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Abstract
Central banks now generally agree that conventional monetary aggregates are of

little use as targets or even indicators for monetary policy, owing to the instability
of money demand relations in economies with well-developed financial markets. But
monetary theory has provided little guidance for the analysis of policies that are not
formulated in terms of a path for the money supply, and a stable money demand
relation is generally assumed as a central element of a theoretical analysis. This paper,
instead, shows that it is possible to analyze equilibrium inflation determination without
any reference to either money supply or demand, as long as one specifies policy in terms
of a “Wicksellian” interest-rate feedback rule.

The paper’s central result is an approximation theorem, showing the existence,
for a simple monetary model, of a well-behaved “cashless limit” in which the money
balances held to facilitate transactions become negligible. The relations that determine
equilibrium inflation in the cashless limit also provide a useful approximate account
in the case of an economy in which monetary frictions are present, but small. The
approximation remains valid in the case of time variation in the monetary frictions,
including variation of a kind that may result in substantial instability of money demand
in percentage terms.

Inflation in the cashless limit is shown to be a function of the gap between the
“natural rate” of interest, determined by the supply of goods and opportunities for
intertemporal substitution, and a time-varying parameter of the interest-rate rule in-
dicating the tightness of monetary policy. Inflation can be completely stabilized, in
principle, by adjusting the policy parameter so as to track variation in the natural rate.
Under such a regime, instability of money demand has little effect upon equilibrium
inflation, and need not be monitored by the central bank.

∗This is a revised draft of a talk given as a keynote address at the annual meeting of the Society for
Economic Dynamics and Control in Mexico City, June 1996. I would like to thank Julio Rotemberg, Manuel
Santos, and Lars Svensson for helpful discussions, the National Science Foundation for research support
through a grant to the National Bureau of Economic Research, and the Institute for International Economic
Studies, Stockholm, for its hospitality during the preparation of this draft.



1 Monetary Policy without Money

Throughout the English-speaking world, at least, central bankers have abandoned the notion

that any of the conventional monetary aggregates constitute a suitable intermediate target

for monetary policy. This has resulted from the discovery that these aggregates no longer

appear to have any very reliable relationship, at least in the short run, with the variables, such

as inflation and real activity, about which policymakers actually care, 1 This development is

often attributed to the rapid transformation of financial arrangements since the early 1980’s,

due both to deregulation and financial innovation. But there is reason to fear that the

instability of conventional money demand equations may not relate solely to a transitory

period of institutional turbulence, in which an old set of arrangements give way to a new,

more rational set, that should then be expected to result in stable econometric relationships

once again. For from the standpoint of economic theory, there is no reason to believe that

there is any uniquely rational or efficient set of arrangements that result in any stable demand

for money at all. Instead, because the demand for an asset that is dominated in terms of

its purely pecuniary return depends upon the existence of transactions frictions that people

benefit, individually and jointly, by overcoming, there is every reason to expect further

innovations, due to improvements in information processing and to increased creativity in

the evasion of the remaining regulatory constraints, that continually reduce the quantity of

the monetary base that needs to be held (on average) in order to carry out a given volume of

transactions. The only natural limit to this process is an ideal state of frictionless financial

markets, in which there is no positive demand for the monetary base at all, if it is dominated

by other financial assets, and no determinate demand for it if it is not.

1See, e.g., Friedman and Kuttner (1996) and Estrella and Mishkin (1996).
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A consequence of the apparent instability of money demand has been a widely perceived

need for a new way of thinking about the source of guidelines for monetary policy. Much

enthusiasm has recently been expressed for “inflation targeting”, 2 under which central banks

should have clear targets for an ultimate goal variable (inflation), rather than for an inter-

mediate target that they seek to control only because it is thought to be a reliable means

of achieving desirable paths for other variables. Agreement upon a target path for inflation,

however, does not settle the question of how a central bank should adjust policy on a day-

to-day basis in order to achieve that target. There remains the need for a coherent approach

to the design of instrument rules or operating procedures for monetary policy, in a world in

which one cannot rely upon any stable money demand function.

Monetary theory has offered surprisingly little guidance in this quest, for the existing

literature is almost entirely concerned with the analysis of the consequences of alternative

paths (or perhaps, state-contingent rules) for the money supply. The reason for this is

not simply that academics have remained attached to models that imply that a constant

growth rate for “the money supply” should be optimal, if only one knew how to measure

it. The main problem is instead a deeper one. This is that the conventional approach to

the problem of the determination of the general level of prices in an economy takes as its

starting point the quantity theory of money, according to which the equilibrium price level

is that value that makes the real purchasing power of the existing money supply equal to

the desired level of real money balances. As a consequence, it is taken for granted that for

purposes of analysis, the differences between alternative monetary policies reduce to their

different consequences for the path of the money supply, and that it suffices simply to consider

2See, e.g., Leiderman and Svensson (1995), Freedman (1996), and Bernanke and Mishkin (1997).
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the theoretical consequences of different such paths. And the existence of a well-defined

demand function for real money balances is taken as the sine qua non of a coherent model;

refinements of the theory have mainly sought to develop increasingly sophisticated models

of that relation, taking for granted its centrality to any model of price-level determination

and of the consequences of monetary policy. Thus the literature has much to say about the

choice among alternative paths for the money supply in a world where the money demand

function takes one form or another, but next to nothing to say about the choice among

operating procedures that make no reference to any measure of the money supply, in a world

where the connection between money balances and transactions of real goods and services

is unstable, poorly measured, and increasingly irrelevant.

I wish to argue that this entire approach to the problem of price-level determination is

neither necessary nor desirable. Instead, it is possible to analyze the determination of the

money prices of goods and services without any reference either to the money supply or to a

money demand relation. This might seem not to be possible, for the well-known reason that,

when one abstracts from the role of money in exchange, the relations determining the supply

of and demand for real goods and services involve only relative prices, and not the absolute

(money) prices of any goods. The key to the alternative approach is that equilibrium money

prices are determined by the way in which government policy depends upon the absolute

price level; monetary and/or fiscal policy rules depend upon the the general level of prices,

in such a way as to make only a certain price level consistent with equilibrium. In the

type of policy regime that I mainly consider here, that I call Wicksellian, it is the monetary

policy rule that makes real quantities depend upon the level of money prices. This case is

of particular relevance to current discussions of inflation targeting, since the existence of a
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target path for the price level suggests that policy actions should depend upon the degree

to which the current or expected future price level differs from that target.

It might be suggested, at least from the point of view of abstract monetary theory,

that an account of price-level determination along such lines is unsatisfactory, because it

obviously cannot apply to a world without government, or at least without any government

that intervenes in the functioning of markets in any way. The case of no government, in

which there is no central bank, but simply a fixed quantity of money (a durable token with

no intrinsic value) that happens to exist, has played an especially prominent role in the

literature on monetary theory, doubtless in the belief that one is thereby led to focus on the

essential aspects of the problem of price-level determination. I would argue instead that this

familiar approach is misguided. It emphasizes a case that is surely of no practical interest,

especially if the aim of the theory is to provide advice for central banks. Furthermore,

abstraction from features of the world in economic models is justified only when doing so

simplifies the analysis, thus facilitating understanding. But abstracting from government

policy when analyzing price-level determination does not simplify matters; instead, because

of the pathological features of this case, the analysis must give attention to features of the

economy (namely, the demand for money balances to facilitate transactions) that are in fact

inessential under many other cases of greater practical importance.

I would argue that it is in fact a great disadvantage of the quantity-theoretic approach

to price-level determination that it implies that transactions frictions – obstacles to the

execution of mutually beneficial trades – are an essential element in price-level determination.

I wish to demonstrate, instead, the possibility of a theory of price-level determination that

applies equally to to the limiting case in which such frictions become insignificant, and to
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argue for the usefulness of analysis of that case, as at least a first approximation for most

purposes. Of course, an understanding of price-level determination in this “cashless limit”

does not in any way preclude one from also considering how this baseline model is perturbed

when account is taken of realistic transactions frictions. But even if that is one’s eventual

goal, I believe that understanding of how the more complex model works is likely to be aided

by an analysis of the cashless baseline model first – a way of proceeding that is, of course,

commonplace in economic analysis. Nor is it obvious that the addition of frictions to take

account of the fact that currency and bank reserves are held despite being dominated in

return by other assets would be the most important direction of elaboration of the simple

baseline model presented here, from the point of view of improving the practical reliability

of the conclusions drawn from the model. 3 Indeed, I believe that in monetary theory there

have been significant costs of the misplaced emphasis upon the need to model the sources

of money demand, to the neglect of other aspects of model specification that matter more,

for practical purposes, such as the nature of price adjustment. All too often, the analysis of

complicated transactions frictions, intended to provide a more realistic account of the reasons

why money is held, has required that other aspects of the model be radically simplified, to

the extent that few if any practical questions about monetary policy can be addressed.

Because the central economic relation emphasized by the quantity-theoretic approach,

the money demand function, depends for its existence upon market frictions, this approach

also makes price-level determination appear to depend upon features of the economy that

3In Rotemberg and Woodford (1997), a more elaborate version of the model of a Wicksellian regime
proposed here is used to interpret the co-movements of inflation, output, and interest rates in the U.S.
economy since 1980. Several addition complications are added to the model in order to better account for
the relations observed among those series – in particular, decision lags in both purchasing decisions and
pricing decisions – but these do not include any reference to the role of money in transactions or to the
demand for the monetary base.
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need not be stable over time. Of course, any structural relation of an economic model that is

not an identity is certain to be subject to disturbances. 4 But the money demand function

is different in that there are good economic reasons to expect such a relation to be unstable,

especially in an economy with sophisticated financial markets and institutions. Furthermore,

I shall argue that instability in this relation need not have any consequences for the ability

of suitably chosen monetary policy to stabilize inflation, or aggregate demand more gener-

ally. In the model developed below, I show that if the cashless limit is a sufficiently good

approximation (i.e., if the process of financial innovation has proceeded far enough to make

cash balances of suffiently small importance in carrying out transactions), then fluctuations

in money demand (that may, in percentage terms, be substantial) have only negligible ef-

fects upon the equilibrium price level under a Wicksellian policy regime, even though this

regime does not require the central bank to track the fluctuations in money demand for its

implementation. If this is true in practice, then a model of price-level determination that

dispenses with reference to that relation and its disturbances is obviously desirable.

Finally, the quantity-theoretic approach to price-level determination is sometimes used

to argue that unchecked financial innovation and deregulation are likely to result in macroe-

conomic instability, or a loss of control over aggregate spending and hence inflation on the

part of the central bank. 5 It is thus argued that there is a conflict between the policy

goals of microeconomic efficiency in financial arrangements on the one hand, and macroe-

4This is certainly true, for example, of the central relation of the simple model of price-level determination
in the cashless limit presented in section 3, the Euler equation relating the planned path of consumption
demand to the real interest rate, and indeed I allow for disturbances to this equation in an extension of
the model in section 4. The importance of these disturbances in practice is measured by Rotemberg and
Woodford (1997), and their nature is a crucial determinant of the account of optimal monetary policy given
in that paper.

5See, e.g., Cagan (1986) for an expression of concerns of this sort.
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conomic stability on the other. The analysis presented here suggests that such concerns are

misplaced. It is shown that under a Wicksellian regime, the equilibrium price level remains

well-defined in the cashless limit, and near that limit, as just mentioned, disturbances to the

transactions technology that cause large fluctuations in money demand have little effect on

the price level. Thus there would seem to be no reason to impede progress toward that state

of greater efficiency in financial intermediation for the sake of macroeconomic stability.

The plan of the paper is as follows. In section 2, I introduce a simple model of a monetary

economy, in which the degree to which money is used as a means of payment is a parameter

that may be continuously varied, and made arbitrarily close to zero. The model has quite

conventional implications with regard to money demand; in fact, the equilibrium conditions

of this model are formally identical to those of a Sidrauski-Brock representative household

model with money in the utility function. The only reason here for specification of the details

of the transactions technology taken to lie behind that familiar indirect utility function is in

order to clarify what I mean by the “cashless limit” of this model. In section 3, I consider

price-level determination in the cashless limit, and show that in the case of a particular class

of policy regimes, that I call Wicksellian, the model’s equilibrium remains well-behaved in

this limit. Furthermore, the equilibrium in the limiting case, which does not depend upon

any properties of money demand, can be used to approximate the equilibrium of the model

in any case in which the transactions frictions are small enough (though present), including

cases in which they are small but subject to significant variation over time, in relative terms.

In section 4, I describe more explicitly the factors that determine the path of the price level

in the cashless limit of such a regime. I show how it is useful to think of the real disturbances

that affect price-level determination as shifts in Wicksell’s (1898) “natural rate” of interest,
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and that inflation stabilization depends upon adjusting the nominal interest rate that is the

central bank’s instrument so that it tracks variations in the natural rate, much as Wicksell

advocated. Section 5 concludes.

2 Price-Level Determination in a Monetary Economy

Here I offer a simple illustration of how the equilibrium relations involved in price-level deter-

mination can remain well-behaved in the limit as the amount of money used in transactions

goes to zero. I model the role of money in transactions by assuming a “cash-in-advance

constraint” that applies to some transactions; I then consider the consequences of progres-

sively reducing the fraction of transactions to which the constraint applies. In the “cashless

limit”, the fraction of transactions subject to the constraint is zero. For certain ways of

specifying monetary policy, that I would argue are of practical relevance, the equilibrium

path of the price level can be shown to be continuous in this limit. It follows that price-level

determination is such “near-cashless” economies can be understood without any reference

to the transactions frictions that determine money demand; and that variations in those

transactions frictions, that may cause significant variation (in percentage terms) in money

demand, need not have significant effects upon the equilibrium price level.

In order to consider continuous variation in the fraction of transactions subject to the

cash-in-advance constraint, it is convenient to introduce a continuum of differentiated goods.

This specification also has the advantage that, as in Lucas (1980), one can motivate the use

of money in transactions as a way of allowing less specialization in consumption. I shall also

follow Lucas and Stokey (1987) in assuming that some goods can be purchased without the

use of money; the possibility of substitution between “cash” and “credit goods” is then a
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simple reason for money demand to be interest-sensitive. The latter aspect of the model is

crucial insofar as I wish to consider monetary policies in which the central bank’s instrument

is a short-term nominal interest rate.

Consider an economy made up of a continuum of identical infinite-lived households,

located on a circle S of circumference 1. Each point j ∈ S indexes both a differentiated

consumption good, produced only at that location, and a household that specializes in the

production of that good. While each household j produces only good j, it consumes all of

the goods. Each household seeks to maximize a lifetime utility given by

∞∑
t=0

βtu(Ct), (2.1)

where u is an increasing, strictly concave, twice-differentiable function, 0 < β < 1 is a

discount factor, and Ct is an index of purchases of all of the differentiated goods, defined by

Ct ≡
[∫

S
ct(i)

γdi
]1/γ

(2.2)

for some 0 < γ < 1. 6 I assume in addition that preferences satisfy

lim
C→0

u′(C) = ∞, (2.3)

so that consumption is necessarily desired in each period.

The payments technology works as follows. If a household j purchases some of the good

produced by a household i that is sufficiently close to its own location, the transaction gener-

ates a charge against an account that is settled at the end of the period, without any need for

the buyer to hold cash balances. On the other hand, in the case of transactions between more

distant locations, a third-party billing technology is used. The latter technology requires the

6This is a constant-elasticity-of-substitution aggregator, with an elasticity of substitution among goods
given by 1/(1 − γ).
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buyer to hold cash balances at the end of the period sufficient to cover all charges made

against this account during the period; the amount charged will then be delivered to the

seller, at the beginning of the subsequent period. Thus the second kind of transactions, but

not the first, require the buyer to maintain cash balances; they are also more costly for the

seller, in that the seller receives payment only at the beginning of the following period, and

thus not in time to invest the proceeds in an interest-earning account at the end of the period

in which the sale occurs. The advantage of the second technology is that it is assumed to

require less ability on the part of the seller to verify the creditworthiness of the buyer, which

instead becomes the responsibility of the third party. 7 I assume furthermore that the first

technology (informal credit) is used in the case of transactions for which |i− j| ≤ (1−α)/2,

while the second (cash settlement) must be used when |i− j| > (1− α)/2, where 0 < α ≤ γ

is a parameter indicating the fraction of goods that can only be purchased using cash. 8

Because payment for a sale using the “cash settlement” technology is received by the

seller at a later point in time, a seller will not in general be indifferent between the two

types of payments, and so may charge more in the case of a “cash settlement” sale. We may

think of this as occurring through the addition of an interest charge to accounts that are

settled only at the beginning of the following period. We may then let pt(j) denote the price

(in units of money) charged for good j in period t, to either kind of buyer, and Rs
t (j) be

7It may be wondered why I do not simply assume, as in Lucas and Stokey (1987), that the second
type of transactions require immediate payment in cash, out of money balances of the buyer. This more
familiar form of “cash-in-advance” constraint would serve equally well to generate an equilibrium demand
for money balances to facilitate transactions. However, the more complex setup proposed here has several
advantages when it comes to the interpretation of the equilibrium conditions eventually obtained. For one,
the equilibrium conditions obtained here are identical to those of a standard Sidrauski-Brock model, as is
shown below. This allows direct comparability of the discussion here to that in papers such as Woodford
(1995, 1996). Furthermore, the equilibrium conditions obtained from the “cashless limit” of this model
conform to the standard timing conventions for a model with no cash-in-advance constraint, which is not
true in the case of the Lucas-Stokey model.

8Here, for any two points i, j on the circle, |i − j| measures the arc distance between them.
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the gross interest charge imposed in the case of “cash settlement” purchases of that good.

Finally, let yht(j) be the quantity sold in period t of good j using payments technology h,

for h = 1, 2. Then household j is subject to the following budget constraints. First, its

end-of-period financial assets each period satisfy

Mt + Bt = Wt − Tt + pt(j)y1t(j) −
∫
|i−j|≤(1−α)/2

pt(i)ct(i)di, (2.4)

where Mt represents end-of-period money balances, Bt the nominal value of net bond holdings

(that are negative if the household is a borrower), Wt the nominal value of beginning-of-

period financial wealth (the value of both money and maturing bonds, after settlement of all

period t − 1 transactions), Tt the nominal value of net tax collections (that are negative in

the case of transfers from the government), and ct(i) the quantity purchased of good i. Here

the final two terms in (2.4) represent the household’s receipts and expenditures respectively,

using payments technology 1 (informal credit), because these charges are settled by the end

of period t. The household’s initial wealth W0 is given as an initial condition; in subsequent

periods, it is given by

Wt+1 = Mt + RtBt + Rs
t (j)pt(j)y2t(j) −

∫
|i−j|>(1−α)/2

Rs
t (i)pt(i)ct(i)di, (2.5)

where Rt is the gross nominal interest rate on a one-period bond purchased in period t.

Note that the final two terms in (2.5) represent the household’s receipts and expenditures in

connection with period t transactions using payments technology 2, which are settled only

at the beginning of period t + 1. It is this difference in settlement times that accounts for

the fact that, in general, a seller will demand interest on cash-settlement transactions.

Use of the “cash settlement” payments technology requires the household to hold money
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balances, that satisfy

Mt ≥
∫
|i−j|>(1−α)/2

Rs
t (i)pt(i)ct(i)di. (2.6)

Equation (2.6) is the “cash-in-advance constraint” in our model, that accounts for house-

holds’ willingness to hold money, even when bonds pay a positive interest rate. Finally, the

household’s bond issues are subject to a borrowing constraint. It is natural to require that

Wt+1 ≥ −
∞∑

s=t+1

δt+1,s[Ys − Ts], (2.7)

where Ys denotes the maximum attainable value of period s sales revenues psy1s(j)+Rs
spsy2s(j)/Rs,

given the household’s productive capacity in period s, and δt,s is the discount factor defining

the present value at t of nominal income received in period s ≥ t,

δt,s ≡
s−1∏
j=t

R−1
j .

Constraint (2.7) allows a household to borrow any quantity that it is possible for it to

eventually repay, by refraining from consumption for a sufficient time, but not more. Such a

constraint makes sense given the requirement that the household’s consumption plan satisfy

ct(i) ≥ 0 (2.8)

for all goods in all periods. The household’s total sales to the two types of buyers are assumed

to be subject to a constraint

y1t(j) + y2t(j) ≤ yt, (2.9)

where yt > 0 is an exogenous capacity. If we assume competition in the supply of each of the

differentiated goods, then the household takes pt(j) and Rs
t (j) as given; (2.9) then implies a

given value for Yt each period, independent of household plans. The right-hand side of (2.7)

12



is thus determined by market conditions, independent of the household’s plans. 9 Note that

this borrowing limit may equivalently be expressed as a bound upon household bond issues,

Bt ≥ −R−1
t [Mt + Rs

t (j)pt(j)y2t(j) −
∫
|i−j|>(1−α)/2

Rs
t (i)pt(i)ct(i)di] −

∞∑
s=t+1

δt,s[Ys − Ts].

Finally, constraints (2.6) and (2.7) together imply that expenditure is subject to an intertem-

poral budget constraint of the form

∞∑
s=t

δt,sEs ≤ Wt +
∞∑
s=t

δt,s[Ys − Ts], (2.10)

where

Et ≡
∫
|i−j|≤(1−α)/2

pt(i)ct(i)di +
∫
|i−j|>(1−α)/2

Rs
t (i)pt(i)ct(i)di

measures total nominal expenditure in period t.

The representative household’s problem is then to choose paths for the {ct(i)}i∈S, and for

the variables y1t, y2t, Mt, Bt, so as to maximize (2.1), subject to the constraints (2.8), (2.9),

(2.5), (2.4), (2.6), and (2.7). 10 In these constraints, the price sequences {pt(i), R
s
t (i)}i∈S and

Rt are taken as given, as are the capacity sequence yt, the sequence of net tax obligations Tt,

and the initial wealth W0. A perfect foresight equilibrium is then a set of price sequences, and

associated quantity decisions, such that the quantity decisions are optimal given the prices,

and markets clear at all dates. I shall consider only the case of a symmetric equilibrium, in

which W0 is the same for all households, the prices pt(i), R
s
t (i) are the same for all goods

i at each date, and hence all quantity decisions by the households are similarly the same

(if goods are identified by their relative position on the circle, rather than their absolute

9If the infinite sum does not converge, there will be no borrowing limit; in this case, there can be no
optimal plan for the household, because there is no bound upon the level of consumption that can be financed.
Thus convergence of the sum is a requirement for equilibrium.

10Note that the optimal consumption plan can be more simply defined as the one that maximizes (2.1)
subject to (2.8) and (2.10), given initial wealth W0.
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position). In fact, because of the symmetry of (2.2), each household will choose to purchase

the same quantity c1t of every good that can be purchased using informal credit, and the

same quantity c2t of every good that must be purchased using cash settlement. Market

clearing then means that Mt = Ms
t , where Ms

t is the money supply; that Bt = Bs
t , where Bs

t

is the net supply of bonds by the government; and that (assuming there are no purchases

of goods by the government) (1 − α)c1t = y1t, αc2t = y2t. The evolution of the variables Ms
t

and Bs
t will depend upon the monetary and fiscal policy of the government, to be further

specified below, as will the sequence Tt.

This model of the use of money in exchange can in fact be shown to result in equilibrium

conditions that are identical to those of a standard Sidrauski-Brock model. Note first that

in any equilibrium, one must have Rs
t (i) = Rt for each good, in order for household i to be

willing to supply the good to buyers who use each of the two possible payments technologies.

(Since each household demands a positive quantity of each good, in the case of any finite

relative prices, there is no possibility of an equilibrium in which goods are purchased using

only one of the payments technologies.) In this case, and also specializing to the case of a

symmetric equilibrium, the budget constraints (2.4) and (2.5) may be written in the simpler

form

Mt + B̃t = Wt − Tt + ptyt − ptct (2.11)

and

Wt+1 = Mt + RtB̃t, (2.12)

where

B̃t ≡ Bt + pty2t − ptc2t

14



and

ct ≡
∫

i∈S
ct(i)di = (1 − α)c1t + αc2t. (2.13)

Here B̃t is a measure of the household’s end-of-period financial wealth in addition to its cash

balances, that takes account of the period t transactions that have not yet been settled as of

the end of the period; ct is a measure of the household’s total consumption demand, not in

terms of the utility-relevant aggregate Ct defined in (2.2), but in terms of the resource cost

of supplying the household’s consumption. The household’s objective (2.1) may equivalently

be written as
∞∑
t=0

βtU(ct, Mt/pt), (2.14)

where the indirect utility U(ct, Mt/pt) represents the maximum attainable value of u(Ct),

when the household’s consumption purchases are subject to the two constraints

∫
i∈S

ct(i)di ≤ ct,

∫
|i−j|>(1−α)/2

ct(i)di ≤ Mt/pt,

in addition to (2.8). Note that the constraint set for this maximization is non-empty as long

as

ct, Mt ≥ 0. (2.15)

The indirect utility function U(c, m) is easily seen to be well-defined on this set. It is strictly

increasing in c, and non-decreasing in m; it is strictly increasing in m as well, for all m/c

below a critical value µ̄ > 0 (at which the cash-in-advance constraint ceases to bind), but

independent of m for all larger values. It is concave in the two arguments, strictly concave in

c, and strictly concave in both arguments in the region m/c < µ̄. Finally, it is continuously

differentiable, and has continuous second derivatives except at the critical value of m/c.
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The representative household’s optimization problem may then be equivalently stated as

the choice of sequences ct, Mt and B̃t so as to maximize (2.14), subject to the constraints

(2.15), (2.11), (2.12), and (2.7), given the price sequences pt, Rt and initial wealth W0. The

conditions for market clearing can be written in terms of these variables as Mt = Ms
t ,

Bt = Bs
t , and ct = yt. These are just the conditions for a perfect foresight monetary

equilibrium in a Sidrauski-Brock model, with a single good with an exogenous supply of yt,

and with the utility function of the representative household being given by (2.14). The point

of our rather circuitous derivation of this familiar model is that there will now be a natural

way in which to consider the consequences of innovations in the payments mechanism that

reduce the need for cash balances; we shall simply consider the effects of a reduction in the

parameter α, holding fixed the rest of our specification.

Before turning to this, however (in the next section), let us recall the standard analysis

of price-level determination by the path of the money supply in such a model. I shall begin

by characterizing optimal household behavior. Note first that there is no solution to the

representative household’s optimum problem unless

Rt ≥ 1 (2.16)

in each period. For otherwise, a household can earn arbitrage profits by issuing debt (choos-

ing a more negative value for Bt) and using the proceeds to increase its money holdings

Mt, and the borrowing limit (2.7) does not limit the extent to which it may do this. Thus

(2.16) is a requirement for equilibrium; I shall assume that it holds in stating the following

necessary and sufficient conditions for household optimization.

Now let us consider the optimal allocation of consumption spending across the different
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goods i ∈ S, given a desired consumption index Ct. Since the cost of each “credit good”

is pt, while the cost each “cash good” is Rtpt, it follows from the form of (2.2) that the

household will purchase the same quantities c1t of each “credit good” and c2t of each “cash

good”, where

ckt = θk(Rt)Ct (2.17)

for k = 1, 2, and

θ1(R) ≡
[
(1 − α)R

γ
1−γ + α

]−1/γ
,

θ2(R) ≡
[
(1 − α) + αR

−γ
1−γ

]−1/γ
.

Given (2.17), the cash-in-advance constraint (2.6) requires money balances of at least

Mt ≥ αRtθ2(Rt)ptCt (2.18)

in each period. Because no interest is paid on cash balances, in any period in which Rt > 1,

optimization requires that (2.18) hold with equality.

We have thus characterized the optimal allocation of the household’s consumption and

portfolio each period, given its choice of the consumption index Ct. An optimal choice of

the time path {Ct}, in turn, must satisfy the intertemporal Euler equation

u′(Ct)

pt

θ1(Rt)
γ−1 = βRt

u′(Ct+1)

pt+1

θ1(Rt+1)
γ−1 (2.19)

for each period t ≥ 0. (The Inada condition (2.3) allows us to ignore the possibility of a

corner solution.) Equation (2.19) differs from the form that is familiar for a non-monetary

representative-household model due to the effects of the requirement that cash be used to

settle some transactions; the factor θ1(Rt) represents the marginal increase in the index Ct

that can be obtained per pt units of additional expenditure. 11

11Note that the constant-elasticity-of-substitution form (2.2) implies that ∂C/∂c1 = (c1/C)γ−1.
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An optimal consumption plan must also exhaust the intertemporal budget constraint.

Thus (2.10) must hold with equality, looking forward from any period t ≥ 0. It is also

necessary that the right-hand side of (2.10) be a finite quantity, since otherwise (2.7) imposes

no limit upon borrowing. This implies that the household’s consumption plan must satisfy

∞∑
s=t

δt,sEs < ∞. (2.20)

Given this, exhaustion of the intertemporal budget constraint is equivalent to the requirement

that the household’s accumulation of wealth satisfy the transversality condition

lim
T→∞

δt,T WT = 0. (2.21)

A complete set of necessary conditions for household optimization is thus given by the

requirements that (2.16), (2.17), (2.18), and (2.19) hold each period, with either (2.16) or

(2.18) holding with equality, and the requirements that (2.20 hold, and that (2.10) hold

with equality (or, equivalently, that (2.21) hold). These conditions can also be shown to be

sufficient for optimality.

Sequences {pt, Rt} then constitute an intertemporal (or perfect foresight) equilibrium if

the optimal household plan associated with them clears all markets. Goods market clearing

requires that ct = yt at all times, where ct is the resource cost of the representative household’s

purchases, defined in (2.13). (To simplify, I assume that the government consumes no goods.)

Using (2.17), this can be written as

Ct = ω(Rt)yt, (2.22)

where

ω(R) ≡ [(1 − α)θ1(R) + αθ2(R)]−1 =

[
(1 − α)Rγ/1−γ + α

]1/γ

[
(1 − α)R1/1−γ + α

] .
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Equilibrium also requires that the desired money holdings of the representative household,

Mt, equal the money supply, and that the desired net financial wealth of the representative

household, Wt, equal the net supply of outside financial assets by the government.

In the familiar quantity-theoretic approach to price-level determination, one solves for

the equilibrium paths {pt, Rt} as a function of the expected path of the money supply {Mt}.

Consider a policy regime that is defined by a path {Mt} for the money supply, with Mt > 0

at all dates. (For simplicity, I do not introduce fractional-reserve banking, and so this is

simply the path of the monetary base, supplied by the central bank.) Suppose that there

is no government debt at any time, and that as a result fiscal policy consists simply of the

net lump-sum transfers required to increase or decrease the money supply each period as

specified. Thus net tax collections each period are given by Tt = −(Mt − Mt−1). A familiar

special case of such a regime is that in which there is no government at all, but a fixed

quantity of money Mt = M > 0 simply exists and is passed from hand to hand.

In the case of such a policy regime, the equilibrium conditions can be expressed as follows.

Substituting (2.22) into (2.18), one obtains the “money market clearing relation”

Mt/pt ≥ µ(Rt)yt, (2.23)

where again this must hold with equality in any period in which Rt > 1. Here

µ(R) ≡ αRθ2(R)ω(R) =
αR[

(1 − α)R1/(1−γ) + α
] .

In the case that α ≤ γ (as assumed here), one observes that µ(R) is a monotonically

decreasing function, varying from a value of α when R = 1, to an arbitrarily small positive

quantity for large enough R. Thus money demand is uniquely defined and positive for any

positive nominal interest rate.
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In the quantity-theoretic literature, equation (2.23) is viewed as determining the price

level. Even supposing that Mt is exogenously given, however, the solution for pt depends

upon the endogenous nominal interest rate Rt. This is determined by the Euler equation

(2.19). Substituting (2.22) into the latter equation, one obtains

u′(ω(Rt)yt)

pt
θ1(Rt)

γ−1 = βRt
u′(ω(Rt+1)yt+1)

pt+1
θ1(Rt+1)

γ−1. (2.24)

We can similarly express equilibrium condition (2.20) in terms of the path of interest

rates only. Note first that (2.17) implies that

Et = ptCt[(1 − α)θ1(Rt) + αRtθ2(Rt)] = ptCtθ1(Rt)
1−γ .

Furthermore, (2.24) implies that each period’s discount factor δt,T is proportional to

βT u′(ω(RT )yT )

pT

θ1(RT )γ−1. (2.25)

Substituting these two expressions, along with (2.22), into (2.20) then yields

∞∑
T=t

βTu′(ω(RT )yT )ω(RT )yT < ∞. (2.26)

Finally, in equilibrium under such a policy regime, one must have Bt = 0 at all times,

and hence Wt = Mt−1. Substituting this into (2.21), together with (2.25), one obtains

lim
T→∞

βT u′(ω(RT )yT )θ1(RT )γ−1MT−1

pT
= 0. (2.27)

Equations (2.16), (2.23), (2.24), (2.26), and (2.27), together with the requirement that at

least one of (2.16) and (2.23) holds with equality each period, then comprise a complete

system of equilibrium conditions to determine the sequuences {pt, Rt}.
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We can reduce this system to a difference equation for the price level as follows. Because

of the monotonicity of µ(R) noted above, one can invert (2.23) to obtain the “liquidity

preference” relation for the nominal interest rate

Rt = ρ(ptyt/Mt), (2.28)

where ρ(v) = 1 for all v ≤ α−1, and a monotonically increasing function for all larger values

of v, increasing without bound as v does. Substituting this into (2.24) and (2.27), we obtain

F (Mt/pt; yt) = β(Mt/Mt+1)G(Mt+1/pt+1; yt+1), (2.29)

∞∑
T=t

βTH(MT /pT ; yT ) < ∞, (2.30)

and

lim
T→∞

βT F (MT /pT ; yT ) = 0, (2.31)

where

F (m; y) ≡ ρ(y/m)−1G(m; y),

G(m; y) ≡ u′(ω(ρ(y/m))y)θ1(ρ(y/m))γ−1m,

H(m; y) ≡ u′(ω(ρ(y/m))y)ω(ρ(y/m))y.

A perfect foresight equilibrium is then just a positive price-level sequence {pt} that satisfies

the first-order nonlinear difference equation (2.29) each period, and satisfies the bounds

implied by (2.30) and (2.31).

As is well-known, such a system may not uniquely determine the equilibrium path of the

price level. 12 However, under certain circumstances it does. In such a case, the equilibrium

12See, e.g., Brock (1975), Obstfeld and Rogoff (1983), or Woodford (1994).
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price level at each date is given by a function of the current and expected future money

supplies, that depends upon real disturbances, such as (here) the current and expected

future supply of goods:

pt = p(Mt, Mt+1, Mt+2, . . . ; yt, yt+1, yt+2, . . .). (2.32)

It is obvious from the form of (2.29) and (2.31) that when such a unique solution exists, the

function p is homogeneous of degree one in the arguments (Mt, Mt+1, Mt+2, . . .).

3 Wicksellian Policies and the Cashless Limit

I now consider price-level determination in an economy of the kind just described, in the

limiting case in which the number of goods that must be purchased using cash becomes

arbitrarily small. Formally, we simply consider the consequences of making the parameter

α arbitrarily small. More generally, there is no reason to restrict attention to the case in

which the parameter α is constant over time. We may instead suppose that there may be

a different value αt > 0 each period; the functions θk(R), ω(R), and µ(R) defined in the

previous section are all then time-varying (or may be written with αt as a second argument).

Using the sup norm to measure the size of a given sequence α ≡ {αt},

|α| ≡ sup
t

|αt|, (3.1)

we are then interested in price-level determination in economies for which |α| is arbitrarily

small.

It is easily seen that, in the case of a policy regime of the kind just considered, with an

exogenous path for the money supply, the conditions determining the equilibrium price level

will not be well-defined in such a limit. In particular, let us suppose that the path of the
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money supply is such that Mt ≥ M for all t, for some lower bound M > 0. Then one can

show that there is no hope of the existence of a function p of the kind referred to in (2.32)

that is continuous in α for α near the zero sequence.

Note that the sequence of equilibrium conditions (2.29) can be written abstractly in the

form

Φ(p; M, y; α) = 0, (3.2)

where p, M, y refer to the sequences of values for the variables pt, Mt, yt in periods t =

0, 1, 2, . . ., and Φ maps a four-tuple of infinite sequences into an infinite sequence. For any

t ≥ 0, the t element of this vector-valued function is given by

Φt(p; M, y; α) ≡ F (Mt/pt; yt, αt) − β(Mt/Mt+1)G(Mt+1/pt+1; yt+1, αt+1).

Now let us fix positive sequences M and y, and consider whether it is possible to express

the perfect foresight equilibrium price sequence as a continuous function, p = f(α), on a

domain that includes α = 0. When dealing with infinite sequences, it is necessary to specify

what one means by continuity, and so I shall stipulate the topology defined by the sup norm,

defined in (3.1) for sequences α, and by

|p − p′| ≡ sup
t

| log pt − log p′t| (3.3)

in the case of price sequences.

Because any given element Φt depends only upon a finite number of elements of p and

α, it is evident that the mapping Φ is continuous in the sup norm topology if and only if

for each t, Φt is a continuous function of pt, pt+1, αt, and αt+1. The definitions given in the

previous section make it trivial to verify that θk, ω, and mu are each continuous functions
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of R and α, for all R ≥ 1, 0 ≤ α ≤ γ, and that ρ is a continuous function of v and α, for

all v ≥ 0, 0 ≤ α ≤ γ. These results together with the definitions of F and G then imply

that Φt is indeed a continuous function for each t, and hence that Φ is a continuous map of

sequences to sequences. But then, if there exists the hypothesized function f , it must satisfy

Φ(f(α); m, y; α) = 0 for all positive sequences α near enough to zero. If f is continuous,

then p∗ ≡ f(0) must satisfy

lim
α→0

f(α) = p∗; (3.4)

because Φ is continuous, this in turn implies that Φ(p∗; m, y; 0) = 0, and so that the sequence

{p∗t} satisfies the sequence of equations (2.29) in the case that αt = 0 each period.

But in the limiting case α = 0, the distortions resulting from the cash-in-advance con-

straint vanish. We have simply θ1(R) = 1, θ2(R) = R−1/1−γ , ω(R) = 1, and µ(R) = 0 for all

R ≥ 1, and hence ρ(v) = 1 for all v ≥ 0. In this limit, the Euler equation (2.29) takes the

simple form

u′(yt)

pt
= β

u′(yt+1)

pt+1
, (3.5)

which is just the familiar asset-pricing equation for a non-monetary economy, applied to an

asset that pays no dividend and has an exchange value (in terms of the consumption good)

of 1/pt. Equilibrium condition (2.31) similarly takes the form

lim
T→∞

βT u′(yT )MT /pT = 0. (3.6)

Now if the sequence {p∗} satisfies (3.5), it follows that

lim
T→∞

βT u′(yT )/p∗T = u′(y0)/p
∗
0 > 0.
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Then if MT ≥ M for all T ,

lim
T→∞

βT u′(yT )MT /p∗T ≥ u′(y0)M/p∗0 > 0,

and (3.6) is violated. Thus such a solution to equations (2.29) does not represent an equilib-

rium. 13 One furthermore observes that any positive price sequence p that is close enough to

p∗, in the sense of the norm (3.3), must fail to satisfy (3.6) as well. Then (3.4) would imply

that f(α) cannot represent an equilibrium, in the case of small enough positive sequences α;

and thus we obtain a contradiction.

This result makes intuitive sense, of course, from the point of view of the quantity-

theoretic approach to price-level determination; as the fraction of transactions that require

cash falls to zero, desired real money balances fall to zero as well, and so one should expect

the equilibrium price level to cease to be defined. The failure of the solution to be continuous

near α = 0 simply means that one cannot a solution for the limiting case as an approximation

to the small-α case; instead, the use of money in transactions is intrinsic to the model’s ability

to determine an equilibrium price level.

However, this conclusion is not more generally valid; it is actually rather special to the

type of monetary policy just considered, in which the path of the money supply is exogenously

specified – a case that is of rather little practical relevance, despite the attention given to it in

the theoretical literature. As an example of an alternative way of specifying monetary policy,

let us consider what may be called a “Wicksellian” regime, after the proposal of Wicksell

13This is just the familiar result that an equilibrium with valued fiat money is not possible in a representa-
tive household model, when money is in positive net supply, and no monetary “frictions” are present. Such
an equilibrium, were it to exist, would represent a pricing “bubble”, since the money never pays dividends;
and its non-existence is simply a special case of the more general proposition that in such a model there can
be no equilibrium pricing bubbles in the case of any assets in positive net supply (Santos and Woodford,
1997).
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(1907). Wicksell argued that price stability could be achieved under a fiat money regime

by a policy that made no attempt to regulate the quantity of banknotes in circulation, but

instead required the central bank to adjust nominal interest rates in response to deviations

of the price level from the desired level, “lowering them when prices are getting low, and

raising them when prices are getting high”. 14

This suggests consideration of a rule for monetary policy that specifies the short-term

nominal interest rate as a function of the price level,

Rt = φ(pt), (3.7)

where φ is a strictly increasing, continuous function, defined for arbitrary positive prices,

such that φ(p) ≥ 1 for all p > 0. In specifying monetary policy in terms of a rule for the

nominal interest rate, we recognize that as a matter of actual central banking practice, the

direct instrument of monetary policy is almost invariably a short-term nominal interest rate

(such as the Federal funds rate in the U.S.), even when this instrument is adjusted in a

manner intended to control the growth of a monetary aggregate. The central bank controls

this rate by intervening in the market for short-term nominal debt; we may imagine that

it simply stands ready to exchange debt for money in arbitary quantities at the price that

it has decided upon. It will not be possible for the central bank to bring about an interest

rate Rt < 1, since, as noted earlier, this would be inconsistent with equilibrium, owing

to the arbitrage opportunity that it would create. But any non-negative interest rate is

attainable. Since we have shown that desired money holdings equal µ(Rt)ptyt, where µ(R) is

monotonically decreasing in R, and positive for all finite R, it follows that the central bank

14For another recent analysis of price-level determination under a Wicksellian regime, see Fuhrer and
Moore (1995).
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can bring about any desired non-negative nominal interest rate by an appropriate adjustment

of the composition of government liabilities between money and bonds.

A complete specification of the policy regime requires that we specify fiscal policy as

well. One simple specification that results in equilibrium conditions that are well-behaved in

the cashless limit is to assume that the government maintains a target level W > 0 for the

total nominal value of government liabilities, and adjusts net tax collections Tt as necessary

to ensure that Wt+1 = W at the beginning of the following period. Assuming that the

economy starts with an initial condition W0 = W , this is equivalent to assuming that the

government runs a conventional budget deficit (i.e., inclusive of nominal interest payments

on government debt) of zero each period:

Dt ≡ (Rt − 1)Bt − Tt = 0. (3.8)

We now consider perfect foresight equilibrium under such a regime. Condition (2.16) no

longer need be considered as a separate equilibrium condition, as it follows from (3.7). Con-

dition (2.23) still matters, but it simply determines the equilibrium path of the endogenous

money supply, once we have solved for the equilibrium sequences {pt, Rt}. Since it neces-

sarily implies a positive sequence for the money supply, it can be neglected in listing the

conditions that determine the other sequences. We are thus left with (2.21), (2.24), (2.26),

and (3.7) as equilibrium conditions. Substituting (2.25) and the path of total government

liabilities implied by (3.8) into (2.21), this becomes

lim
T→∞

βT u′(ω(RT )yT )θ1(RT )γ−1W

pT
= 0. (3.9)

The complete set of necessary and sufficient conditions for sequences {pt, Rt} to constitute

an equilibrium are then (2.24), (2.26), (3.7), and (3.9).
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Just as in the case of the exogenous-money regime, we can substitute (3.7) to eliminate

the variable Rt from the other equilibrium conditions. We again obtain a nonlinear difference

equation in the price level, together with bounds on the asymptotic behavior of the price

level. These may again be written in the form

F (pt; yt) = βG(pt+1; yt+1), (3.10)

∞∑
T=t

βTH(pT ; yT ) < ∞, (3.11)

lim
T→∞

βTF (pT ; yT ) = 0, (3.12)

where now

F (p; y) ≡ G(p; y)/φ(p),

G(p; y) ≡ u′(ω(φ(p))y)p−1θ1(φ(p))γ−1,

H(p; y) ≡ u′(ω(φ(p))y)ω(φ(p))y.

Again, these equations may or may not suffice to determine a unique equilibrium price

sequence; the analysis of this question (which is not a particular concern here) proceeds

along lines similar to those followed in the more familiar case of an exogenous-money policy.

Indeed, in the special case that the rule (3.7) is of the form

φ(p) = ρ(p/k),

for some constant k > 0, equilibrium conditions (3.10), (3.11), and (3.12) are identical to

those associated with an exogenous-money policy, in which the path of the money supply is

given by Mt = kyt for all t. 15

15Note that this correspondence between a particular Wicksellian policy and a particular exogenous path
for the money supply holds only for a particular value of α > 0. It is for this reason that the conclusions
that we reach about the properties of the equilibrium conditions as we vary α need not be the same.
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Despite this close similarity in the form of the equilibrium conditions, the theory of price-

level determination under the Wicksellian regime is qualitatively different in one important

respect: the equilibrium conditions (3.10) – (3.12) remain well-behaved in the cashless limit.

Specifically, we can show the following.

Proposition 1 Consider a Wicksellian policy regime defined by (3.7) and (3.8), and suppose

that φ is a continuously differentiable function, at least on a neighborhood of some price level

p∗ > 0, at which φ(p∗) = β−1, φ′(p∗) > 0. Let y∗ > 0 be any constant level of productive

capacity. Then there exist neighborhoods U of p∗, V of y∗, and W of 0, and a function f ,

assigning a price sequence p = f(y; α) with pt ∈ U for all t to any capacity sequence y with

yt ∈ V for all t and any parameter sequence α with α ∈ W for all t, such that

(i) f is a continuous function in the sup norm topology, 16 in both arguments; and

(ii) for any sequence y and for any sequence α with αt > 0 for all t, p = f(y; α) is a

perfect foresight equilibrium price sequence, and the unique equilibrium sequence with

the property that pt ∈ U for all t.

The proposition does not assert that equilibrium is unique, but it is at least locally unique.

The important property of this equilibrium, for present purposes, is that it is defined even in

the cashless limit, and that the function f is continuous in this limit. Thus does not simply

mean that the price sequence

pt = p̂(yt, yt+1, . . .)

defined by p̂(y) = f(y, 0) is a solution to the equilibrium conditions in the α = 0 limit. It

also means that this solution approximates a perfect foresight equilibrium in the case of any

16Here we intend the norm defined in (3.3) for capacity sequences as well.
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parameter sequence in which αt is small enough for all t, to a degree of accuracy (in terms

of the norm (3.3)) that can be made arbitrarily great by placing a low enough bound on the

size of the parameter sequence α (in terms of the norm (3.1)).

The proposition can be proved as follows. Once again, the difference equation (3.10) may

be written as an equation system of the form Φ(p; y; α) = 0, where Φ maps a triple of infinite

sequences into an infinite sequence, the t element of which is given by

Φt(p; y; α) ≡ F (pt; yt, αt) − βG(pt+1; yt+1, αt+1).

Now let us restrict attention to the definition of this mapping for sequences p and y such that

pt belongs forever to some bounded neighborhood P of p∗, and yt belongs forever to some

bounded neighborhood Y of y∗, 17 and suppose that P is chosen so that φ is continuously

differentiable everywhere on P . Then it is possible to choose a neighborhood A of 0 such

that F (p; y; α) and G(p; y; α) are each well-defined for all triples (p, y, α) ∈ P × Y × A,

continuously differentiable on this set, and bounded. 18 Then the mapping Φ maps triples of

bounded sequences (p, y, α) ∈ P∞×Y ∞×A∞ into bounded sequences, where X∞ represents

the product of a countably infinite sequence of copies of the bounded interval X, and is

continuously differentiable in the sequences (p, y, α), in the sup norm topology.

We next observe that in the cashless limit (αt = 0 for all t) of our equilibrium conditions,

the price sequence in which pt = p∗ for all t solves each of the equilibrium conditions (3.10)

– (3.12). This is because, in the cashless limit, these equilibrium conditions become

u′(yt)

ptφ(pt)
= β

u′(yt+1)

pt+1
, (3.13)

17In each case, by a “bounded” neighborhood we mean that | log p−log p∗| and | log y−log y∗| are bounded.
18Note that the expressions written earlier for functions such as θk(R; α) are well-defined and continuously

differentiable for small negative values of α, even though negative values of α have no meaning in terms of
our model.
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∞∑
T=t

βT u′(yT )yT < ∞, (3.14)

lim
T→∞

βTu′(yT )p−1
T = 0, (3.15)

which conditions are obviously satisfied by the constant sequences just mentioned. Thus

we observe a crucial difference between this sort of policy regime and the exogenous-money

regime: it is possible for a solution to exist to the cashless limit of the equilibrium conditions.

We can then generalize this solution to the case of nearby sequences y and α using

the implicit function theorem. 19 Note that with the sup norm topology, the linear space

of bounded sequences represents a Banach space, often denoted l∞. Furthermore, in this

topology, sets such as P∞, Y ∞, and A∞ are open subsets of the space of bounded sequences.

Thus the mapping Φ is defined on a product of open subsets of Banach spaces, and takes

values in another Banach space. Furthermore, Φ(p∗; y∗; 0) = 0, where we now use p∗ to

denote the sequence in which pt = p∗ for all t, and similarly with y∗. The implicit function

theorem then states that if the partial derivative DpΦ(p∗; y∗; 0) satisfies certain regularity

conditions, there exists a neighborhood N of the pair of sequences (y∗, 0), and a continuous

function f : N → P∞, such that f(y∗; 0) = p∗, and such that for all (y, α) ∈ Q, f(y; α)

satisfies

Φ(f(y; α); y; α) = 0. (3.16)

Furthermore, for any N small enough, there exists a neighborhood S of the sequence

p∗, such that f(N) ⊂ Q, and f(y; α) is the unique solution to (3.16) belonging to the set

S. Given any such neighborhoods N and S, we can choose neighborhoods U of the scalar

19See, e.g., Lang (1983), pp. 131-132, for a version applicable to general Banach spaces, that can be used
in the present instance. See Santos and Bona (1989) for an early application to comparative statics in an
intertemporal equilibrium model.
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p∗, V of the scalar y∗, and W of the scalar 0, such that U∞ ⊂ S and V ∞ × W∞ ⊂ N .

Because of the continuity of f , by choosing V and W small enough, we can ensure that

f(V ∞ × W∞) ⊂ U∞. With these choices, f is a continuous function with the range and

domain specified in the proposition, that identifies the unique solution to (3.10) such that

pt ∈ U for all t. Moreover, because U , V and W are bounded intervals, {F (pt; yt; αt} and

{H(pt; yt; αt} are bounded sequences, as long as pt ∈ U , yt ∈ V , and αt ∈ W for all t. Hence

(3.11) and (3.12) are satisfied by any sequences confined to those neighborhoods, and so for

any such sequences y and α, f(y; α) represents a solution to all of the equilibrium conditions

(3.10) – (3.12), and hence a perfect foresight equilibrium. And as it is the unique solution

to (3.10) such that pt ∈ U for all t, it is the unique equilibrium with that property.

It remains to discuss the conditions on the derivative DpΦ(p∗; y∗; 0) required in order for

the implicit function theorem to apply. It is necessary that this derivative be a continuous

linear mapping (of bounded sequences into bounded sequences) with a continuous inverse. 20

The derivative is easily computed; for {p̂t} any bounded sequence of percentage deviations

in prices, DpΦ · p̂ = z, where the sequence z is given by

zt = Φp1p̂t + Φp2p̂t+1 (3.17)

for t = 0, 1, 2, . . .. Here Φp1 is the partial derivative of Φt with respect to log pt, and Φp2

the partial derivative with respect to log pt+1,
21 evaluated at (p∗; y∗; 0). (Note that these

partial derivatives are the same for all t.) It is obvious from (3.17) that z is a bounded

sequence if p̂ is; furthermore, there exists a finite bound C such that |z| ≤ C|p̂| for all

20In the case of a finite number n of conditions to determine n endogenous variables, this reduces to the
familiar condition that the Jacobian matrix be non-singular, and hence invertible. The condition is less
trivial in the case of an infinite-dimensional problem.

21Partial derivatives are here understood in the usual sense of finite multivariate calculus, because Φt

depends on only a finite number of the elements of p, y, and α.
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p̂, given by C = |Φp1| + |Φp2|. Thus DpΦ is a continuous linear mapping. The inverse

mapping identifies the bounded sequence p̂ that satisfies the difference equation (3.17), for

any bounded sequence z. Since (3.17) implies that

p̂t =
T−t−1∑

j=0

λjΦ−1
p1 zt+j + λT−tp̂T

for arbitrary T > t, where λ ≡ −Φp2/Φp1, it follows that if |λ| < 1, there is a unique bounded

solution p̂, given by

p̂t =
∞∑

j=0

λjΦ−1
p1 zt+j . (3.18)

In this case, (3.18) defines the mapping [DpΦ]−1. 22 Furthermore, there exists a finite bound

K such that |p̂| ≤ K|z|, given by K = [(1 − λ)Φp1]
−1. Thus [DpΦ]−1 is a continuous linear

mapping as well, and the implicit function theorem may be applied.

Finally, we must verify that |λ| < 1. Differentiating Φt, we find that

Φp1 = Fp(p
∗; y∗; 0) = −(1 + εφ)F (p∗; y∗; 0),

Φp2 = −βGp(p
∗; y∗; 0) = F (p∗; y∗; 0),

where εφ ≡ p∗φ′(p∗)/φ(p∗), and hence that λ = 1/(1 + εφ). Under the assumption that

φ′(p∗) > 0, εφ > 0, and 0 < λ < 1. Thus [DpΦ]−1 exists and is a continuous linear mapping,

the implicit function theorem applies, and the proposition is established.

Thus, in the case of a Wicksellian regime of the kind specified in the proposition, there

exists a well-defined perfect foresight equilibrium path for the price level, even in the cashless

limit, and this equilibrium approximates an equilibrium (the unique one in which the price

level never diverges very far from the constant level p∗) of an economy in which the fraction

22In the case that λ ≥ 1, multiple bounded sequences p̂ lead to the same sequence z, and so no inverse
mapping exists.
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of purchases that must be made using cash is small enough. The equilibrium in the cashless

limit is a solution to equations (3.13) and (3.15), which equations make no reference to

any aspect of the transactions technology. 23 (For example, they depend neither upon α nor

upon the function (2.2) that determines the substitutability of goods that must be purchased

using the different transactions technologies.) Thus there is in fact no necessity to describe

the way in which cash facilitates transactions, as I did in the previous section, in order to

derive these equations, and hence to obtain a system of equilibrium conditions that describe

price level determination in the cashless limit. One might instead have simply written down

the equilibrium conditions

u′(yt) = β
Rtpt

pt+1

u′(yt+1), (3.19)

and

lim
T→∞

βTu′(yT )
WT

pT
= 0, (3.20)

which correspond to conditions (2.19) and (2.21) in the cashless limit. Combining them with

the policy rules (3.7) and (3.8), we would have directly obtained equations (3.13) and (3.15).

Note that equations (3.19) and (3.20) are not simply the cashless limit of the equilibrium

conditions in our monetary economy; they are also the equilibrium conditions that must be

satisfied by the real interest rate and real financial wealth in a completely non-monetary

economy. Thus they could easily be derived by abstractly entirely from the use of money in

transactions. The only reason that I have described the system consisting of these equations

together with the policy rules as determining the price level in the “cashless limit” of a

monetary economy – rather than simply saying that they describe price-level determination

in an economy where cash is not needed for transactions, is that it is not clear that a central

23Here I drop equation (3.14), since it places no restrictions upon the endogenous variables.
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bank should have any way of implementing the policy rule (3.7) when money is not used at

all, even though it can implement such a rule in a monetary economy no matter how close

to zero the sequence {αt} may be. 24 Nonetheless, once it is granted that rules such as (3.7)

represent possible monetary policies, there is no further need to consider the role of money

in the economy. 25

Equations (3.19) and (3.20) are also conditions for equilibrium in a Sidrauski-Brock

monetary model, in which the period utility function U(c, m) is additively separable in its

two arguments, as is often assumed for convenience. The assumption of additive separability,

while mathematically convenient, is not very palatable on theoretical grounds; it is hard to

think of a plausible underlying transactions technology that would lead to such separability.

Nonetheless, the conclusion that is reached on that basis, that monetary variables can be

neglected in writing the Euler equation that relates real rates of return to intertemporal

resource allocation, is regarded as sensible by many economists, which doubtless accounts

for the popularity of the assumption. I would agree that it is sensible to ignore monetary

variables in the Euler equation, at least when analyzing an economy with highly-developed

financial institutions. But the proper justification for this is not that additive separability

holds, or is even a reasonable approximation, but rather that this is what one obtains in the

24The latter conclusion depends upon the fact that, under our assumed transactions technology, there is
still some positive level of money balances that are demanded at any given nominal interest rate, no matter
how small αt may be. Under other transactions technologies, it might not be possible for the central bank to
force short-term nominal interest rates above a finite ceiling (the interest rate at which money demand falls
to zero), and that ceiling might in turn shrink to zero as the transactions constraints are made sufficiently
unimportant. In such a case, it would not be possible to hold fixed the rule (3.7) as the transactions
constraints are made negligible.

25More precisely, the only thing that matters about the money demand function is the constraint that
it places upon the class of rules (3.7) that can be implemented, which in the present case amounts solely
to the restriction (2.16). This condition, however, is largely independent of the details of the transactions
technology. Condition (2.16) is necessary in any model in which additional cash balances do not make
transactions any more difficult to arrange; it is also sufficient for implementability of the interest-rate policy
in a broad range of models.
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cashless limit.

We have seen that the solution to equations (3.13) and (3.15) approximates the equilib-

rium path of the price level, for any sequence {αt} every element of which is small enough.

It is worth noting that this allows for time-variation in money demand that may be quite

substantial, in relative terms. Note that equilibrium condition (2.23) implies that 26

Mt

αtptyt
= Rtθ2(Rt; αt)ω(Rt; αt). (3.21)

The right-hand side of this equation is a continuous function of both Rt and αt; it has a

well-defined limit as αt approaches zero, equal to R
−γ/1−γ
t . Taking logarithms of both sides

of (3.21), then, we can write

log Mt = log αt + log ptyt − γ

1 − γ
log Rt, (3.22)

neglecting a term of order |α| on the right-hand side. Now the fluctuations in log αt from

period to period may be arbitrarily large, even though |α| is small. Thus our equations

characterizing price-level determination in the cashless limit may be a good approximation,

even in an economy subject to instability in the transactions technology that causes there

to be large residuals in a logarithmic money demand equation.

First-differencing (3.22), we obtain

gMt = gpt + gyt − γ

1 − γ
gRt + gαt, (3.23)

where gXt ≡ log(Xt/Xt−1) denotes the percentage growth rate of a variable X. If we hold

fixed the sequence of growth rates {gαt} while letting the absolute level of the parameters αt

in each period approach zero, then we obtain (3.23) as a well-defined money demand equation

26Here we restrict attention to the case of an equilibrium in which Rt > 1 each period.
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in first-differenced form, valid in the cashless limit (and once again, approximately correct for

any economy in which cash balances are sufficiently unimportant). This equation can be used

to derive the predictions of the model for the fluctuations in the growth rate of the money

supply under a Wicksellian regime, should one care about that variable. (The predictions

for this variable, of course, depend upon the details of the transactions technology, and upon

the time path of the disturbances gαt.) Note that this provides a rigorous justification for

analyzing the determinants of money growth by simply appending a money demand equation

to our previous system of equilibrium conditions, without having to modify those other

equations (such as the Euler equation) to take account of the use of money for transactions.

Of course, this kind of equation system can also be derived from a Sidrauski-Brock model

with an additively-separable period utility function. 27 However, the cashless limit defined

here provides a better justification, for several reasons. One is the implausibility of additive

separability, noted above. Another is that additive separability has strong consequences for

the form of the money demand equation, that need not be imposed when (3.23) is derived

from the cashless limit. In a Sidrauski-Brock model with U(c, m) = v1(c) + v2(m), one

obtains a money demand equation of the form

v′
2(Mt/pt)

v′
1(ct)

=
Rt − 1

Rt
.

This equation implies a unit income elasticity of money demand, as in (3.22), only if v′
1(c)

and v′
2(m) are each isoelastic functions, with the same constant elasticity with respect to

their respective arguments. Let that common elasticity be −1/σ, where σ > 0 is then the

27That sort of derivation is given, for example, in Woodford (1996) and McCallum and Nelson (1997).
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intertemporal elasticity of substitution in consumption. One then obtains

log Mt = log ptyt − σ log
(Rt − 1

Rt

)
.

One can approximate this by a log-linear form, as in (3.22), in the case of small enough

fluctuations in the interest rate. But then the elasticity with respect to Rt is equal to

−σ/(R∗ − 1), where R∗ is the value around which one log-linearizes. Since σ is a parameter

of the Euler equation (3.19), the interest elasticity of money demand is not a free parameter;

it is instead completely determined by the parameters of the Euler equation and by the

average level of the nominal interest rate. In the derivation of (3.23) in the cashless limit,

by contrast, the interest elasticity is given by −γ/(1− γ). There is no theoretical restriction

upon the size of this parameter (only its sign), and since the parameter γ has no effect

upon any other equilibrium conditions in the cashless limit, one is free to assign the interest

elasticity a value that is consistent with empirical studies of money demand. 28

We have thus far demonstrated the existence of a well-behaved cashless limit only in the

case of a monetary policy rule of the form (3.7), with φ(p) an increasing function. Such a

policy implies that the absolute price level matters to the central bank, and not simply the

rate of inflation. In fact, in a modern context, a central bank is more likely to be concerned

with control of the rate of inflation, allowing arbitrarily large eventual deviations in the

price level to occur as the cumulative effect of many small errors in control of the inflation

rate. This seems, at least, to be the way in which inflation targets are determined by those

28By contrast, the assumption of additive separability forces one to assume an interest elasticity that is
unrealistically large, given historical experience. Thus, for example, the simulations reported in Woodford
(1996) involve implausibly large responses of money balances, and hence of seignorage revenues, to fiscal
disturbances, because the model, which assumes additive separability, is “calibrated” by the choice of realistic
values for the intertemporal elasticity of substitution in consumption, the rate of time preference, and the
income elasticity of money demand. These values imply an interest elasticity of 19, which is two or three
times as large as would be realistic for that parameter in a model of the US economy.
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central banks that currently practice “inflation targeting”. 29 However, similar results can

be obtained for a Wicksellian regime of that kind as well. Suppose that we consider, instead

of (3.7), a monetary policy rule of the form

Rt = πtφ(πt), (3.24)

where πt ≡ pt/pt−1, and φ(π) is a continuous function with the property that φ(π) = 1/π

for all 0 < π ≤ π, while φ(π) is a monotonically increasing function for all π ≥ π, where π

is some rate of growth satisfying π > β. This is again a rule that satisfies (2.16), but now

the interest rate depends upon the rate of inflation, rather than the price level. We shall be

concerned here with equilibria in which inflation is in the range for which φ is an increasing

function; in that region, (3.24) says that increases in inflation result in nominal interest rate

increases that more than compensate for the erosion of the real return on bonds by the

additional inflation. 30 This is the sort of behavior that Taylor (1993) argues describes US

monetary policy in recent years. 31 In this case, we can obtain the following variant of our

previous result.

Proposition 2 Consider a Wicksellian policy regime defined by (3.24) and (3.8), and sup-

pose that φ is a continuously differentiable function, at least on a neighborhood of some rate

of inflation π∗ > β, at which φ(π∗) = β−1, φ′(π∗) > 0. Let y∗ > 0 be any constant level of

productive capacity. Then there exist neighborhoods U of π∗, V of y∗, and W of 0, and a

29It can also be justified on the basis of a welfare analysis of the distortions created by inflation variability
in a model with nominal price rigidities, as in Rotemberg and Woodford (1997).

30We are not able to extend this sort of behavior to arbitrary rates of deflation, because the central bank
cannot implement a rule that violates (2.16).

31The much-discussed “Taylor rule” involves a function φ that varies with the level of real activity, as well
as inflation, but we omit that here for simplicity. Because yt is an exogenous state variable in the present
model, consideration of the actual “Taylor rule” would not change any of our conclusions.
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function f , assigning an inflation sequence π = f(y; α) with πt ∈ U for all t to any capacity

sequence y with yt ∈ V for all t and any parameter sequence α with α ∈ W for all t, such

that

(i) f is a continuous function in the sup norm topology, 32 in both arguments; and

(ii) for any sequence y and for any sequence α with αt > 0 for all t, π = f(y; α) is a perfect

foresight equilibrium inflation sequence, and the unique equilibrium sequence with the

property that πt ∈ U for all t.

The proof proceeds along the same lines as in the case of Proposition 1. Under the policy

regime described in the proposition, a sequence of inflation rates {πt} constitutes a perfect

foresight equilibrium if and only if it satisfies the equilibrium conditions

F (πt; yt) = βG(πt+1; yt+1), (3.25)

∞∑
T=t

βTH(πT ; yT ) < ∞, (3.26)

lim
T→∞

T∏
t=0

(β/πt)F (πT ; yT ) = 0, (3.27)

where now

F (π; y) ≡ G(π; y)/φ(π),

G(π; y) ≡ u′(ω(πφ(π))y)π−1θ1(πφ(π))γ−1,

H(p; y) ≡ u′(ω(πφ(π))y)ω(πφ(π))y.

Again these equations are well-behaved in the cashless limit, and one observes that in the

case that yt = y∗ and αt = 0 for all t, the sequence πt = π∗ for all t represents a solution to

all three equations. (Once again, we shall also use π∗ to denote this sequence.)

32Here we use the norm (3.3) for sequences π as well.
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One observes that, if the variables πt, yt and αt are confined to small enough bounded

intervals, containing neighborhoods of π∗, y∗ and 0 respectively, the functions F (πt; yt, αt)

and H(πt; yt, αt) will be bounded, and one will have 0 < β/πt < λ for all t, for some

λ < 1. Then (3.26) and (3.27) will necessarily be satisfied. Thus it suffices to show that

there exists a locally unique solution to (3.25) for any sequences y and α close enough to y∗

and 0, and that it is described by a continuous function π = f(y; α). Again, the sequence

of equilibrium conditions (3.25) can be written in the form Φ(π; y; α) = 0, where Φ is a

continuously differentiable mapping of triples of bounded sequences into bounded sequences.

Again, application of the implicit function theorem gives the desired result, and turns upon

the properties of the derivative mapping DπΦ(π∗; y∗; 0). 33 For {π̂t} any bounded sequence

of deviations in inflation (i.e., π̂t ≡ log(πt/π
∗)), the derivative is given by DpΦ · p̂ = z, where

the sequence z satisfies

zt = Φπ1π̂t + Φπ2π̂t+1 (3.28)

for t = 0, 1, 2, . . .. Here Φπ1 is the partial derivative of Φt with respect to log πt, and Φπ2

the partial derivative with respect to log πt+1, evaluated at (π∗; y∗; 0). Again, this defines a

continuous linear mapping with a continuous inverse if |λ| < 1, where λ ≡ −Φπ2/Φπ1. Since

in the present case

Φπ1 = Fπ(π∗; y∗; 0) = −(1 + εφ)F (π∗; y∗; 0),

Φπ2 = −βGπ(π∗; y∗; 0) = F (π∗; y∗; 0),

we again obtain λ = 1/(1 + εφ). Thus once again, under the assumption that φ′(p∗) > 0, we

obtain 0 < λ < 1, the implicit function theorem applies, and the proposition is established.

33As before, we use the notation DπΦ to denote the partial derivatives with respect to variations in log πt

for each date t, rather than partial derivatives with respect to πt.
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34

The Wicksellian policy rules described in Propositions 1 and 2 hardly exhaust the cases

in which a well-behaved cashless limit exists. In particular, it will be observed that in the

proofs of both propositions, the assumption that φ is an increasing function plays a crucial

role. Without that assumption, perfect foresight may be indeterminate (i.e., not even locally

unique). This does not mean that there is no equilibrium in the cashless limit, but simply

that there is no single equilbrium in the cashless limit that approximates all of the equilibria

of a small-α economy, even all of those that remain forever within a neighborhood of the

steady-state values for the endogenous variables. Furthermore, even with a monetary policy

rule of such a kind – say, a pure interest-rate peg, in which (3.7) is replaced by an exogenous

sequence for {Rt} – it is possible for perfect foresight equilibrium to be uniquely determined,

if fiscal policy is not of the balanced-budget sort assumed above. In many such cases, the

cashless limit is again well-behaved, and approximation results similar to Propositions 1 and

2 can be established.

Consider, for example, the case of an exogenously determined path for the real pri-

mary government budget surplus, which in the present context (which already assumes zero

government purchases) is equivalent to an exogenous sequence for real net tax collections

τt ≡ Tt/pt. Using (2.11), (2.12), and (2.23), this implies that total financial wealth (which

34The crucial result required for applicability of the implicit function theorem is the demonstration that
perfect foresight equilibrium is determinate (locally unique) near the steady state, in the case of an interest-
rate rule (3.24) with φ′ > 0 and a balanced-budget fiscal policy. This result is closely related to that obtained
by Schmitt-Grohé and Uribe (1997) for a similar policy regime in the case of a cash-in-advance monetary
model of the kind proposed by Lucas and Stokey (1987), and also similar to that obtained by Leeper (1991)
for a similar monetary policy, in the case of a Sidrauski-Brock model and a fiscal policy rule that, while not
ensuring budget balance each period, also limits the growth of the public debt.
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equals total government liabilities) evolves according to

Wt+1 = Rt[Wt − ptτt] − (Rt − 1)ptµ(Rt)yt. (3.29)

In this case, it is no longer true that the transversality condition (2.21) is necessarily satisfied

by any sequences for πt and Rt that satisfy appropriate bounds, and thus no longer true

that even all solutions to (3.10) that satisfy such bounds must constitute perfect foresight

equilibria. In fact, one can show 35 that (2.21) is satisfied if and only if

Wt

pt
= u′(ω(Rt)yt)

−1θ1(Rt)
1−γ

∞∑
T=t

βT−tu′(ω(RT )yT )θ1(RT )γ−1[τT +(1−R−1
T )µ(RT )yT ]. (3.30)

Condition (3.30) uniquely determines the price level pt at any date, given the nominal value

Wt of financial assets carried into that period, and the expected future paths of RT , τT , and

yT , all of which are exogenous series under the regime described. 36 But then condition

(3.29) uniquely determines Wt+1, and so (generically) the complete equilibrium sequences

are uniquely determined, given an initial condition W0.

These equilibrium conditions are also well-behaved in the cashless limit; 37 (3.29) and

(3.30) become simply

Wt+1 = Rt[Wt − ptτt], (3.31)

Wt

pt
= u′(yt)

−1
∞∑

T=t

βT−tu′(yT )τT (3.32)

35See Woodford (1994) and (1995) for details, and Sims (1994) for a similar result.
36Thus under this sort of regime, what I have elsewhere (Woodford, 1995) called a “fiscal theory of the

price level” is possible. In this case, the equilibrium conditions fail to be homogeneous degree zero in money
prices, not because of the character of the central bank’s reaction function, as in the Wicksellian regimes, but
because the predetermined state variable Wt is specified in nominal terms, and the fiscal policy rule implies
that Wt/pt affects the intertemporal budget constraint (2.10) of the representative household, contrary to
what would be the case under a “Ricardian” fiscal policy. See also Woodford (1996) for further discussion
of such regimes.

37This was first observed by Sims (1994), in the case of a slightly different transactions technology.
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respectively. Equations (3.31) and (3.32) have a unique solution, and the implicit function

theorem can again be used to show that the solution to equations (3.29) and (3.30) have

is near it for all small enough sequences α. Analysis of such regimes is not only possible

in the cashless limit; use of the limiting equations makes the effects of fiscal shocks on the

equilibrium price level more transparent. This is especially true when the monetary policy

rule is more complex, and allows the interest rate to be a function of the price level or

inflation rate, as in the regime considered in Woodford (1996). Because the right-hand side

of (3.30) is independent of the interest rate in the cashless limit, it is easy to see that (3.30)

continues to have a unique solution for the price level in the limiting case. The implicit

function theorem can then be used to show the existence of at least a locally unique solution

in any small-α economy. Thus, once again, the real factors that affect the equilibrium price

level are brought into sharper focus by abstracting from the role of money in exchange. 38

4 The Determinants of Inflation under a Wicksellian

Regime

In the previous section, we have established the existence of a well-defined equilibrium asso-

ciated with the cashless limit of our model, in the case of a Wicksellian regime of either of two

sorts, and have shown that this equilibrium can be used as an approximation to the behavior

of the price level under such a regime, in the case of an economy in which the fraction of

transactions that require cash is positive but small. We now turn to a more detailed consid-

eration of the theory of price-level determination that is obtained using this approximation.

38As Sims (1994) notes, proceeding to the cashless limit also makes it clear that the effects of fiscal shocks
on the price level under such a regime are not due to any connection between the government budget and
the path of the money supply due to the contribution of seignorage revenues to the government budget.
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In this way we can see how it is possible to discuss the effects both of monetary policy and

of other real disturbances upon equilibrium inflation, without any reference to variations in

either money demand or the money supply.

Let us first consider the sort of price-level-targeting regime described in Proposition 1.

We can slightly generalize (3.7) to allow for time-variation in monetary policy, possibly in

response to disturbances to the economy (real or perceived). Thus we now write

Rt = 1 + ρt[φ(pt) − 1], (4.1)

where ρt > 0 each period, and φ(p) has the same properties as in (3.7); note that (4.1)

continues to satisfy (2.16) at all times. We shall restrict attention to the case in which

ρt belongs always to a small neighborhood of the value 1. We may also generalize the

model introduced in section 2, to allow for an additional type of real disturbance, namely,

fluctuations in the rate of time preference. 39 Thus we replace (2.1) by

∞∑
t=0

[
t−1∏
s=0

βs]u(Ct), (4.2)

where {βt} is a series of time-varying discount factors. We shall restrict attention to the case

in which βt belongs always to a small neighborhood of a value β∗ satisfying 0 < β∗ < 1.

In this extension of the model, a perfect foresight equilibrium is again a price sequence

satisfying a set of conditions of the same form as equations (3.10) – (3.12). However, now

the factor β in (3.10) must be replaced by βt; and the factor βT in (3.11) and (3.12) must

be replaced by
∏T−1

t=0 βt. Furthermore, in the definitions of the functions F , G, and H , the

function φ(p) must be replaced by the right-hand side of (4.1). The implicit function can be

39This is intended, in our simple model, to stand in for all of the sorts of disturbances, unrelated to
monetary policy or to the economy’s productive capacity, that affect the desired intertemporal resource
allocation at given real interest rates – what in traditional language would be called “IS shocks”.
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used as before to extend Proposition 1 to this case. The sequence of equilibrium conditions

corresponding to (3.10) can be written in the form Φ(p; y, β, ρ; α) = 0, where the mapping Φ

is continuously differentiable with respect to the sequences β and ρ as well. Using the same

argument as before, 40 this equation implicitly defines a continuous function f such that the

sequence p = f(y, β, ρ; α) is the unique equilibrium with the property that pt belongs to a

certain neighborhood of p∗ for all t, for any sequences y, β, ρ and α confined to sufficiently

small neighborhoods of the constant values y∗, β∗, 1 and 0. Because of the continuity of f in

α, the function

p = flim(y, β, ρ) ≡ f(y, β, ρ; 0)

can be used an approximate description of the way the price level responds to fluctuations

in productive capacity, preferences with regard to the timing of consumption, and monetary

policy. Our goal now is to characterize the way that flim depends upon these variables. The

following log-linear approximation to flim is useful in the case of sufficiently small fluctuations

in any of its arguments.

Proposition 3 Let preferences be specified by (4.2), and consider a Wicksellian regime of

the kind described in Proposition 1, but with (3.7) replaced by (4.1). Then for any sequences

y, β, ρ and α that are close enough (in terms of the sup norm 41 ) to the constant sequences

y∗, β∗, 1 and 0, the locally unique equilibrium price sequence given by the function f referred

to in Proposition 1 can be approximated by

p̂t =
∞∑

j=0

λj+1[σ−1(ŷt+j+1 − ŷt+j) − β̂t+j − ρ̂t+j ], (4.3)

40Note that the derivative mapping DpΦ(p∗; y∗, β∗, 1; 0) is exactly the same as that computed before, with
the factor β replaced by β∗, so that again it has the properties required for the implicit function theorem to
apply.

41Here we use the norm (3.3) for the first three sequences, and (3.1) for α.
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where for each variable, x̂t ≡ log(xt/x
∗) indicates percentage deviations from the constant

steady-state value, except that ρ̂t ≡ (1−β) log(ρt),
42 and once again λ ≡ 1/(1+εφ). Equation

(4.3) would become exact with the addition of a remainder term, which term is of at least

second order in |y − y∗|, |β − β∗|, and |ρ − 1|, and of at least first order in |α|.

This result is obtained as a further consequence of the implicit function theorem. Be-

cause the mapping Φ is continuously differentiable, the function f implicitly defined by it is

continuously differentiable as well. Then, by Taylor’s theorem, 43 we can write

p̂ = Dxf(x∗; 0) · x̂,

where x is a vector that includes all of the arguments of flim, x∗ is the vector of steady-state

values for those variables, and Dxf denotes the partial derivative of log f with respect to the

elements of log x, and where we omit a residual that is of at least second order in |x − x∗|,

and of at least first order in |α|. We thus need simply to compute the derivative Dxf . The

implicit function theorem also tells us that this is given by

Dxf(x∗; 0) = −[DpΦ(p∗; x∗; 0)]−1 · DxΦ(p∗; x∗; 0).

The mapping [DpΦ]−1 has already been computed earlier, and is given by (3.18). The

mapping DxΦ is easily computed, using the same method as was used earlier to compute

DpΦ. One thus obtains (4.3).

Note that this method of computing Dxf is equivalent to log-linearizing the system of

equilibrium conditions corresponding to (3.10) around the steady-state values (p∗; x∗), and

42This rescaling of ρ̂t implies that now ρ̂t = .01 indicates a one percentage-point increase in the nominal
interest rate that the central bank sets in the case that pt = p∗. This is a more natural measure of the
size of the vertical shift in the central bank’s policy schedule, and is especially convenient for purposes of
comparison with the size of shifts in the “natural rate” of interest, below.

43For a version of the theorem applicable to general Banach spaces, and thus suitable for our purposes,
see Lang, 1983, pp. 115-116.
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then solving for the unique bounded solution for the sequence p̂, given bounded sequences x̂

for the disturbances. In the cashless limit, the relevant equilibrium conditions are obtained

by substituting (4.1) into (3.19), to obtain

u′(yt)

pt[1 + ρt(φ(pt) − 1)]
= βt

u′(yt+1)

pt+1
. (4.4)

The log-linear approximation to this nonlinear difference equation (keeping only the terms

of first order in p̂ and x̂ in the Taylor-series expansions of both sides) is in turn given by

−(1 + εφ)p̂t − σ−1ŷt − ρ̂t = β̂t − p̂t+1 − σ−1ŷt+1. (4.5)

Rearranging terms, this may be written

p̂t = λ[σ−1(ŷt+1 − ŷt) − β̂t − ρ̂t] + λp̂t+1.

Since |λ| < 1, it is then obvious that there is a unique bounded solution for the sequence

p̂, given any bounded sequences of disturbances ŷ, β̂, and ρ̂, and that this is given by (4.3).

This then represents a first-order Taylor-series approximation to the function flim, and the

proposition is established.

Note that the solution (4.3) can be written more simply as

p̂t =
∞∑

j=0

λj+1[r̂t+j − ρ̂t+j ], (4.6)

where the variable

r̂t ≡ σ−1(ŷt+1 − ŷt) − β̂t (4.7)

measures percentage variations in the equilibrium real rate of return (in the cashless limit),

which is independent of monetary policy. 44 Fluctuations in the exogenous variable r̂t suffice

44Equation (4.7) for variations in the equilibrium real rate can be obtained as a log-linear approximation
to the Euler equation (3.19) for the cashless limit.
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to summarize the effects of disturbances to either preferences or productive capacity upon

equilibrium inflation under this kind of regime.

Equation (4.6) may be given a Wicksellian interpretation. We observe first that a current

or expected future “tightening” of monetary policy, in the sense of increase in ρ, lowers

the equilibrium price level, and is thus an appropriate response to perceived inflationary

pressures. The central bank raises short-term nominal interest rates in order to lower the

general price level, as Wicksell argued. There are, of course, noteworthy differences between

our account and Wicksell’s simpler one. First of all, in a perfect foresight equilibrium, the

anticipation of future tightening lowers the equilibrium price level immediately. On the other

hand, in the present simple model, there are no “inertial” effects of past monetary policy,

or of past expectations regarding current or future monetary policy, upon the price level;

price-level determination is purely forward-looking. Second, it is important to note that in

our account, a “tightening” of policy means a shift up of the entire schedule indicating the

interest rate Rt that the central bank will set for each possible price level pt, and not simply an

increase in the increase rate. The place where this is especially crucial is in the specification

of expectations regarding future monetary policy; we have solved for the equilibrium price

level (and expected future path of the price level) under a particular stipulation regarding

the expected future evolution of the policy schedule Rt(pt), and not simply for an expected

future path of the interest rate Rt.
45

45Under the other assumptions of our model, especially the specification of a balanced-budget fiscal policy, a
monetary policy specified simply in terms of a path for the nominal interest rate would not uniquely determine
the equilibrium path of the price level; to be precise, there would not even be a locally unique solution, in
terms of the sup norm topology. This is because of the much-discussed problem of price-level indeterminacy
under an interest-rate peg. (For a demonstration that a unique equilibrium price level may result under
an alternative specification of fiscal policy, however, see Woodford, 1994, 1995.) This is sometimes argued
to imply that Wicksell’s analysis of the connection between interest and prices is incompatible with perfect
foresight or rational expectations reasoning (e.g., Laidler, 1991, pp. 132-135). But we show here that this
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Equation (4.6) also indicates that the disturbances not originating with the central bank,

but that affect the equilibrium price level, can be completely summarized by the expected

evolution of the equilibrium real rate of return r̂t, which depends purely upon real factors

(preferences and productive capacity). The equation implies that prices will rise if there is

an exogenous increase in the current or expected future “natural rate” of interest r̂t, that is

not matched by a corresponding tightening of monetary policy. Alternatively, a loosening of

monetary policy will cause prices to rise, unless it has been justified by an exogenous decline

in the “natural rate” of interest. This attribution of price-level changes to changes in the

relation between the “natural rate” of interest, determined by real factors, and the level of

nominal rates determined by central bank policy, of course, recalls Wicksell’s (1898) famous

account, though again our theory is forward-looking rather than inertial. 46

While it is crucial to our analysis that the Wicksellian regime involve a (possibly time-

varying) policy schedule that adjusts nominal interest rates in response to changes in the

price level, it is not essential that the central bank care about the absolute level of prices, as

assumed in (4.1). We might instead, and more realistically under modern conditions, suppose

that the central bank’s policy schedule specifies the nominal interest rate as a function of the

rate of inflation rather than price level. Generalizing (3.24). let us consider a time-varying

monetary policy rule of the form

Rt = 1 + ρt[πtφ(πt) − 1], (4.8)

problem is solved by conceiving of monetary policy as specifying a schedule for each date (and, in a stochastic
model, each possible state of the world), rather than simply an interest rate. The resulting analysis still has
much of the flavor of Wicksell’s.

46Wicksell’s own analysis of the consequences of a discrepancy between market interest rates and the
“natural rate” depends upon backward-looking expectations, especially in his account of the “cumulative
process” of inflation set in motion by such a discrepancy.
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where φ(π) has again the properties assumed in (3.24), and {ρt} is again an arbitrary positive

sequence. Note that (4.8) necessarily satisfies (2.16), and that it reduces to (3.24) in the case

that ρt = 1 for all t. As with (4.1), an increase in ρt shifts up the schedule Rt(πt) at each

possible inflation rate πt > π. We shall again restrict our attention to the case in which ρt

varies over a small neighborhood of the value 1.

The results of Proposition 2 are easily extended to the case in which the policy rule is

given by (4.8) and preferences are given by (4.2). We can also easily derive a first-order

Taylor-series approximation to the locally unique equilibrium path for inflation described in

that proposition, of the kind given for the price-level-targeting regime in Proposition 3.

Proposition 4 Let preferences be specified by (4.2), and consider a Wicksellian regime of the

kind described in Proposition 2, but with (3.24) replaced by (4.8). Then for any sequences

y, β, ρ and α that are close enough (in terms of the sup norm) to the constant sequences

y∗, β∗, 1 and 0, the locally unique equilibrium inflation sequence given by the function f

referred to in Proposition 2 can be approximated by

π̂t =
∞∑

j=0

λj+1[r̂t+j − ρ̂t+j ], (4.9)

where again r̂t is the series defined in (4.7). Again, equation (4.9) would become exact with

the addition of a remainder term, which term is of at least second order in |y− y∗|, |β − β∗|,

and |ρ − 1|, and of at least first order in |α|.

The proof of this proceeds as in the case of Proposition 3. The relevant generalization of

difference equation (3.25) reduces in the cashless limit to

u′(yt)

1 + ρt(πtφ(πt) − 1)
= βt

u′(yt+1)

πt+1
, (4.10)
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which again simply corresponds to substitution of (4.1) into (3.19), once the latter equation

has been generalized to allow for a time-varying discount factor. A log-linear approximation

to (4.10) is in turn given by

−(1 + εφ)π̂t − σ−1ŷt − ρ̂t = β̂t − π̂t+1 − σ−1ŷt+1.

Note that this is exactly equation (4.5), except with the variable π̂t replacing p̂t. Thus the

unique bounded solution for the sequence {π̂t} is identical to that previously obtained for

{p̂t}, and we obtain (4.9) instead of (4.6).

We find, once again, that “tightening” of monetary policy, in the sense of an upward shift

in the schedule Rt(πt), lowers inflation, as does the expectation of a future tightening. We

also find that real disturbances can cause variations in equilibrium inflation, in the absence

of any instability in monetary policy (in the sense of shifts in the R(π) schedule), and more

specifically, that increases in the “natural rate” of interest, if not countered by a tightening

of monetary policy, are inflationary. In this emphasis upon real disturbances, unrelated

to monetary frictions, as a source of inflationary impulses, our theory agrees with that of

Wicksell; and as he did, we find that it is useful to analyze the effects of these disturbances

in a model that abstracts entirely from the use of money in exchange. By shifting attention

away from the determinants of money demand, and disturbances affecting them, and instead

toward the determinants of the “natural rate” of interest, and disurbances affecting it, I

believe that this sort of theory emphasizes the structural relations that are central to an

understanding of the kind of policy regimes that are of greatest current interest. And this

should become all the more true as the “pure credit economy” that Wicksell considered for

analytical purposes becomes a progressively better description of reality.
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This model of inflation determination has obvious consequences for the conduct of a

monetary policy that aims at inflation stabilization. 47 An equilibrium in which πt = π∗ at

all times is achieved if and only if ρt is adjusted so as to precisely track the variations in the

“natural rate” of interest. The optimal rule from this point of view is uniquely determined

only within the class of rules of the form (4.8); there is no demonstration that a rule of this

form is the only kind that can work, and indeed we have already seen that rules of the form

(4.1) and (4.8) are equally able to achieve complete price stability in principle. Nonetheless,

the state-dependent “Taylor rule” is at least a simple example of a suitable rule, and one

that would seem to be of practical interest.

Of course, before this insight can be translated into a practical proposal for monetary

policy, one needs to develop a more sophisticated model of the determinants of the natural

rate than is offered here. Among the more obvious omissions in our model is any consideration

of the role in real interest-rate determination of the existence of capital goods and consumer

durables; we have also abstracted from decision lags or other adjustment costs in the response

of spending decisions to interest rates, and from heterogeneity across households. Finally,

we have abstracted from any form of price stickiness, and from any opportunity for demand

variations to effect the economy’s output. Still, I believe that this model illustrates how

the real determinants of equilibrium real rates of return become the primary sources of

inflationary or deflationary pressures under a Wicksellian regime, and of how non-monetary

models of intertemporal resource allocation and real interest-rate determination (of which

our Euler equation (3.19) represents a simple but canonical example) can be applied to

47Of course, the present simple model, in which inflation has no consequences for real activity, does not
explain why policymakers should want to stabilize inflation. In an extension of the model with nominal
rigidities, however, such a goal can be justified on welfare-economic grounds, along the lines indicated in
Rotemberg and Woodford (1997).
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the problem of modelling the consequences of monetary policy. Rotemberg and Woodford

(1997) present an extension of the present model with sticky prices, decision lags in the

response of purchases to real interest-rate changes, and with stochastic processes specified

for the real disturbances, which is able to account for a number of quantitative aspects of

the comovements of interest rates, inflation, and output, in US time series. That extension

is intended to offer a more realistic model, that can be used for quantitative analysis of

alternative policy rules; further research will doubtless allow even greater realism in future

variants of such a model.

Another practical problem, even given a complete understanding of how the underly-

ing real disturbances affect the “natural rate” in principle, concerns the way in which the

central bank is to determine the current state of the economy, in order to implement a state-

contingent policy of the kind just hypothesized. One certainly cannot assume that the central

has direct knowledge of “the natural rate of interest”, or even of more primitive notions such

as “the current rate of time preference of the representative household”. In practice, then,

policy must rely upon various indicator variables, that may reveal the underlying state of the

economy with a greater or lesser degree of precision. The study of the consequences of mon-

etary policy rules using endogenous variables as indicators raises additional complications

not present in the above analysis, where the policy shifts {ρt} were treated as an exogenous

sequence (the idea being that ρt is set as a function of exogenous state variables, such as

βt and yt). The way in which ρt is made to depend upon endogenous indicator variables

will, in general, affect the equilibrium determination of those variables, and in particular,

may undesirably affect their usefulness as indicators of the underlying states to which it is

desired that ρt should respond. Furthermore, dependence of ρt upon endogenous variables
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makes the proofs of Propositions 3 and 4 invalid; specifically, the derivative mapping DpΨ

or DπΨ may not be invertible, as required for application of the implicit function theorem,

even when the monetary policy rule is otherwise of the kind assumed in those propositions.

In such a case, rational expectations equilibrium is not even locally unique. When one ex-

tends the analysis to consider stochastic equilibria, one finds a large class of equilibria, even

when one restricts attention to equilibria in which the endogenous variables fluctuate within

bounded intervals; these include “sunspot” equilibria, in which inflation and other variables

respond to arbitrary random events due to self-fulfilling expectations, as well as equilibria in

which the response to real disturbances is disproportionate to the magnitude of the change

in “fundamentals” such as productive capacity or household marginal rates of substitution.

48

Both of these problems are illustrated in the context of a specific proposed implementation

of “inflation targeting” in Bernanke and Woodford (1997). Many proponents of inflation

targeting have suggested that a desirable policy should respond not simply to current or

past inflation, as in the “Taylor rule” (3.24), but especially to indicators that forecast future

inflation – perhaps actual forecasts, generated outside the central bank, perhaps asset prices

or spreads that are taken to indicate “market expectations” of future inflation, or perhaps

simply variables that have been found to be useful in forecasting inflation by the central bank.

49 This might seem an appealing proposal, for reasons that are independent of any particular

model of the way in which inflation is determined. But Bernanke and Woodford show, in

the context of a model only slightly more complex than that presented here, that at least

48These consequences are treated in detail in Woodford (1986).
49For discussions of the actual or ideal use of forecasts and indicators of forecasts in monetary policy, see,

e.g., Hall and Mankiw (1994), King (1994), Sumner (1995), Freedman (1996), and Svensson (1997).
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some naive sorts of “forecast targeting” rules have undesirable consequences, both because

the response of monetary policy to the forecasts reduces the extent to which they contain

information, in equilibrium, about the underlying real disturbances to which the central bank

wishes to respond, and because the response of policy to variations in private expectations

can make those expectations self-fulfilling. The implication is not that it is impossible for a

central bank to infer the underlying real states and adjust policy in response to them, but

rather that the design of a policy rule that accomplishes this must make use of a structural

model of the way in which these real states determine both inflation and the various available

indicator variables. Bernanke and Woodford show how a simple structural model along the

lines presented here can be used to this end. 50 While, again, a more detailed model would

be necessary in order to derive a proposal that could be recommended for practical use,

even their simple exercise suggests that the type of framework proposed here can be used

to clarify one’s thought about issues of considerable practical significance for the design of

monetary policy rules.

5 Conclusion

Ed Prescott used to like to ask, why is monetary economics any more important than postal

economics? Sure, there are frictions involved in making payments, but there are frictions

involved in getting goods and documents from one place to another, too. So why should

economic theorists lavish so much attention upon the problem of modelling the details of

the use of money in making payments, while completely neglecting the role in the economy

of the postal system?

50The NBER working paper contains more detail on this than does the published paper.
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When I first heard this question – I was at that time quite engaged with the foundations

of the demand for money, and their implications for the welfare analysis of monetary policy

– I regarded it as too frivolous to deserve much thought. For I assumed that Prescott meant

to suggest that the level of money prices was of no significance to the economy, and that the

conduct of monetary policy was of little importance, so that one could afford to neglect the

development of monetary theory. And I felt that these premises could be easily rejected.

But over the years, I have found myself coming around to something like the view that

Prescott may have meant to suggest. This is not because I have ceased to believe that

price stability matters, or that the proper conduct of monetary policy is one of the most

important matters with respect to which economists are called to give expert advice. Instead,

it is because I have realized that the project of modelling the fine details of the payments

system and the sources of money demand is not essential to the explanation of how money

prices are determined, or to the analysis of the effects of alternative monetary policies. And

indeed, I now think that, at least in the case of economies with developed financial systems,

and in the case of policy regimes that do not lead to serious disruptions of the financial

system, one may legitimately abstract from such frictions, at least as a first approximation,

just as one abstracts from many other frictions, including those that the postal system exists

to deal with.

I have shown in this paper how one can study the effects of monetary policy in the

“cashless limit” of a monetary economy, and how one can rigorously justify the use of the

results so obtained as an approximation to what one would find in the case of an economy

in which monetary frictions exist, but are small. Of course, the mere existence of a well-

defined cashless limit is hardly a proof that this approximation is a useful one. The question,
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ultimately, is what other aspects of the problem of monetary policy can be brought into better

focus, if one dispenses with the complication of modelling the role of money in the economy. I

believe that the principal gain is a simpler, and more straightforward view of the way in which

the real determinants of equilibrium asset prices and rates of return affect the equilibrium

price level, and hence of the way in which these real factors give rise to inflationary and

deflationary pressures to which monetary policy should seek to respond, as Wicksell argued

a century ago. Analysis of the cashless limit also makes it clear that improvements in the

efficiency of financial arrangements, that reduce or destabilize the demand for the monetary

base, need not be a source of macroeconomic instability. Once one specifies monetary policy

in a way that makes the cashless limit well-behaved, it becomes possible to separate the

problems of the desirable regulation of the payments system and of the desirable conduct of

monetary policy. Clearer thought about both problems is likely to be the result.
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