1

2
ztXt +

−1

2
(1 + ωθ)ˆ̃ptZt +

1

2
αβ(1 + ωθ)Et{(ˆ̃pt+1 − P̂t,t+1)Zt+1}

+
αβ

2(1− αβ)
(1− 2θ − ωθ)(1 + ωθ)Et{(ˆ̃pt+1 − P̂t,t+1)P̂t,t+1}

+s.o.t.i.p. +O(||ξ||3), (A.55)

where we define

P̂t,T ≡ log(Pt/PT ),

zt ≡ ω(Ŷt − qt) + σ̃−1(Ĉt − c̄t)− Ŝt + µ̂w
t ,
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Zt ≡ Et

{
+∞∑
T=t

(αβ)T−t[XT + (1− 2θ − ωθ)P̂t,T ]

}
,

and in this last expression

XT ≡ (2 + ω)ŶT − ωqT + µ̂w
T + ŜT − σ̃−1(ĈT − c̄T ),

where Ŝt = ln(1 − τ t)/(1 − τ̄). Here “s.o.t.i.p.” refers to second-order (or higher)

terms independent of policy; the first-order terms have been kept as these will matter

for the log-linear aggregate-supply relation that appears as a constraint in our policy

problem.

We next take a second-order expansion of the law of motion (A.15) for the price

index, obtaining

ˆ̃pt =
α

1− α
πt − 1− θ

2

α

(1− α)2
π2

t +O(||ξ||3), (A.56)

where we have used the fact that

ˆ̃pt =
α

1− α
πt +O(||ξ||2),

and P̂t−1,t = −πt. We can then plug (A.56) into (A.55) obtaining

πt =
1− θ

2

1

(1− α)
π2

t +
κ

(ω + σ−1)
zt + βEtπt+1 − 1− θ

2

αβ

(1− α)
Etπ

2
t+1

+
1

2

κ

(ω + σ−1)
ztXt − 1

2
(1− αβ)πtZt +

β

2
(1− αβ)Et{πt+1Zt+1}

−β

2
(1− 2θ − ωθ)Et{π2

t+1}+ s.o.t.i.p. +O(||ξ||3). (A.57)

We note further that a second-order approximation to the identity Ct = Yt − Gt

yields

Ĉt = s−1
C Ŷt − s−1

C Ĝt +
s−1

C (1− s−1
C )

2
Ŷ 2

t + s−2
C ŶtĜt + s.o.t.i.p. +O(||ξ||3), (A.58)

and that

Ŝt = −ωτ τ̂ t − ωτ

(1− τ̄)
τ̂ 2

t +O(||ξ||3), (A.59)

where ωτ ≡ τ̄ /(1− τ̄). By substituting (A.58) and (A.59) into the definition of zt in

(A.57), we finally obtain a quadratic approximation to the AS relation.
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This can be expressed compactly in the form

Vt = κ(c′xxt + c′ξξt +
1

2
x′tCxxt + x′tCξξt +

1

2
cππ2

t ) + βEtVt+1

+s.o.t.i.p. +O(||ξ||3) (A.60)

where we have defined

xt ≡
[

τ̂ t

Ŷt

]
,

c′x =
[

ψ 1
]
,

c′ξ =
[

0 0 −σ−1(ω + σ−1)−1 −ω(ω + σ−1)−1 (ω + σ−1)−1
]
,

Cx =

[
ψ (1− σ−1)ψ

(1− σ−1)ψ (2 + ω − σ−1) + σ−1(1− s−1
C )(ω + σ−1)−1

]
,

Cξ =

[
0 0 ψσ−1 0 0

0
σ−1s−1

C

(ω+σ−1)
−σ−1(1−σ−1)

(ω+σ−1)
− ω(1+ω)

(ω+σ−1)
(1+ω)

(ω+σ−1)

]
,

cπ =
θ(1 + ω)(ω + σ−1)

κ

Vt = πt +
1

2
vππ2

t + vzπtZt,

Zt = z′xxt + zππt + z′ξξt + αβEtZt+1,

in which the coefficients

ψ ≡ ωτ/(ω + σ−1),

and

vπ ≡ θ(1 + ω)− 1− θ

(1− α)
, vz ≡ (1− αβ)

2
,

vk ≡ αβ

1− αβ
(1− 2θ − ωθ),

z′x ≡
[

(2 + ω − σ−1) + vk(ω + σ−1) −ωτ (1− vk)
]
,

z′ξ ≡
[

0 0 σ−1(1− vk) −ω(1 + vk) (1− vk)
]
,

zπ ≡ −vk.
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Note that in a first-order approximation, (A.60) can be written as simply

πt = κ[Ŷt + ψτ̂ t + c′ξξt] + βEtπt+1, (A.61)

where

c′ξξt ≡ (ω + σ−1)−1[−σ−1gt − ωqt + µ̂w
t ].

We can also integrate (A.60) forward from time t0 to obtain

Vt0 = Et0

∞∑
t=t0

βt−t0κ(c′xxt +
1

2
x′tCxxt + x′tCξξt +

1

2
cππ2

t )

+t.i.p. +O(||ξ||3), (A.62)

where the term c′ξξt is now included in terms independent of policy. (Such terms

matter when part of the log-linear constraints, as in the case of (A.61), but not when

part of the quadratic objective.)

A.6 A second-order approximation to the intertemporal gov-

ernment solvency condition (equation (1.15))

We now derive a second-order approximation to the intertemporal government sol-

vency condition. We use the definition

Wt ≡ Et

∞∑
T=t

βT−tũc(YT ; ξT )sT , (A.63)

where

st ≡ τ tYt −Gt − ζt, (A.64)

and

Wt =
bt−1

Πt

ũc(Ct; ξt). (A.65)
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First, we take a second-order approximation of the term ũc(Ct; ξt)st obtaining

ũc(Ct; ξt)st = s̄ũc + ũccs̄C̃t + ũcs̃t + s̄ũcξξt +
1

2
s̄ũcccC̃

2
t + ũccC̃ts̃t + s̄C̃tũccξξt

+s̃tũcξξt + s.o.t.i.p. +O(||ξ||3),
= s̄ũc + ũccs̄C̄Ĉt + ũcs̃t + s̄ũcξξt +

1

2
s̄(ũccC̄ + ũcccC̄

2)Ĉ2
t + C̄ũccĈts̃t +

s̄C̄ũccξξtĈt + ũcξξts̃t + s.o.t.i.p. +O(||ξ||3)
= s̄ũc + ũc[−σ̃−1s̄Ĉt + s̃t + s̄ũ

−1

c ũcξξt +
1

2
s̄σ̃−2C̃2

t − σ̃−1s̃tĈt +

s̄C̄ũ
−1

c ũccξξtĈt + ũ
−1

c ũcξξts̃t] + s.o.t.i.p. +O(||ξ||3)
= s̄ũc + ũc[−σ̃−1s̄(Ĉt − c̄t) + s̃t +

1

2
s̄σ̃−2C̃2

t − σ̃−1s̃t(Ĉt − c̄t)− σ̃−2s̄c̄tĈt]

+s.o.t.i.p. +O(||ξ||3) (A.66)

where we have followed previous definitions and use the isoelastic functional forms

assumed and note that we can write ũ
−1

c ũcξξt = σ̃−1c̄t and C̄ũ
−1

c ũccξξt = −σ̃−2c̄t.

Plugging (A.58) into (A.66) we obtain

ũc(Ct; ξ̃t)st = s̄ũc[1− σ−1Ŷt + σ−1gt + s̄−1s̃t +
1

2
[σ−1(s−1

C − 1) + σ−2]Ŷ 2
t +

−σ−1s̄−1(Ŷt − gt)s̃t − σ−1(s−1
C Ĝt + σ−1gt)Ŷt] + s.o.t.i.p. +

+O(||ξ||3) (A.67)

by using previous definitions.

We recall now that the primary surplus is defined as

st = τ tYt −Gt − ζt

which can be expanded in a second-order expansion to get

s̄−1s̃t = (1 + ωg)(Ŷt + τ̂ t)− s−1
d (Ĝt + ζ̂t) +

(1 + ωg)

2
(Ŷt + τ̂ t)

2

+s.o.t.i.p. +O(||ξ||3), (A.68)

where we have defined sd ≡ s̄/Y , ωg = (G + ζ)/s and ζ̂t = (ζt − ζ̄)/Y . Substituting
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(A.68) into (A.67), we obtain

ũc(Ct; ξ̃t)st = s̄ũc[1− σ−1Ŷt + (1 + ωg)(Ŷt + τ̂ t) + σ−1gt − s−1
d (Ĝt + ζ̂t)

+
(1 + ωg)

2
τ̂ 2

t + (1 + ωg)(1− σ−1)τ̂ tŶt +

+
1

2

[
1 + ωg + σ−1(s−1

C − 1) + σ−2 − 2σ−1(1 + ωg)
]
Ŷ 2

t +

−σ−1[s−1
C Ĝt + (σ−1 − 1− ωg)gt − s−1

d (Ĝt + ζ̂t)]Ŷt

+σ−1(1 + ωg)gtτ̂ t] + s.o.t.i.p. +O(||ξ||3). (A.69)

Substituting (A.69) into (A.63), we obtain

W̃t = (1− β)[b′xxt + b′ξξt +
1

2
x′tBxxt + x′tBξξt] + βEtW̃t+1

s.o.t.i.p. +O(||ξ||3) (A.70)

where W̃t ≡ (Wt − W̄ )/W̄and

b′x =
[

(1 + ωg) (1 + ωg)− σ−1
]
,

b′ξ =
[
−s−1

d −s−1
d σ−1 0 0

]
,

Bx =

[
(1 + ωg) (1− σ−1)(1 + ωg)

(1− σ−1)(1 + ωg) (1 + ωg) + (s−1
C − 1)σ−1 + σ−2 − 2σ−1(1 + ωg)

]
,

Bξ =

[
0 0 σ−1(1 + ωg) 0 0

s−1
d σ−1 s−1

d σ−1 − s−1
C σ−1 −σ−1(σ−1 − 1− ωg) 0 0

]
,

We further note from (A.70) that

W̃t ≡ (b̂t−1 − πt − σ̃−1Ĉt + c̄t) +
1

2
(b̂t−1 − πt − σ̃−1Ĉt + c̄t)

2 +O(||ξ||3).

Substituting in (A.58), we obtain

W̃t ≡ b̂t−1 − πt − σ−1(Ŷt − gt)− σ−1(1− s−1
C )

2
Ŷ 2

t − σ−1s−1
C ŶtĜt

+
1

2
(b̂t−1 − πt − σ−1(Ŷt − gt))

2 + s.o.t.i.p. +O(||ξ||3)

which can be written as

W̃t = b̂t−1 − πt + w′
xxt + w′

ξξt +
1

2
x′tWxxt + x′tWξξt +

1

2
[b̂t−1 − πt + w′

xxt + w′
ξξt]

2

+s.o.t.i.p. +O(||ξ||3)
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w′
x =

[
0 −σ−1

]
,

w′
ξ =

[
0 0 σ−1 0 0

]
,

Wx =

[
0 0

0 (s−1
C − 1)σ−1

]
,

Wξ =

[
0 0 0 0 0

0 −s−1
C σ−1 0 0 0

]
.

Note that in the first-order approximation we can simply write (A.70) as

b̂t−1 − πt + w′
xxt + w′

ξξt = (1− β)[b′xxt + b′ξξt]

+ βEt[b̂t − πt+1 + w′
xxt+1 + w′

ξξt+1]. (A.71)

Moreover integrating forward (A.70), we obtain that

W̃t0 = (1− β)Et0

∞∑
t=t0

βt−t0 [b′xxt +
1

2
x′tBxxt + x′tBξξt] + t.i.p. +O(||ξ||3), (A.72)

where we have moved b′ξξt in t.i.p.

A.7 A quadratic policy objective (equations (2.3) and (2.4))

We now derive a quadratic approximation to the policy objective function. To this

end, we combine equation (A.62) and (A.72) in a way to eliminate the linear term in

(A.53). Indeed, we find ϑ1, ϑ2 such that

ϑ1b
′
x + ϑ2c

′
x = a′x ≡ [0 Φ].

The solution is given by

ϑ1 = −Φωτ

Γ
,

ϑ2 =
Φ(1 + ωg)

Γ
,

where

Γ = (ω + σ−1)(1 + ωg)− ωτ (1 + ωg) + ωτσ
−1.
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We can write

Et0

∞∑
t=t0

βt−t0ΦŶt = Et0

∞∑
t=t0

βt−t0 [ϑ1b
′
x + ϑ2c

′
x]xt

= −Et0

∞∑
t=t0

βt−t0 [
1

2
x′tDxxt + x′tDξξt +

1

2
dππ2

t ]

+ϑ1W̃t0 + ϑ2κ
−1Vt0 + t.i.p. +O(||ξ||3)

where

Dx ≡ ϑ1Bx + ϑ2Cx, etc.

Hence

Ut0 = ΩEt0

∞∑
t=t0

βt−t0

{
a′xxt − 1

2
x′tAxxt − x′tAξξt −

1

2
aππ2

t

}
+ t.i.p. +O(||ξ||3)

= −ΩEt0

∞∑
t=t0

βt−t0

{
1

2
x′tQxxt + x′tQξξt +

1

2
qππ2

t

}
+ Tt0 + t.i.p. +O(||ξ||3)

= −ΩEt0

∞∑
t=t0

βt−t0

{
1

2
qy(Ŷt − Ŷ ∗

t )2 +
1

2
qππ2

t

}
+ Tt0 +

+t.i.p. +O(||ξ||3) (A.73)

In particular, we obtain that Ω = ūcȲ and that

Qx =

[
0 0

0 qy

]
,

with

qy ≡ (1− Φ)(ω + σ−1) + Φ(ω + σ−1)
(1 + ωg)(1 + ω)

Γ
+ Φσ−1 (1 + ωτ )(1 + ωg)

Γ

−Φσ−1s−1
C

1 + ωg + ωτ

Γ
;

moreover we have defined

Qξ =

[
0 0 0 0 0

qξ1 qξ2 qξ3 qξ4 qξ5

]
,
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with

qξ1 = −Φωτ

Γ
s−1

d σ−1,

qξ2 = −Φσ−1s−1
d ωτ

Γ
+

σ−1s−1
C Φ(1 + ωg + ωτ )

Γ
,

qξ3 = −(1− Φ)σ−1 − σ−1Φ(1 + ω)(1 + ωg)

Γ
,

qξ4 = −(1− Φ)ω − ωΦ(1 + ω)(1 + ωg)

Γ
,

qξ5 = Φ
1 + ωg

Γ
(1 + ω) ,

and

qπ =
Φ(1 + ωg)θ(1 + ω)(ω + σ−1)

Γκ
+

(1− Φ)θ(ω + σ−1)

κ
.

We have further defined Ŷ ∗
t , the desired level of output, as

Ŷ ∗
t = −q−1

y q′ξξt.

Finally,

Tt0 ≡ Ȳ ūc[ϑ1W̃t0 + ϑ2κ
−1Vt0 ]

is a transitory component. Equation (A.73) corresponds to equation (2.3) in the main

text. In particular, given the commitments on the initial values of the vector Xt0 ,

Wt0 implies that W̃t0 is given when characterizing the optimal policy from a timeless

perspective. Moreover, Ft0 and Kt0 imply that Vt0 and Zt0 are as well given. It follows

that the value of the transitory component Tt0 is predetermined under the stage two

of the Ramsey problem. Hence, over the set of admissible policies, higher values of

(A.73) correspond to lower values of

Et0

∞∑
t=t0

βt−t0

{
1

2
qy(Ŷt − Ŷ ∗

t )2 +
1

2
qππ2

t

}
. (A.74)

It follows that we may rank policies in terms of the implied value of the discounted

quadratic loss function (A.74) which corresponds to equation (2.4) in the main text.

Because this loss function is purely quadratic (i.e., lacking linear terms), it is possible

to evaluate it to second order using only a first-order approximation to the equilib-

rium evolution of inflation and output under a given policy. Hence the log-linear

approximate structural relations (A.61) and (A.71) are sufficiently accurate for our
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purposes. Similarly, it suffices that we use log-linear approximations to the variables

Vt0 and W̃t0 in describing the initial commitments, which are given by

V̂t0 = πt0 ,

Ŵt0 = b̂t0−1 − πt0 + w′
xxt0 + w′

ξξt0

= b̂t0−1 − πt0 − σ−1(Ŷt0 − gt0).

Then an optimal policy from a timeless perspective is a policy from date t0 on-

ward that minimizes the quadratic loss function (A.74) subject to the constraints

implied by the linear structural relations (A.61) and (A.71) holding in each period

t ≥ t0, given the initial values b̂t0−1, ∆̂t0−1, and subject also to the constraints that

certain predetermined values for V̂t0 and Ŵt0 (or alternatively, for πt0 and for Ŷt0)

be achieved.39 We note that under the assumption that ω + σ−1 > ωτ = τ̄ /(1 − τ̄),

Γ > 0, which implies that qπ > 0. Moreover, if

sC >
Φσ−1(1 + ωg + ωτ )

(1− Φ)(ω + σ−1)Γ + Φ(ω + σ−1)(1 + ωg)(1 + ω) + Φσ−1(1 + ωg)(1 + ωτ )
,

then qy > 0 and the objective function is convex. Since the expression on the right-

hand side of this inequality is necessarily less than one (given that Γ > 0), the

inequality is satisfied for all values of sG less than a positive upper bound.

A.8 The log-linear aggregate-supply relation and the cost-

push disturbance term

The AS equation (A.61) can be written as

πt = κ[yt + ψτ̂ t + ut] + βEtπt+1, (A.75)

where ut is composite “cost-push” shock defined as ut ≡ c′ξξt + Ŷ ∗
t . We can write

(A.75) as

πt = κ[yt + ψ(τ̂ t − τ̂ ∗t )] + βEtπt+1, (A.76)

where we have further defined

ut = u′ξξt ≡ Ŷ ∗
t + c′ξξt,

39The constraint associated with a predetermined value for Zt0 can be neglected, in a first-order
characterization of optimal policy, because the variable Zt does not appear in the first-order approx-
imation to the aggregate-supply relation.
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where

uξ1 ≡ Φωτ

qyΓ
s−1

d σ−1,

uξ2 ≡ Φσ−1s−1
d ωτ

qyΓ
− σ−1s−1

C Φ(1 + ωg + ωτ )

qyΓ
,

uξ3 ≡ −Φσ−2 (1 + ωτ )(1 + ωg)

qyΓ(ω + σ−1)
+ Φσ−2s−1

C

1 + ωg + ωτ

qyΓ(ω + σ−1)
,

uξ4 ≡ ωσuξ3,

uξ5 = −σuξ3 +
(1− Φ)

qy

,

We finally define

τ̂ ∗t ≡ −ψ−1ut

in a way that we can write (A.61)

πt = κ[(Ŷt − Ŷ ∗
t ) + ψ(τ̂ t − τ̂ ∗t )] + βEtπt+1, (A.77)

which is equation (2.7) in the text.

A.9 The log-linear intertemporal solvency condition and the

“fiscal stress” disturbance term

The flow budget constraint (A.71) can be solved forward to yield the intertemporal

solvency condition

b̂t−1 − πt − σ−1yt = −ft + (1− β)Et

∞∑
T=t

βT−t[byyT + bτ (τ̂T − τ̂ ∗T )] (A.78)

where ft, the fiscal stress disturbance term, is defined as

ft ≡ σ−1(gt − Ŷ ∗
t )− (1− β)Et

∞∑
T=t

βT−t[byŶ
∗
T + bτ τ̂

∗
T + b′ξξT ]

= σ−1(gt − Ŷ ∗
t ) + (1− β)Et

∞∑
T=t

βT−t[ω−1
τ ΓŶ ∗

T − (b′ξ − bτψ
−1c′ξ)ξT ].

This can be rewritten in a more compact way as

ft ≡ h′ξξt + (1− β)Et

∞∑
T=t

βT−tf ′ξξT ,
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where

hξ1 ≡ −Φωτ

qyΓ

σ−2

sd

,

fξ1 ≡ Φ

qy

σ−1

sd

+
1

sd

,

hξ2 ≡ −Φσ−2s−1
d ωτ

Γqy

+
σ−2s−1

C Φ(1 + ωg + ωτ )

Γqy

,

fξ2 ≡ Φσ−1s−1
d

qy

− ω−1
τ σ−2s−1

C Φ(1 + ωg + ωτ )

ωτqy

+
1

sd

,

hξ3 ≡ Φσ−2 (1 + ωτ )(1 + ωg)

qyΓ
− Φσ−2s−1

C

1 + ωg + ωτ

qyΓ

+
(1− Φ)ωσ−1

qy

+
ωσ−1Φ(1 + ω)(1 + ωg)

Γqy

,

fξ3 ≡ ω−1
τ Γ(1− Φ)σ−1

qy

+
ω−1

τ σ−1Φ(1 + ω)(1 + ωg)

qy

− σ−1(1 + ω−1
τ )(1 + ωg),

hξ4 ≡ −σ−1(1− Φ)ω

qy

− σ−1ωΦ(1 + ω)(1 + ωg)

Γqy

,

fξ4 ≡ ω−1
τ Γ(1− Φ)ω

qy

+
ω−1

τ ωΦ(1 + ω)(1 + ωg)

qy

− ωω−1
τ (1 + ωg),

hξ5 ≡ σ−1Φ
(1 + ωg) (1 + ω)

qyΓ
,

fξ5 ≡ −ω−1
τ Φ

(1 + ωg) (1 + ω)

qy

+ ω−1
τ (1 + ωg).

A.10 Definition of the coefficients in sections 3, 4 and 5

The coefficients mϕ, nϕ, nb, mb, m̃b, ωϕ are defined as

mϕ ≡ −q−1
y ψ−1(1− β)bτ + q−1

y [(1− β)by + σ−1],

nϕ ≡ −q−1
y σ−1,

nb ≡ bτ (ψ
−1 − 1)(mϕ + nϕ),

mb ≡ −nϕ[(1− β)bτψ
−1 − (1− β)by − σ−1],
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m̃b ≡ σ−1nϕ + ωϕ − (1− β)[bτψ
−1 − by]nϕ + (1− β)ψ−1κ−1bτωϕ,

ωϕ ≡ −q−1
π (κ−1(1− β)bτψ

−1 + 1),

φ ≡ κ−1q−1
π qy,

γ1 ≡ κ−1q−1
π [(1− β)by + σ−1],

γ2 ≡ κ−1q−1
π σ−1.

The coefficients µ1 and µ2 of section 5 are defined as

µ1 ≡ κψ

(1− β)bτ + κψ

µ2 ≡ κ(1− β)(bτ − ψby)

(1− β)bτ + κψ
.

A.11 Proof of determinacy of equilibrium under the optimal

targeting rules

We now show that there is a determinate equilibrium if policy is conducted so as to

ensure that the two target criteria

Etπt+1 = 0 (A.79)

and

∆yt + ω−1
ϕ (mϕ + nϕ)πt − ω−1

ϕ nϕ∆πt = 0 (A.80)

are satisfied in each period t ≥ t0. Note that (A.80) can be written as

∆yt = γ3πt + γ4πt−1 (A.81)

where

γ3 ≡ −ω−1
ϕ mϕ,

γ4 ≡ −ω−1
ϕ nϕ.

Use (A.79), combined with

τ t − τ̂ ∗t = κ−1πt − ψ−1yt − κ−1βEtπt+1. (A.82)
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and

Et∆yt+1 = −ω−1
ϕ nϕπt

to eliminate Etπt+1, Etyt+1 and τ t − τ̂ ∗t from

b̂t−1 − πt − σ−1yt + ft = (1− β)[byyt + bτ (τ̂ t − τ̂ ∗t )]

+ βEt[b̂t − πt+1 − σ−1ŷt+1 + ft+1].

Then further use (A.80) to eliminate yt from the resulting expression. One obtains

an equation of the form

b̂t = β−1b̂t−1 + m41πt + m42πt−1 + m43yt−1 + εt,

where εt is an exogenous disturbance. The system consisting of this equation plus

(A.80) and (A.79) can then be written as

Etzt+1 = Mzt + Nεt,

where

zt ≡




πt

πt−1

yt−1

b̂t−1


 , M ≡




0 0 0 0

1 0 0 0

m31 m32 1 0

m41 m42 m43 β−1


 , N ≡




0

0

0

n41


 .

Because M is lower triangular, its eigenvalues are the four diagonal elements:

0, 0, 1, and β−1. Hence there is exactly one eigenvalue outside the unit circle, and

equilibrium is determinate (but possesses a unit root). Because of the triangular

form of the matrix, one can also easily solve explicitly for the elements of the left

eigenvector

v′ = [v1 v2 v3 1]

associated with the eigenvalue β−1, where

v1 = (1 + ωg)[ψ
−1 − 1]βγ4 − (1− βσ−1γ4)− (1− β)(1 + ωg)(κψ)−1

+(1 + ωg)[ψ
−1 − 1]γ3,

v2 = (1 + ωg)[ψ
−1 − 1]γ4,

v3 = (1 + ωg)[ψ
−1 − 1].
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Pre-multiplying the vector equation by v′, one obtains a scalar equation with a unique

non-explosive solution of the form

v′zt = −
∞∑

j=0

βj+1Etεt+j.

In the case that v1 6= 0, this can be solved for πt as a linear function of πt−1, yt−1, b̂t−1

and the exogenous state vector as it follows

πt = − 1

v1

b̂t−1 − v2

v1

πt−1 − v3

v1

yt−1 +
1

v1

ft. (A.83)

The solution for πt can then be substituted into the above equations to obtain the

equilibrium dynamics of yt and b̂t as well, and hence of τ t also.
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