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Researchers often collect multiple observations from many individuals, For
example, in research examining the relationship between stress and mood,
a rescarch participant may complete measures of both these variables every
day for several weeks, and so daily measures are grouped within partici-
pants. In relationship research, a respondent may report on characteristics
of his or her interactions with a number of different friends. In developmen-
tal research, individuals may be measured at many different times as they
develop. In cognition research, reaction times may be observed for multiple
stimuli.

These types of data structures have been analyzed using standard
{ANOVA) methods for repeated mecasures designs. The most important
limitation of the analysis of variance (ANOVA) approach is that it requires
balanced data. %o, in the previous examples, each person would be re-
quired to have the same pumber of repeated observations. For example,
in the stress and mood study, everyone might have to participate for ex-
actly 14 days, and in the relationships study each respondent might report
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on interactions with exactly four friends. It is often the case, however,
that data structures generated by repeated observations are not balanced,
either because of missing observations from some participants or, more fun-
damentally, because of the nature of the research design. If, for instance,
researchers were interested in learning about naturally eccurring interac-
tions with friends, they might have individuals describe their interactions
with each person whom they consider to be z friend. For individuals who
have few friends, there would be very fow observations, whereas for other
individuals there would be many. '

An additional factor can make the design unbalanced even if the number
of observations per person is equal. For the design to be balanced, the
distribution of each predictor variable must be the same for each person.
So, if the predictor variable were categorical, there would need to be the
same number of observations within each category for each person, If the
predictor variable were continuous, then its distribution must be exactly
the same for each person. The likelihood of the distribution being the same
for each person is possible, but improbable. For example, in a study of
stress and moad, it is unlikely that the distribution of perceived stress over
the 14 days would be the same for each person in the study.

In this chapter we introduce the technigque of multilevel modeling as a
means of overcoming these limitations of repeated measures ANOVA. The
multilevel approach, also commonly referred to.as hierarchical linear mod-
eling, provides a very general strategy for analyzing these data structures
and can easily handle unbalanced designs and designs with continuous pre-
dictor variables. In introducing multilevel modeling, we focus our attention
on traditional estimation procedures {ordinary least squares and weighted
least squares) that, with balanced data, produce resulis identical to those
derived from ANOVA techniques. We also introduce nontraditional esti-
mation methods that are used more extensively in subsequent chapters.

We begin by introducing a research question on how gender of interac-
tion partner affects interaction intimacy. We follow this by presenting an
artificial, balanced data set on this topic and provide a brief overview of the
standard ANOVA approach to analyzing such a data set. We then intro-
duce a real data set in which the data are not balanced, and we consider an
alternative to the ANOVA maodel, the multilevel model. Finally, we com-
pare the least-squares estimation approaches described in this chapter to
the maximum likelihood estimation approaches discussed in other sections
of this book.

STANDARD ANOVA ANALYSIS FOR BALANCED
DATAS

Consider ahypothetical Rochester Interaction Record (RIR; Reis & Wheeler,
1991) study of the effects of gender on levels of intimacy in social interac-
tion. The RIR is a social interaction diary that requires persons to complete
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a set of measures, including the interaction partner’s gender and interac-
tion intimacy, for every interaction that he or she has over a fixed interval.
In our study, each of 80 subjects ! (40 of each gender) interacts with six
partners, three men and three women. The study permits the investigation
of the degree to which the gender of an interaction partner predicts the
level of perceived intimacy in interactions with that partner. One can also
test whether this relationship varies for men versus women, that is, women
may have more intimate interactions with male partners, whereas men have
more intimate interactions with female partners.

Using conventional ANOVA to analyze the data from this study would
result in a source table similar to that presented in Table 1.1. In the table,
partner gender is symbolized as X, subject gender is denoted as Z, and §
represents subjects. Listed in the table are the sources of variance, their
degrees of freedom, and the error terms for the F' tests (the denominator of
the F ratio) that evaluate whether each effect differs significantly from zero.
The multilevel modeling terms that correspond to each effect are presented
in the last column of the table. Thess terms are introduced later in the
chapter. It is helpful to have an understanding of the different sources of
variance. The between-subject variation in Table 1.1 refers to the variation
in the B0 means derived by averaging each subject’s intimacy ratings over
the six partners. This between-subject variation can be partitioned into
three sources, the grand mean, subject gender (Z), and subject within
gender (5/Z). The mean term represents how different the grand mean
is from zero, and the subject gender variation measures whether men or
women report more intimacy across their interactions. The third source of
variation results from differences between subjects within gender. Within
the group of males and females, do some people report more or less intimacy
in their interactions?

The within-subject variation refers to differences among partners for
each subject: Do people differ in how intimate they see their interactions
with their six partners? The partner gender effect {X') refers to whether in-
teractions with male versus female partners are more intimate. The partner
gender by subject gender interaction (X by Z) refers to whether same or
opposite gender interactions are seen as more intimate. The partner gender
by subject interaction (X by SfZ) is the variation in the effect of gender
of partner for each subject (i.e., to what degree does the mean of female
partners minus the mean of male partners vary from subject to subject).
Finally, there is variation due to partner {P/X.5/Z), and the issue is how
much the intimacy ratings of interactions with partners differ from one an-
other controlling for partner gender. Fach person reports about three male
and three female partners, and this source of variance measures how much
variation there is in intimacy across interactions with partners who are of
the same gender. Becanse in this example participants interact with a given

LW use subject to refer to the research participants so that subjects [5) can easily
be distinguished from partners (P') in our notation.
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Table 1.1
ANOVA Source Table for the Hypothetical Balanced Case

Source df Error Term Faraometer
Between Subjects 80

Mean 1 5/2 g

Subject Gender {Z) 1 S5/ a4

Subject (S/Z) 78 P/XS/Z aqt
Within Subjects 400

Partner Gender [X) 1  XbyS/Z o

X by 2 1 XhyS/Z et

X by S/Z 8 PJXS[Z ast

Error (P/XS/Z) 320  Not tested T

partner only once, this source of variability cannot be distinpuished from
other, residual sources, such as measurement error in Y. We therefore call
all of the remaining variance in ¥V error.

Within this model, there are three random effects: Subject (S/Z), Sub-
ject x Partner Gender (X by S/Z), and Error (PfXS/Z). It is possible to
use the ANOVA mean squares to derive estimates for the Subject, Subject
% Partner Gender, and Error variances. The subject variance, symbolized
as o4 for reasons that will become clear in the multilevel modeling sec-
tion of this chapter, measures variation in average intimacy scores after
controlling for both subject and partner gender. The Subject x Partner
Gender variance, symbolized as ¢;%, measures the degree to which the ef-
fects of PPartner Gender differ from subject to subject after controlling for
the subject’s gender. Denoting a as the number of levels of X (a = 21in
this example) and b as the number of partners within one level of X (b=
3 in this example), then the standard ANOVA estimates of these variances

are given by
Subject: o4l = (MSS‘HZ - MSp‘.rxgl;g}fﬂb (1.1)

Subject. x Gender of Partner: Uf2 = (MSXMS,-’E - ﬂfs;:-fxsjrz}fb {],2]

As noted, an exact estimate of the partner variance cannot be obtained
because it is confounded with error variance, and so we represent the com-
bination of partner variance and error variance as o,°. Finally, although
not usually estimated, we could compute the covariance between Subject
and Subject x Partner Gender by computing the eovariance between the
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mean intimacy of the subject and the difference between his or her intimacy
with male and female partners. Such a covariance would represent the ten-
dency of those who report greater levels of intimacy to have more intimate
interactions with female (or male) partners. Although this covariance is
hardly ever estimated within ANOVA, the method still allows for such a
covariance.

The table also presents the usual mixed model error terms for each of
the sources of variance. For the fixed between-subjects sources of variance,
M55z is the error term. To test whether there are individual differences
in intimacy, M S5,z is divided by M5p;5x,z. The error term for the fixed
within-subject effects is M5y 5yz. Finally, the error term for MSy .52
is MSPJSXIH!- which itself cannot be tested,

MULTILEVEL MODELS

Multilevel Data Structure

The ANOVA decomposition of variance just described only applies to the
case of balanced data. For unbalanced data, a multilevel modeling ap-
proach becomes necessary. A key to understanding multilevel models is
to see that these data have a hierarchical, nested structure. Although re-
searchers typically do not think of repeated measures data as being nested,
it is the case that the repeated observations are nested within persons. In
hierarchically nested data with two levels, there is an upper-level unit and a
lower-level unit. Independence iz assumed across upper-level units but not
lower-level units. For example, in the repeated measures context, person
is typically the upper-level unit, and there is independence from person to
person. Observation is the Jower-level unit in repeated measures data, and
the multiple observations derived from each person are not assumed to be
independent. Predictor variables can be measured for either or both levels,
but the outcome measure must be obtained for each lower-level unit. The
following example should help to clarify the data structure.

Example Data Set

As an example of the basic data structure, we consider a study conducted
by Kashy (1991} using the RIR. In the Kashy study, persons completed the
RIR for 2 weeks. Like the previous balanced-data example, this study inves-
tigated the degree to which partner gender predicts the level of perceived
intimacy in interactions with that partner and whether this relationship
differs between men and women.

Because persons often interacted more than once with the same partner,
we computed the mean intimacy across all interactions with each partner
that is, for the purposes of this example, we created a two-level data set
in which subject is the upper-level unit and partner is the lower-level unit.
There are 77 subjects {51 women and 26 men) and 1,437 partners in the
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study., The number of partners with whom each person interacted over the
data ecollection period ranged from 5 to 51. The average iotimacy across
all interactions with a particular partner is the outcome variable, and it is
measured for every partner with whom the person interacted.

Partner gender, symbolized as X, 15 the lower-level predictor variable.
Mote that X can be either categerical as in the case of partner gender (X =
-1 for male partners and X = 1 for female partners) or it can be continuous
{£.g., the degree to which the person finds the partner to be attractive).
Subject gender is the upper-level predictor variable and is denoted as Z.
In repeated measures research, upper-level predictor variables may be ex-
perimentally manipulated conditions to which each subject is randomly
assigned or person-level variables such as gender, a person’s extroversion,
and s0 on. If & were a variable such as person’s extroversion, it would be a
continuous predictor variable, but hecause Z is categorical in the example,
it is a coded variable (£ = -1 for males and £ = 1 for females). Finally,
the cutcome variable, average intimacy of interactions with the partner, is
measured on a seven-point scale and is symbolized as Y.

Because a second example in which the X variable is continuous is
helpful, we make use of the fact that Kashy (1991) also asked subjects to
evalnate how physically attractive they perceived each of their interaction
partners to be. Ratings of the partner's attractiveness were centered by
subtracting the grand mean across subjects from each score. (We feel that
it is generally inadvisable to center X for each subject, so-called group
centering.) The second example addresses whether interactions with part-
ners who are zeen as more physically attractive tend to be more intimate.
We can also use subject gender as an upper-level predictor variable, which
allows us to test whether the relationship between attractiveness and inti-
macy differs for male and female subjects.

S0, in the example data set, subject is the upper-level unit, and subject
gender is the upper-level predictor variable or Z. Partner is the lower-level
unit and parther gender or partner’s physical attractiveness is the lower-
level predictor or X. Intimacy is the outcome variable or Y, and there is an
average intimacy score for each partner. The intimacy variable can range
from 1 to T, with higher scores indicating greater intimacy.

MOST BASIC APPROACH TO MULTILEVEL MODELING:
ORDINARY LEAST SQUARES

Although it is certainly possible for multilevel modeling to be a challenging
and complex data analytic approach, in its essence it is simple and straight-
forward. A separate analysis, relating the lower-level predictor, X, to the
outcome measure, Y, is conducted for each upper-level unit, and then the
results are averaged or aggregated across the upper-level units. In this
section we introduce the ordinary least squares (QOLS) approach to multis
level modeling without reference to formulas. Specific formulas describi
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multilevel analvses follow.

Using the partner’s physical attractiveness example, this would involve
computing the relationship between a partner’s attractiveness and inter-
action intimacy with that partner separately for each subject. This could
be done by conducting 2 regression analysis separately for each subject,
treating partner as the unit of analysis. Tn the Kashy (1991) example, this
would involve computing 77 separate regressions in which attractiveness is
the predictor and intimacy is the criterion.

Table 1.2 presents a sample of the regression results derived by predict-
ing average interaction intimacy with a partner using partner attractiveness
as the predictor. For example, Subject 1 had an intercept of 540 and a
slope of 1.29. The intercept indicates that Subject U's imimacy rating
for a partner whom he perceived to be of average attractiveness was 5.40.
The slope indicates that, for this subject, interactions with more attractive
partners were more intimate, that is, one could predict that, for Subject
1, interactions with 2 partner who was seen to be 1 unit above the mean
on attractiveness would receive average intimacy ratings of 6.69. Subject
4, on the other hand, had an intercept of only 2.20 and a slope of -.37. So,
not only did this subject perceive his interactions with partners of average
attractiveness to be relatively low in intimacy but he also reported that in-
teractions with more attractive partners were even lower in intimacy. Note
that, at this stage of the analysis, we do not pay attention to any of the
statistical significance testing results. Thus, we do not examine whether
each subject’s coefficients differ from zero.

The second part of the multilevel analysis is to aggregate or average
the results across the upper-level units. If the sole question is whether
the lower-level predictor relates to the outcome, one could simply average
the regression coefficients across the upper-level units and test whether the
average differs significantly from zero using a one-sample { test. For the
attractiveness example, the average regression coefficient iz 0.43. The test
that the average coefficient is different from zero is statistically significant
[t(76) = 8.48,p < .001). This coefficient indicates that there is a signifi-
cant positive relationship between partner’s attractiveness and interaction
intimacy such that, on average, interactions with a partner who is one unit
above the mean on attractiveness were rated as 0.43 points higher in inti-
macy. If meaningful, it is also possible to test whether the average intimacy
ratings differ significantly from zerc or some other theoretical value by av-
eraging all of the intercepts and testing the average using a one-sample {
test.

It is verv important to note that the only significance tests used in
multilevel modeling are conducted for the analyses that aggregate across
upper-level units. One does not consider whether each of the individual
regressions yields statistically significant coefficients. For example, it is
normally of little value to tabulate the number of persons for whom the X
variable has a significant effect on the outcome variable.

When there is a relevant upper-level predictor variable, £, one can ex-
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Table 1.2
A Sample of First-Step Regression Coefficients Predicting Interaction
Intimacy with Partner's Physical Attractiveness

Men
Subject Number Intercept Slope
1 5.40 1.29
2 338 03
3 2.64 o
4 2.2 =37
26 417 A8
Mean 3.78 a8
Women
Subject Number Intercept Slope
27 4.07 16
258 4.10 A3
249 3.88 98
30 5.53 a2
77 4.31 39

Mean 4.31 A5
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amine whether the coeflicients derived from the separate lower-level regres-
gions vary as a function of the upper-level variable. If 2 is categorical, a ¢
test or an ANOVA in which the slopes (or intercepts) from the lower-level
regressions are treated as the outcome measure could be conducted. For
example, the attractiveness-intimacy slopes for men could be contrasted
with those for women using an independent groups f test. The average
slope for men was M = 0.38 and for women M = 0.45. The ¢ test that
the two average slopes differ is not statistically significant, #(75) = 0.70,
ns. Similarly, one could test whether the intercepts (intimacy ratings for
partners of average attractiveness) differ for men and women. In the ex-
ample, the average intercept for men was M = 3.78 and for women M =
4.31, #(73) = 2.19, p = .03, and so women tended to rate their interactions
as more intimate than men. Finally, if £ were a continuous variable, the
analysis that aggregates across the upper-level units would be a regression
analysis. In fact, in most treatments of multilevel modeling, regression is
the method of choice for the second step of the analysis as it can be applied
to both continuous and categorical predictors.

Multilevel Model Equations

In presenting the formulas that describe multilevel modeling, we return to
the example that considers the effects of subject gender and partner gender
on interaction intimacy. As we have noted, estimation in multilevel models
can be thought of as a two-step procedure. In the first step, a separate
regression equation, in which Y is treated as the criterion variable that is
predicted by the set of X variables, is estimated for each person. In the
formulas that follow, the term i represents the upper-level unit, and for the
Kashy example i represents subject and takes on values from 1 to 77; j
represents the lower-level unit, partner in the example, and may take on a
different range of values for each upper-level unit because the data may be
unbalanced. For the Kashy example, the first-step regression equation for
person i s as follows:

Y;j = by; + an,-_,- + Bi5 {13}

where bg; represents the intercept for intimacy for person i, and by
represents the coefficient for the relationship between intimacy and partner
gender for person 1. Table 1.3 presents a subset of these coefficients for the
example data set. Given the way partner gender, or X, has been coded (-1,
1), the slope and the intercept are interpreted as follows:

boi: the average mean intimacy across both male and female
partners i

By the difference between mean intimacy with females and
mean intimacy with males divided by two
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Table 1.3
Predicting Interaction Intimacy with Partner’s Gender: Regression
Coefficients, Number of Partners, and Variance in Partner Gender

Men
Subject Number  Intercept (bo;)  Slope {5y4) Number oyt
of Partners
1 3,33 .Th 11 87
2 3.39 -.14 8 1.14
3 2.86 Ritt 16 50
4 1.94 -.34 15 B4
26 441 a7 14 T3
Mean 3.85 24
Women
Subject Number  Infercept (byi}  Slope (b)) Number ox?
of Partners
27 4.49 -.11 35 .60
28 4.03 03 22 RiY
29 3.G65 42 15 .50
30 2.08 A7 21 86
T 4.40 a2 19 A8
Mean 4.39 -.16

Note: Gender of partner is coded 1 = female, -1 = male.




e Vb ol T e S

Estimating Multilevel Models 11

Consider the values in Table 1.3 for Subject 1. The intercept, by, indi-
cates that across all of his partners this individual rated his interactions to
be 5.33 on the intimacy measure, The slope, &by, indicates that this person
rated his interactions with female partners to be 1.52 (0.76 X 2) points
higher in intimacy than his interactions with male partners.

For the second-step analysis, the regression coefficients from the first
step (see Equation 1.3) are assumed to be a function of a person-level
predictor variable Z:

R . T 1 (1.4)
hi=c+aZi+ fi (1.5)

There are two second-step regression quations, the first of which treats
the first-step intercepts as a function of the £ variable and the second of
which treats the first-step regression coefficients as a function of Z. In
general, if there are p variables of type X and ¢ of type £, there would be p
+ 1 gecond-step regressions each with ¢ predictors and an intercept. There
are then a total of p(g + 1) second-step parameters. The parameters in
Equations 1.4 and 1.5 estimate the following effects:

ag: the average response on ¥ for persons scoring zero on both
Aand £

ay: the effect of Z on the average response on ¥
ey the effect of X on ¥ for persons scoring zero on 2

eyt the effect of Z on the effect of X on ¥

Table 1.4 presents the interpretation of the four parameters for the
example. For the intercepts (by;, ap, and ey) to be interpretable, both X
and £ must be scaled so that either zero is meaningful or the mean of
the variable is subtracted from each score [i.e., the X and £ variables are
centered). In the example used here, X and Z (partner gender and gender
of the respondent, respectively) are both effect-coded (-1, 1} categorical
variables. Zero can be thought of as an “average”™ across males and females.
The estimates of these four parameters for the Kashy example data set are
presented in the OLS section of Table 1.5.

As was the case in the ANOVA discussion for balanced data, there
are three random effects in the multilevel models. First, there is the er-
ror component, e, in the lower-level or first-step regressions (see Equa-
tion 1.3). This error component represents variation in responses across

the lower-level units after controlling for the effects of the lower-level pre-
. dictor variable, and its variance can be represented as o2, In the example,

this component represents variation in intimacy across partners who are

" of the same gender (it is the partner variance plus error variance that was
.~ discussed in the ANOVA section). There are also random effects in each of
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Table 1.4
Definition of Effects and Variance Components for the Kashy Gender of
Subject by Gender of Partner Example

Definition of Effect

Multilevel
Effect Estimate Parameter
Constant ag
Subject Gender (Z) ay
Partner Gender (X) o
Xy Z i
Variance
Subject 7
X by Subject ot
Error ol

Typical level of intimacy across
all subjects and partners

Degree to which females see their
interactions a¢ more intimate
than males

Degree to which interactions
with fermnale partners are seen as
more intimate than those with
male partners

Degree to which the partner-
gender effect is different for male
and female subjects

Individual differences in the typ-
ical intimacy of a subject’s in-
teractions, controlling for part-
ner and subject gender

Individual differences in the ef-
fect of partner gender, control-
ling for subject gender

Wihin-subject variation in inter-
action intimacy, controlling for
partner gender (includes error
variance)
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the two second-step regression equations. [n Equation 1.4, the random ef-
fect is d; and it represents variation in the intercepts that is not explained
by Z. Note that d; in this context is parallel to MSsyz within the bal-
anced repeated measures ANOVA context, as shown in Equation 1.1. The
variance in d; is a combination of o3, which was previously referred to as
Subject variance, and o:. Finally, in Equation 1.5, the random effect is f;
and represents variation in the gender of partner effect. Note that f; here
is parallel 1o M Sxuys,z within the repeated measures ANOVA context, as
shown in Equation 1.2. The variance in f;isa combination of a} , which was
previously referred to as the Subject by Gender of Partner variance, and

g2, A description of these variances for the example is given in Table 1.4.

Recall that it was possible to obtain estimates of o3 and o for balanced
designs by combining means squares. As can be seen in Equations 1.1 and
1.2, in the balanced case the formulas involve a difference in mean squares
divided by a constant. In the unbalanced case (especially when there is a
continuous X ), this constant term becomes quite complicated. Although
we believe a solution is possible, so far as we know none currently exists.

The multilevel model, with its multistep regression approach, seems
radically different from the ANOVA model. However, as we have pointed
out in both the text and Table 1.1, the seven parameters of this multilevel
model correspond directly to the seven mean squares of the ANOVA model
for balanced data. Thus, the multilevel model provides a more general and
more flexible approach to analyzing repeated measures data than that given
by ANOVA, and OLS provides a straightforward way of estimating such
models.

Computer Applications of Multilevel Models with OLS
Estimation

One of the major advantages of using the OLS approach with multilevel
data is that, with some work, virtually any statistical computer package can
be used to analyze the data. The simplest approach, although relatively
tedious, is to compute separate regressions for each upper-level unit (each
person in the case of repeated measures data). In SAS, separate regressions
can be performed using a “BY” statement. If PERSON is a variable that
identifies each upper-level unit, the SAS code for the first-step regressions
could be:

FROC REG
MODEL ¥ = X
BY PERSON

Then a new data set that contains the values for bg; and by for eack
upper-level unit, along with any Z variables that are of interest, would b
entered into the computer. The OLS approach is certainly easier, howe
if the computer package that performs the first-step regressions can be
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to create automatically a data set that contains the first-step regression es-
timates. Although this can be done within 5AS using the QUTEST = data
set name COVOUT options for PROC REG, it can be rather challenging
because SAS creates the output data set in matrix form. Regardless of how
the data set is created, the coefficients in it serve as outcome measures in
the second-step regressions.

Complications in Estimation with Unbalanced Data

The OLS approach to multilevel modeling allows researchers to analyze
unbalanced data that cannot be handled by ANOVA. As we have noted,
there are two major reasons that data are not balanced, First, persons
may have different numbers of observations. This is the case in Kashy data
set where the number of partners varies from 5 to 51. Second, even if the
number of observations were the same, the distribution of X might vary
by person. In the example, X is partner gender, and the distribution of
X does indeed vary from person to person and so the variance of X differs
{see Table 1.3). As noted earlier, data are unbalanced if either the number
of observations per person is unequal or the distribution of the X variables
differs by person. Note that a study might be designed to be balanced, but
one missing observation makes the data set unbalanced,

MULTILEVEL ESTIMATION METHODS THAT WEIGHT
THE SECOND-STEP REGRESSIONS

The QLS approach does not take into account an important ramification
of unbalanced data: The first-step regression estimates from subjects who
supply many observations, or who vary more on X, are likely in principle
to be more precise than those from subjects who supply relatively few
observations or who vary little on X . A solution to this problem is to weight
the second-step analyses that aggregate over subjects by some estimate of
the precision of the fivst-step coefficients. How best to derive the weights
that are applied to the second-step analyses is a major question in multilevel
modeling, and there are two strategies that are used: weighted least squares
{WLS} and maximum likelihood (ML), Because the ML approach is treated
_ in detail in other chapters in the volume, we focus most of our attention on
the WLS solution. However, we later compare WLS, as well as OLS, with
ML.

. Multilevel Modeling with Weighted Least Squares

* Expanding the multilevel model from an OLS solution to a WLS solution
s relatively straightforward. As in QLS. in the WLS approach a separate
" analysis is conducted for each upper-level unit. This first-step analysis
" Is identical to that used in OLS, as given in Equation 1.3. The second-
L step analysis also involves estimating Equations 1.4 and 1.5. However, in
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the WLS solution, Equations 1.4 and 1.5 are estimated using weights that
represent the precision of the first-step regression results,

The key issue then is how to compute the weights. In WLS, the weights
are the sums of squares for X or 5§5; (Kenny et al., 1998), This weight is a
function of the two factors that cause data to be unbalanced: The number
of lower-level units sampled (partners in the example), and the variance of
X {partner gender in the example].

Multilevel Modeling with Maximum Likelihood

The major difference between ML and WLS solutions to multilevel model-
ing is how the weights are computed. The ML weights are a function of the
standard errors and the variance of the term being estimated (see chapter
5 for greater detail). For example, the weight given to a particular by is a
function of its standard error and the variance of d;. ML weighting is statis-
tically more efficient than WLS weighting, but it is computationally more
intensive. There is usually no closed form solution for the estimate, that is,
there i3 no formula that iz uszed to estimate the parameter. Estimates are
obtained by iteration and the estimates that minimize a statistical criterion
are chosen. In ML estimation, the first and second-step regressions are esti-
mated simultaneously, Several specialized stand-alone computer programs
have been written that use ML 1o derive estimates for multilevel data:
HLM/2L and HLM/3L (Bryk, Raudenbush, & Congdon, 1994), MIXREG
(Hedeker, 1993}, MLn {Goldstein, Rasbash, & Yang, 1994), and MLwiN
(Goldstein et al., 1998). Within major statistical packages, SAS's PROC
MIXED and BMDP’s 5V are available.

ESTIMATION OF WLS USING STANDARD COMPUTER
PROGRAMS

The estimation of separate regression equations 1s awkward and computa-
tionally inefficient. Moreover, this approach does not allow the researcher
1o specify that the X effect i= the same across the upper-level units. It
is possible to perform multilevel analyses that vield results identical to
those estimated using the “separate regressions” WLS approach but that
are more flexible and less awkward. This estimation approach treats the
lower level or observation as the unit of analysis but still accounts for the
random effects of the upper level. We illustrate the analysis using SAS's
GLM procedure as an example. The analvsis could be accomplished within
most general linear model programs. We use SAS because it does not re- |
quire that the user create dummy variables, but other statistical packages
could be nsed. The WLS analysis that we describe requires that a serieg
of three regression models be run, and then the multilevel parameters
tests are constructed from the results of these three models,
Lower-level units are treated as the unit of analysis. In other wor
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each observation is a separate data record. Each record has four variables:
the lower-level predictor variable X, the upper-level predictor variable 2,
the puteome variable ¥, and & categorical variable, called PERSON in the
example that follows, which identifies each individual or upper-level unit in
the sample. In the first run or Model 1 the setup is:

FROC GLM
CLASS PERSON
MODEL ¥ = 2 PERSON X Z=X PERSONs=X

The mean square error from the model is the pooled error variance or s2.
Also, the F tests (using SAS's Type III Sum of Squares) for both PERSON
and PERSON by X are the WLS tests of the variance of the intercepts
{#3) and the variance of the slopes (s3], respectively. Note that this model
supplies only the tests of the intercept and slope variances. The other tests
are not WLS tests and should be ignored 2.

Model 2 is the same as Model 1 but the PERSON by X term is dropped:

PROC GLM
CLASE PERSON
MODEL ¥ = Z PERSON X Z=X/SOLUTION

This model gives the proper estimates for main effect of X (¢y) and the
Z by X interaction () (see Equation 1.5). The SOLUTION option in the
MODEL statement enables these estimates to be viewed., Mean squares
for these terms are tested using the PERSON by X mean square (5AS's
Type III) from Model 1 as the error term. If there are multiple X variables,
. Model 2 must be re-estimated dropping each PERSON by X interaction
. singly.

Finally, Model 3 is the same as Model 1 except the PERSON term is
dropped:

FROC GLM
CLASS PERSON
MODEL ¥ = Z X Z=X PERSON+X/SULUTION INT

] The term INT is added so that the intercept can be viewed. This model

 gives the estimates of the Z effect (a,) and the overall intercept {ay) from
Equation 1.4. The mean squares for these terms are tested using the
- PERSON Mean Square (Type III) from Model 1.

; If there were two X variables, X; and Xs, then Model 2 would be
. estimated twice. In one instance, the PERSON by X term would be
. dropped; however, the effects of the both X, and X, would remain in the
* pquation as well as the PERSON by X, interaction. In other instance, the
" PERSON by X term would be dropped; however, the effects of the both

*The reader should be warned that, in the output, the Z effect has zero degrees of
 freedom. ‘This should be ignored.
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X, and X5 would remain in the equation as well as the PERSON by X,
interaction. If there were more than one Z variable, they could all be tested
using a single Model 3.

The results from the tests of the variances of Model 1 have important
consequences for the subsequent tests. If there were evidence that an effect
{e.g., F) does not significantly vary across upper-level units and so sfp is
not statistically significant, Model 1 should be re-estimated dropping that
term. In this case, instead of using that variance as an error term for other
terms in Model 2, those terms can be tested directly within Model 1 using
the conventional Model 1 error term, So if 3} is not included in the model,
¢p and ¢; would be tested using the s2. Rarely, if ever, is the variance of the
intercepts not statistically significant. However, if there was no intercept
variance, a parallel procedure would be used to test ag and a,.

Table 1.5 presents the QLS, WLS, and ML results for the Kashy data set.
The QLS and WLS estimates were obtained from SAS using the methods
described previously. The ML estimates were obtained wsing the HLM
program {Bryk ct al., 1994),

bodel 1 is estimated first to determine whether there is significant vari-
ance in the intercepts and slopes across persons, There is statistically sig-
nificant evidence of variance in the intercepts [F(75,1283) = 8.22,p <
.001]; however, there is not evidenee that the slopes significantly vary
[F(75,1283) = 1.22,p = .10). We adopt the conservative approach and
treat the slopes as if they differed.

We see that the intercept is near the scale midpoint of four. Because
effect coding is used, effects for respondent gender, partner gender, and
their interaction must be doubled to obtain the difference between males
and females. We see from the subject gender effect that females say that
their interactions are more intimate than reported by males by about half
a scale point. The partner effect indicates that interactions with females
are perceived as one tenth of a point more intimate than interactions with
males. Finally, the interaction coefficient indicates that opposite-gender
interactions are more intimate than same-gender interactions.

One feature to note in Table 1.5 is the general similarity of the estimates.
This illustrates how WLS and even OLS can be used to approximate the
more complicated ML estimates. Of course, this is one example and there
must be cases in which ML is dramatically different from the least-squares
estimators. We discuss this issue further in the following section.

COMPARISON BETWEEN METHODS

In this section we consider the limitations and advantages of OLS, WLS,
and ML estimation. The topics that we consider are between and within
slopes, scale invariance, estimation of variances and covariances, statistical
efficiency, and generality. i
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Figure 1.1: Individual within (solid line}, pooled within (small dashed),
and between line (large dashed line).

Between and Within Slopes

The coefficient by; measures the effect of X on Y for person i. In essence,
OLS and WLS average these by; values 1o obtain the effect of X on Y.
However, there iz another way to measure the effect of X on V. We can
compute the mean X and mean ¥ for each person, and then regress mean ¥
on mean X (again weighting in the statistically optimal way) treating per-
son as the unit of analysis. So for the example, we could measure the effect
having more female partners on the respondent’s overall level of intimacy.
We denote this effect as bg and the average of the by; or within-subject
coefficients as by .

Figure 1.1 illustrates these two different regression coefficients. There
are three persons, each with four observations denoted by the small-filled
 circles. We have fitted a slope for each person, designated by a solid line.
 We can pool these three slopes across persons to compute a common, pooled
within-person slope or by, This slope is shown in the figure as the dashed
- line that we fitted for each person. The figure also shows the three points
- through which bg iz fitted (the large-filled circles). The slope bp is fitted
. through these points and is shown by the large dashed line.

There are then two estimates of the effect of X on ¥ by and &g.
~ In essence, by is an average of the persons’ slopes, and bg is the slope
. computed from the person means. For the Kashy data set, we estimated
" these two slopes for the effect of partner gender on perceived intimacy.
-'I'he value for by is 0.056, indicating that interactions with female partners
. @re seen as more intimate. However, the value for by is negative being -
).217. This indicates that people who have relatively more female partners
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viewed their interactions as less intimate. {The coefficient is not statistically
significant.)

The ML estimate, as we have described it, of the effect of X on Y is
a compromise of the two slopes of by and by whereas the WLS and OLS
estimates use only a version of by . Note that in Table 1.5 the ML estimate
for this effect (X) is somewhat lower than the WLS estimate because ML
uses the negative between slope. In our experience, these two slopes are
typically different, and, as the example shows, sometimes they even have
different signs. So, it is a mistake to assume without even testing that the
two slopes are the same. The prudent course of action is to compute both
slopes and evaluate empirically whether they are equal. If different, in most
applications we feel that by is the more appropriate.

To estimate both slopes the following must be done: create an additional
predictor variable that is the mean of the X, for each person (Bryk & Rau-
denbush, 1992). Thus, there are two A predictors of ¥: X,; and the mean
X. The slope for X;; estimates by and the slope for mean X estimates bg.
Alternatively, the X variables can be “group-centered” by removing the
subject mean for each variable (for more on centering in multilevel models
see Kreft, de Lecuw, & Aiken, 1995),

We should note that, in the balanced case, mean X does not vary, and
50 by can be estimated but bg is not identified. Perhaps, the balanced case
has misled us into thinking that there is just one X slope (bw) when in
fact in the unbalanced case there are almost always two (that may or may
not be equal). ,

Scale Invariance

There is a serious limitation to WLE estimation that is not present in either
ML or OLS. Second-stage estimates using WLS estimation of intercepts are
not scale invariant, that is, if an X variable were transformed by adding
a constant to it, the WLS second-step solution for the intercepts cannot
ordinarily be transformed back into the ariginal solution. The reason for
this lack of invariance is that the weights used in the step-two equations
differ after transformation. The standard error for the intercept increases
as the zero point is farther from the mean, Because of the differential
weighting of the intercepts, estimates of cell “means,” using the intercept
will not be the same.

To illustrate this problem using the sample data set, we recoded thed
using dummy coding {males = 0, females = 1) instead of effect coding for t
both person and partner gender variables. Table 1.6 presents the estima
cell means for the four conditions. We zee that there is a difference bet
the predicted "means” and so the coding system matters.

Because ML estimates the weights simultaneously, it does not to
this problem. * Because OLS does not weight at all, OLS does not

*However, if the same equalion were estimated twice {e.g., an X variable is
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Table 1.6
Estimated Cell “Means” for the Four Conditions Using WLS

Person  Partner Estimated Cell “mean”
Cender Gender  Effect Coding Dummy Coding
Female Female 4.221 4.254
Female Male 4.471 4,503
Male Female 4.085 4.055
Male Male 3.611 3.551

this problem. Thus, this serious problem applies only to WLS. One simple
solution to the problem is to always center the X variables using the grand
mean. It is fairly standard practice to do this anyway.

Estimation of Variances and Covariances

One major advantage of ML is that it directly provides estimates of vari-

ances and covariances. A procedure for obtaining WLS estimates of vari-

ance has been developed (Kashy, 1991), but it is very complicated. We know
- of no appropriate method for estimating covariances within WLS. Because
. slopes and intercepts are typically weighted differently, it is unclear bow to
weight each person's estimates to form a covariance.

% It seems= logically possible that estimates of both variance and covariance

 could be developed within OLS. However, we know of no such estimates.
If OLS were to be used more in estimation in multilevel models, it would
be of value to determine these estimators.

ML has the strong advantage of providing estimates of these variances
and covariances. Unfortunately, we should note that all too often these
terms are largely ignored in the analysis. Most of the focus is on the fxed
- effects. Very often the variances and covariances are as important as the
~ fixed effects. Knowing that X has the same effect on ¥ for all subjects
(ie., 52 is zero) can often be a very interesting result because it implies
‘that effect of X on Y is not moderated by individual differences.

“in one equation and dropped in the other), ML is likely to weight the effect differently
i the dwo equations. This differential weighting creates difficulties in the decomposition
ol indirect effects in mediation.
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Statistical Efficiency

If we assume that the statistical model is correct, OLS is the least efficient,
WLS the next, and ML the most. The complex weighting of ML creates
this advantage. We wonder, however, whether this advantage may at times
be more apparent than real. Consider the Kashy study. For both ML and
WLS, why should people who have more partners count more than those
with fewer? Statistically, more is better, but that may not be the case in
all repeated measures studies,

Perhaps, if there is a disparity in the number of observations per person,
the researcher might want to test if number of observations {perhaps log
transformed) is a moderating variable, that is, does the effect of X on Y
increase or decrease when there are more observations? Number of observa-
tions would then become a Z variable entered in the second-step equations.
We estimated such a model with the Kashy data and did not find evidence
for moderation, but we did find a trend that persons with more interaction
partners reported lower levels of intimacy.

Generality

There are several complications of the model that we might want to con-
sider. First, the outcome variable, ¥, may be discrete, not continuous. For
instance, in prevention studies, the outcome might be whether the person
has a deviant status or not. Second, A or ¥ may be latent variables. In
social-interaction diary studies, there may be several outcomes [intimacy,
disclosure, and satisfaction) that measure the construct of relationship qual-
ity. It may make sense to treat them as indicators of a latent variable.
Third, we have assumed that after removing the effect of the X, the errors
are independent. However, the error may be correlated across time, per-
haps with autoregressive structure, Fourth, the distribution of errors may
have some other distribution besides normal (e.g., log normal). Typically,
behavioral counts are highly skewed and so are not normal. Fifth, the vari-
anre in the errors may vary by person. Some people may be inherently
more predictable than others.

Increasingly, ML programs allow for these and other complications.
However, it would be difficult if not impossible to add these complications
to a least-squares estimation solution. Thus, ML estimation is much more
flexible than least-squares estimation.

SUMMARY

Multilevel modeling holds a great deal of potential as a basic data analytic
approach for repeated measures data. An important choice that researche
will have to make is which multilevel estimation technique to use. Althougl
statistical considerations suggest that ML is the best estimation techniq
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to use because it provides casy estimates of variance and covariance com-
ponents, is flexible, and provides estimates that are scale invariant, there
are times that OLS might also be very useful. We should note that ML
estimation is iterative, and sometimes there can be a failure to converge on
a solution. Moreover, ML estimation, as conventionally applied, pools the
between and within slopes without evaluating their equality. Therefore,
when ML is used in an unsophisticated manner, it is possible to end up
confounding what may be conceptually very different effects.

OLS approaches are familiar and easy to apply, and results generated
by OLS generally agree with those produced by ML. WLS has some advan-
tages over OLS. Its estimates are more efficient and estimates of variance
components are possible. Howewver, it suffers from the problem that the
intercept estimates are not scale invariant.

Motably, if the data =et is balanced or very near balanced, there is only a
trivial difference between the different techniques. ML estimation still has
the advantage that variance components can always be estimated, bug, if
the design is perfectly balanced, the variance components can be estimated
and tested using least squares. A major advantage of both OLS and WLS
solutions is that they can be accomplished by using conventional software
{although SAS's PROC MIXED is available for ML). Thus, a researcher
can use conventional software to estimate the multilevel model.

WLS and OLS may serve as a bridge in helping researchers make the

transition from simple ANOVA estimation to multilevel model estimation.

It may also be a relatively casy way to estimate multilevel models without

the difficulties of convergence and iteration. Finally, and most importantly,

it can provide a way for researchers who are not confident that they have

suceessfully estimated a multilevel model using new software to verify that

they have correctly implemented their model. We have generations of ve-

~ searchers who are comfortable with ANOVA and who have difficulty work-

 ing with multilevel regression models. These people can cstimate models
 using a WLS approach that approximates the more appropriate ML.

2 Repardless how the researcher estimates a multilevel model, we strongly
~ urge the careful probing of the solution. Even the use of standard ANOVA
. is complicated, and errors of interpretation are all too casy to make. Re-
. searchers need to convince themselves that the analysis is correct by trying
~ out alternative estimation methods (some of which may be suboptimal),
. plotting raw data, and creating artificial data and seeing if the analysis
. technique recovers the model's structure. We worry that, in the rush to use
.~ these exciting and extraordinarily useful methods, some researchers may
" not understand what they are doing and they will fail to make discoveries
* that they could have made using much simpler techniques.
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