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CHAPTER SIX

DATA ANALYSIS IN
SOCIAL PSYCHOLOGY

DAVID A. KENNY. University of Connecticut
DEBORAH A. KASHY, Texas A & M Universiry
NIALL BOLGER, New York Universiry

Since the state of data analysis in social psychology was
last reviewed in the Handbook of Social Psvchology
(Kenny, 1985), there have been many important advances
in data-analytic methods designed to address problems
specific to the study of human social behavior. These new
techniques are replacing the data-analytic approaches that
were initially developed for agricultural research. Problems
such as nonindependence of observations, measurement
error, and generalizability of results from specific opera-
tions are being directly addressed.

Among these recent developments, meta-analysis repre-
sents one of the most important methodological advances
in the social and behavioral sciences over the last 25 years.
Its capacity to integrate rigorously the results of multiple
studies has already proven invaluable in a myriad of sub-
stantive areas. Because several sources detailing the meth-
ods of meta-analysis already exist, we do not discuss this
method in this chapter. We refer the interested reader to an
excellent review by Cooper and Hedges (1994).!

Similarly, major strides have been made in the analysis of
data in which persons interact with or rate multiple partners.
For the analysis of nominal outcomes (e.g., sociometric judg-
ments of liking), Wasserman and Faust (1994) provide an al-
most encyclopedic coverage. For the analysis of variables
measured at the interval level of measurement, Kenny (1996a)
details recent designs, models, and analysis techniques.

This research was supported in part by grants from the National Sci-
ence Foundation (DBS-9307949) and the National Institute of Mental
Health (RO1-MHS51964). Brian Lashley and Cynthia Mohr were help-
ful in preparing the chapter, and Charles Judd, Thomas Malloy, and
Irene Elkin provided useful comments that helped us .n revising the
chapter. Robert Calsyn generously shared with us his data.
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Despite advances such as these, the standard data-ana-
lytic tool for most social psychologists remains the analy-
sis of variance (ANOVA). We use ANOVA so much in our
thinking that we have wondered whether laypeople aiso
use ANOVA to make sense of their world (Kelley, 1967).
Recent developments in ANOVA are presented in review
articles by Wilcox (1987) and Judd, McClelland, and Cul-
hane (1995) and in texts by Judd and McClelland (1989),
Maxwell and Delaney (1990), and Harris (1994). More-
over, Abelson (1995) has written a thoughtful book on sta-
tistics, much of which covers ANOVA issues. The fivst part
of the chapter is an extended discussion of the analysis of
data from group research, largely from an ANOVA frame-
work. Nonindependence of observations is a serious issue
that is often just ignored. We consider the consequences of
using person or group as the unit of analysis on Type I and
II errors.

With some reluctance. social psychologists have begun
to recognize the limitations of ANOVA and are tumning to
more general methods of data analysis that overcome these
limitations. In our chapter, we focus extensively on two
such methods, structural equation modeling and multilevel
modeling.

Structural equation modeling has been increasingly ap-
plied in social psychological research, most notably atti-
tude structure. Although there is not a thorough and read-
able discussion of this method, Loehlin (1992) provides a
general introduction and Hayduk (1987) and Byme (1994)
provide useful introductions to the computer programs of
LISREL and EQS, respectively. Finally, Bollen’s book
(1989) serves as a beneficial technical resource. Although
structural equation modeling has delivered fewer theoreti-
cal insights than were initially promised (though there are
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notable exceptions, e.g.. Jussim, 1991), it has provided im-
portant clarifications in the conceptual meaning of mea-
sures (see Judd & McClelland, 1998, in this Handbook).

Despite the increasing use of this technique, there is
still considerable confusion regarding two fundamental is-
sues: (a) whether a given structural equation model can be
estimated, a topic called identification; and (b) whether the
results of a structural cquation model indicate the existence
of causal mediation. Determining whether a model is iden-
tified is, we feel, the lcast understood aspect of structural
equation modeling among social psychologists. For this
reason we treat it in detail. ,

Determining whether a structural equation model shows
causal mediation is better understood by social psycholo-
gists, but there are nonctheless many instances in the litera-
ture where tests of mediation are carried out incorrectly.
Therefore, we provide i detailed discussion of the estima-
tion and testing of mediational models by expanding and
clarifying the anaiysis proposed by Baron and Kenny
(1986) and Judd and Keuny (1981).

In addition to structural equation modeling, multilevel
modeling has also emcrged as a competitor to ANOVA in
the last decade. For sovial psychologists who work with re-
peated-measures dat. this method is useful because it
overcomes many limitations of repeated-measures
ANOVA.. It can handle situations where the between-sub-
ject and within-subject independent variables are continu-
ous variables and where there are missing data on the re-
peated measure. For social psychologists who do small
group research, it is uscful because it can easily handle the
nonindependence of persons within groups and does not
require equal numbers »f persons in each group. More gen-
erally, multilevel modeling can be used to analyze any data
that involve at least two levels of analysis (e.g., persons
with repeated measurements within each person and
groups with multiplc persons within each group). Because
this method is likely to be unfamiliar to most social psy-
chologists, we cover it cxtensively.

We begin the chapter by discussing nonindependence of
observations in group research. After considering ANOVA
solutions, we discuss how multilevel models can be used to
estimate many forms of grouped data. Finally, we discuss
identification in structural equation models and the prob-
lem of testing mediativ.

UNIT OF ANALYSIS IN GROUP RESEARCH?

Researchers studying swall groups, relationships, or orga-
nizations face the dittieulty of choosing the unit of analy-
sis. This problem arixes because of the hierarchical struc-
ture of the data: indir:Juals are nested within groups such
that each person is 1 ember of one and only one group.
(Kenny [1996a] cons:ders designs in which persons are
members of more than one group.) Typically the choice of
the unit of analysis is “crween person and group. If person

is used as the unit of analysis, the assumption of indepen-
dent units is likely to be violated because persons within
groups may influence one another (Kenny & Judd, 1986).
Alternatively, if group (i.e., couple, team, or organization)
is used as the unit of analysis, the power of the statistical
tests is likely to be reduced because there are fewer degrees
of freedom: than there are in the analysis that uses person as
the unit of analysis. In this section, we concentrate on cate-
gorical, not continuous, independent variables. In addition,
we do not consider independent variables that are random
and operate at the group level (Griffin & Gonzalez, 1995;
Kenny & La Voie, 1985).

In discussing the ramifications of the two choices for
the unit of analysis, an important distinction must be made
among three types of independent variables (denoted as A):
nested, crossed, and mixed. A nested independent variable
occurs when groups are assigned to levels of the indepen-
dent variable such that every member of a given group has
the same score on A with some groups at one level of A and
other groups at other levels of A. A crossed independent
variable occurs when A varies within the group, with some
group members in one level of A and other group members
in the other level of A, but for all groups the group average
for A is the same. A mixed independent variable shares
characteristics of both nested and crossed independent
variables in that it varies both between and within groups.
When the independent variable is mixed, persons within
the group may differ on A and group averages on A may
differ from group to group.

Consider the case in which A is gender. Gender would
be nested if all groups contained same-gender members;
gender would be crossed if each group consisted of both
women and men with the restriction that each group has
the same gender ratio; and gender would be mixed if the
gender ratio varied from group to group as when some
groups are same-gender and some are mixed-gender. A
mixed variable, which is likely to be a new concept to most
social psychologists, can provide significant conceptual
leverage but also presents data-analytic difficulties. The
question of whether group or person should be the unit of
analysis is considered separately for the three types of in-
dependent variables. Within this section of the chapter, it is
assumed that there are an equal number of persons per
group and that there are two levels of A. In the multilevel
modeling section of the chapter, the assumption of equal
group sizes is relaxed.

Nested Independent Variable

Imagine the following hypothetical study: a researcher in-
vestigates the effect of two types of problem-solving strate-
gies on group-member motivation. The researcher forms
twenty five-person groups, ten of which use strategy 1 and
ten of which use strategy 2. The key features of this exam-
ple are the 100 persons and twenty groups, the two treat-
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ment conditions, and each group being in only one level of
the treatment.

These data can be analyzed within an ANOVA frame-
work as presented in Table 1. There are three sources of
variation in the nested design. There is variation due to the
independent variable, strategy type, which is denoted as
factor A in the table. One type of strategy may be more mo-
tivating on average than the other type of strategy. Second,
within each level of A some groups may be more motivated
than other groups (G/A). ~inally, within the g oups some
persons may be more motivated than others (5/G/A).

Generally. the central question addressed in a study of
this type is whether there is an effect of strategy type or A.
There are three different choices of error term with which
one can test the effect of factor A. These are group within A
(G/A), person within group within A (S/G/A). and person
within A ignoring group {S/A). The S/A error term (the pool-
ing of the S/G/A and G/A sources) involves treating person
as the unit of analysis and ignoring group. The pooled sum
of squares is 108 + 160 or 268 and the pooled degrees of
freedom are 18 + 80 or 98. So person within A (ignoring
group) has a mean square of 2.735, and the resulting F test
of the strategy main effect is 10.97 with 1 and 98 degrees of
freedom. Note that this approach in which person is the unit
of analysis (and group is ignored) is equivalent to treating
the design as if it were a single-factor ANOVA design in
which there are only two sources of variation, A and S/A.

If group is used as the unit of analysis, G/A is used as
the error term, and the F test equals 5.00 with 18 degrees
of freedom. If person is used as the unit but group effects
are controlled, the error term is S/G/A, and the F test is
15.00 with 80 degrees of freedom. Thus these three differ-
ent choices concerning the unit of analysis yield three dif-

TABLE 1

ANOVA Source Table for the Nested Design
Example with Twenty Groups of Five Persons

Source SS df MS
Between Groups

Strategy (A) 30 1 30

Group (G/A) 108 18 6
Within Groups

Person (5/G/A) 160 80 2

o= MSg — MSyiom
MSc +[n—1IMSgca

(where n is the number of persons per group)

_6-2
P 4
MS,
F(18,80) = ——Sﬁ/"— =3.00, p < .001, two tailed
S/G/A

ferent Fs with three different degrees of freedom and three
different error terms. The appropriate choice among these
three analyses is dictated by the degree to which the data

within the groups are related or nonindependent.

Measuring Nonindependence: The Intraclass Correla-
tion When person is used as the unit of analysis for the
data in Table 1, the F test is two to three times as large as it
is when group is the unit of analysis. Although it is desir-
able to have a healthy F ratio, an assessment of group ef-
rects 1s needed before group can be ignored and S/A can be
used as the error term. Group effects occur if the scores of
individuals within a group are more similar to one another
than are the scores of individuals who are in different
groups. Because it seems reasonable to believe that indi-
viduals in some groups may be more motivated than those
in other groups, the measurement and statistical evaluation
of group effects are required.

The standard measure employed to assess group effects
is the inrraclass correlation which is denoted as p. The in-
traclass correlation measures the correlation between two
persons’ outcomes who are both in the same group. So an
intraclass correlation of .25 means that the correlation be-
tween the motivations of two persons who are in the same
group is .25. Alternatively, the intraclass correlation can be
viewed as the amount of variance in the persons’ scores
that is due to the group. controlling for the effect of A.

The standard measure of the intraclass correlation uses the
mean squares from the ANOVA. The ingredients to the for-
mula are the mean square for groups within A (G/A), the mean
square for persons within groups within A (5/G/A), and the
number of persons per group (n; see Table 1). The intraclass
correlation can alternatively be estimated using correlational
methods instead of ANOVA (Griffin & Gonzalez, 1995).

The intraclass correlation is like a product-moment cor-
relation in that its upper limit is one. However, its lower
limit is not always minus one. In general, its lower limit is
~1/(n - 1) where n is the number of persons per group. So
if n is twenty, then the intraclass can be no smaller than
-.0526. Note that if n is two as in dyadic analysis, the
lower limit is minus one. An example of a negative intra-
class correlation may occur with married couples if one
member experiences positive outcomes from the treatment
(A) but his or her spouse experiences negative outcomes.
Although negative intraclass correlations are relatively
rare, they generally should be given serious consideration.

After the intraclass correlation has been estimated, it is
tested for statistical significance by an F test. To create the
F ratio, one places the larger of the two mean squares
(MS,, and MS,,. ) on the numerator and the smaller
mean square is placed on the denominator. The degrees of
freedom for F are determined accordingly. The obtained F

is compared to a critical value for which the p value is di-
vided by two. The p value is divided by two because, un-
like the typical F test in ANOVA, both tails of the F distrib-
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ution are being used, as in the use of the F distribution to
test for unequal variances. A significant F statistic implies
that there is nonindependence of data within the groups.

Because the intraclass correlation is used in determin-
ing whether there is nonindependence in the data, it is es-
sential that there be sufficient power in its test. If there
were not enough power, the researcher might mistakenly
conclude that the data are independent when they are not.
Table 2 presents the power tables for the test of the intra-
class correlation for an alpha of .05, two-tailed. We used a
method described by Koele (1982) to estimate power.
Three factors are varied in the table: group size, overall
sample size, and the degree of nonindependence. It is as-
sumed that there is a single nested independent variable
with two levels.

Not surprisingly, power increases as the intraclass cor-
relation and sample size increase. Generally, there is more
power when group size is larger, unless there are very few
groups (N = 40 and n = 10). We see that especially when
the intraclass correlation is not large and total sample size
and the group size are small, power is very low. For exam-
ple, with twenty groups of five persons and an intraclass of
.15, the probability of making a Type II error is .56. Be-
cause of this low power, it is advisable to raise alpha to .2
in the test of the intraclass correlation (Myers, 1979). We
return to the issue of power in the test of the intraclass cor-
relation in the “General Guidelines” section.

Effect of Nonindependence on Tests of the Independent
Variable To what degree does ignoring nonindependence
bias tests used to determine whether the treatment (factor
A) has a statistically significant effect? That is, if there are

. group effects but person {ignoring group) is used as the
unit of analysis, does the p value associated with the ob-
tained F statistic truly represent the likelihood of obtaining
that F if the null hypothesis were true and there were no ef-
fects due to the independent variable?

To determine the effect of nonindependence on the ef-
fective alpha for the three types of independent variables, a
three-step procedure developed by Kenny (1995) is used.
First, the critical value for the F test with person as unit is
determined for the degrees of freedom. That critical value
is divided by a bias factor (denoted as B in Table 3) to pro-
duce an adjusted F that is then used to determine the ad-
justed critical value. The bias factor B depends on the type
of independent variable (i.e., nested, crossed, or mixed)
and the size of the intraclass correlation. Finally, the de-
grees of freedom for the adjusted F test are reduced given
the type of design and the size of the intraclass (denoted as
df” in Table 3). The p value associated with the adjusted F
and the adjusted degrees of freedom gives the effective
alpha for the test.

The first row of formulas in Table 3 presents the formu-
las for the bias factor and the corrected degrees of freedom
for a nested independent variable. For instance, if the total
sample size is 100, the nonindependent observations are
pairs of observations (n = 2), and the intraclass correlation
of p is .5, then the bias factor which divides F is 1.52, and
the effective degrees of freedom are 78.08, not 98. So the F
test is inflated by about 50 percent, and the real degrees of
freedom are about 20 less. Formulas for other designs are
also presented in Table 3 and are used later in this section.

Table 4, using the formulas contained in Table 3, pre-
sents the value of the effective alpha when person is used

TABLE 2

Power (Times 100) of the Test of the Intraclass Correlation (p) with Two-
tailed Alpha of .05 for the Nested Design
As a Function of the Size of the Correlation, Group Size (n), and

Total Sample Size (N)
N
40 100 200
n n n
p 2 5 10 2 5 10 2 5 10
-.05 5 5 5 6 9 I5 8 16 37
.05 6 8 10 11 16 8 17 27
A3 10 21 25 18 44 57 32 72 85
25 19 40 40 42 78 82 71 97 98
35 33 60 54 71 94 94 95 100 100
45 53 76 65 92 99 98 100 100 100

Note: There are two treatment groups.
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TABLE 3

Corrections to the F test (B) and the Degrees of
Freedom (df") for Error

Nested

. 1+p(n~1)
1—p(n-1)/N/2-1)

. [N-2-2p(n- 1)1
N-2+p(n-D{p[N-2(n-1)]-4}

dr'

Crossed

=——-——-—-———-——1_p
1-p(n-2)/(N-2)
[N=2-p(n=2)]

df' =
f N-2+p*n-2+(n-1)N-n)]-2p(n-2)

Crossed with Interaction

o= —n=Po
1+ pgea /(1= Pgra)
p, = —FPoa
© l+pg/(1-pg)
- (N=2)[1-p +pa(n/2-1)]
N-2-p(n=2)—pa(n/2-1)/2
a=(N-n)n2
b=(n=-2)(N-n+2)2
c=2(n-2)
df = [N=2-py(n=2)=pa(n/2-1/2)]?
N-2+ap +b(p, +p2)* - c(py +p2)
Mixed (n = 2)
1+ Nop,
N-(+pXl+p,)
P
e+f+g

where
d=(N-D[N-(1 + py)(l +p))?
e=pX2+[py2(N2-3N+ 1]
f=(N-DHIN-2(1 +p,+p,)+1]
g=p,0,lp,p, (N +1)+2p, - 20 (N-1)-2N-2)]

Note.' N is the total number of observations in the study, n the group
size (and so the number of groups is A/n), and p the degree of nonin-
dependence. For the mixed design, n equals 2, p, represents noninde-
pendence of the independent variable, and p_ represents nonindepen-
dence of the dependent variable. For all cases, there are two treatment
groups.

as the unit of analysis even though there are group effects.
Varied in the table are the rotal sample size N, the degree of
nonindependence as measured by the intraclass correlation
p, and the number of persons per group . In this table
there are always two treatment conditions; the total sample
size is 40. 100. or 200; and the group size is 2, 5, or 10.
Note that the total number of groups in a study is the total
sample size divided by the group size. If alpha is greater
than .05. then the statistical test is said to be too liberal and
the null hypothesis is rejected too often. If alpha is less
than .05. the test is said to be too conservative and the test
has artificially low power.

As seen in Table 4. the degree of distortion in alpha de-
pends on several factors. Looking first at the total sample
size. it appears that N has virtually no impact on alpha.
Only with large intraclass correlations can any effect be
seen: with the larger sample size, there is slightly less dis-
tortion in alpha. Because the number of groups equals N/n,
that factor too has virtually no effect on alpha.

The intraclass correlation is an important factor in alpha
distortion. If the intraclass correlation is negative, the test
is too conservative. That is, the null hypothesis is not re-
jected as often as it should be. As the value of the intraclass
correlation becomes more positive, however. the test be-
comes increasingly liberal. For large values of the intra-
class correlation, the null hypothesis is rejected much more
often than it should be. Group size is a second important
factor in determining the bias. With larger group sizes and
a fixed total sample size, the larger the group size, the
greater the alpha distortion.

To summarize, alpha is affected by the size of the intra-
class and the group size but not affected very much by the
total sample size or the number of groups. In essence,
when the intraclass correlation and group size are both
large but person is used as unit, the p values are grossly in-
flated. Fortunately. it seems likely that as group size in-
creasa2s. the intraclass declines (see Latané, 1981). As
shown in Table 2, the power of the test of the intraclass
corrziation is affected by N. A small N study would have
very iittle power in the test of the intraclass correlation and
the intraclass correlation may be fairly large but not signifi-
cant. For such a study there might be substantial distortion
in thz effective alpha value.

When the intraclass correlation is small and there are
few persons per group, the distortion in alpha is fairly
smzll. For instance, when the intraclass correlation is .05
and there are just two persons per group, using person as
the unit of analysis results in a slightly too liberal test, the
alphz being only .06.

Power Clearly ignoring nontrivial levels of nonindepen-
denz= can seriously distort alpha. What then are the conse-
quzsces if. because of nonindependence, group instead of
person is used as the unit of analysis when testing for dif-
fer=mc2s in the effects of strategy type? The second part of
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TABLE 5

Power (Times 100) with Group as the Unit of Analysis for the Nested Design with Two Treatment Groups
and 100 Persons

n
1% 2 . 5 10
pg Pg pe pe
ESS — & a1 2 3 a4 0 1 2 3 4 0 a1 2 3 a
02 17 15 14 14 13 12 15 12 10 9 9 14 9 8 71 7
05 70 69 65 61 57 54 66 51 4 34 30 59 34 25 20 17
08 98 99 98 9 95 93 98 91 & 73 65 95 T3 55 44 37

*Baseline condition; person as unit with independence.
tEffect size (Cohen’s d).

in power. When group becomes the unit, sample size de-
clines by a factor of n (the number of persons per group),
but the adjusted effect size increases by that same factor.
These two factors nearly exactly offset each other. Given a
sufficient number of groups (alout twenty or more groups
for the entire study), power is virtually unaffected when
group is the unit of analysis and the intraclass correlation is
zero. Thus, mistakenly making group the unit of analysis
(when person should be) has little effect on power, at least
when there are a sufficient number of groups. If the intra-
class correlation is negative, the power increases when
group is used as the unit of analysis. However, as the intra-
class correlation increases. power does decline, especially
when there are many persons per group. So there is less
power when group scores are not independent.

When a researcher is faced with low power in a group
study, there are, in principle, two ways that power can be en-
hanced (assuming a positive p). Either the number of groups
(N/n) can be increased or the number of persons per group
(n) can be increased. The latter strategy is available when the
groups are large in size (e.g.. classrooms or organizations)
and the researcher samples a larger subset of the members.
Consider the following example: a researcher has two treat-
ment groups, within each group there are five classrooms,
and from each classroom five students are sampled. For a
large effect size (d = 0.8) and an intraclass correlation of .25,
the power of the test is .42, Power can be increased by dou-
bling the number of students per classroom to ten, and now
the power is .50. But if instead the total number of class-
rooms in the study is doubled from ten to twenty and each
group still has five students, the power climbs to .76. Both
studies have 100 students (one with ten groups or classrooms
each with ten students and the other with twenty groups each
with five persons), but the second has considerably more
power. The lesson to be learned is that it is generally better to
add more groups to the study than it is to increase group size
when the intraclass correlation is nontrivial.

General Guidelines for Nested Independent Variables If
there is nonindependence, then group not person must be used
as the unit of analysis. So in principle, the researcher should
first evaluate whether there is nonindependence. If there is
nonindependence, then group may be the unit of analysis; and
if there is independence, then person may be the unit of analy-
sis. To determine if there is nonindependence. the intraclass
correlation is estimated and tested for statistical significance.
There is one major sticking point with this procedure: the test
of nonindependence may be very low in power. The usual
standard for “sufficient power” is having an 80 percent chance
of rejecting the null hypothesis (Cohen, 1988).

Given nonindependence and using person as the unit of
analysis. there is bias in the test of the treatment effect.
What is a reasonable value for the largest possible bias that
researchers would accept? Of course, we would wish that
there was no bias in alpha, but we are willing to tolerate
small distortions in alpha for trivial levels of nonindepen-
dence. Because it has become fairly routine to treat p val-
ues between .05 and .10 as marginally significant, it would
seem that .10 is the largest possible bias that most social
psychologists would be willing to tolerate. Therefore, we
define consequential nonindependence as the level of the
intraclass correlation that occurs when person is inappro-
priately treated as the unit of analysis, and, as a result, the
test of the independent variable is biased such that the
nominal value alpha of .05 actually corresponds to an
alpha of .10.3

Table 6 presents the minimum number of groups
needed to detect consequential nonindependence. The rows
in this table are group sizes and the columns are the alphas
used to test the intraclass. The first column uses the stan-
dard alpha of .05 for the test of the intraclass correlation,
and the second column uses the more liberal value of alpha
of .20 which has been recommended by some authors
(Myers, 1979).4

We see in Table 6 that thirty-six dyads are required to
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TABLE 6
Minimum Number of Groups Needed to Have at
Least .80 Power to Detect Consequentiai, Positive
Nonindependence (Effective Alpha of .10)
As Function of Group Size and the One-tailed Alpha Used to
Test the Intraclass Correlation

Number of Groups (N/n)
One-tailed Alpha to Test p

Group Size (n) 05 .20
2 36 18

3 56 28

4 66 34

5 72 36

6 76 38

7 80 40

8 82 40

9 82 40

10 84 42

achieve the standard of 80 percent power. Thus, to have an
80 percent chance of detecting nonindependence that bi-
ases the test of the independent variable to an effective
alpha of .10, a minimum of thirty-six dyads are required.
For groups of size eight, eighty-two groups (656 persons!)
would be needed. The large number of groups needed
when group size is large results from the fact that for large-
sized groups, a very small level of nonindependence can
create serious distortion of p values (see Table 4). Fewer
groups are needed if the test of the intraclass is made more
liberal, but the number of groups required is still substan-
tial for large groups.

The implication of Table 6 is that the general advice
given above is practical for studies with dyads and maybe
triads, but it is not useful for studies in which groups are
composed of four or more group members. For these stud-
ies, there is ordinarily insufficient power to test for conse-
quential nonindependence.

If there are not enough groups to have a powerful test of
the intraclass, group should be the unit of analysis. Unless
the experimental procedure or previous research strongly
indicates that the data are independent, group research re-
quires using group as the unit. Fortunately, as shown in
Table 5, there is surprisingly little loss of power in using
group as unit when there is nonindependence.

Some researchers may be unwilling to use group as
unit, or in some cases there may be so few groups per con-
dition that there may be too little power to make group the
unit. If person is the unit (something we do not recom-

mend!), then 5/G/A should be used as the error term to test
for the effect of the independent variable, and the group
variance (G/A) should still be removed. This approach of
treating person as the unit has the advantage of removing
the group effect from the error term, but it has the disad-
vantage of limiting the conclusions to the specific groups
studied. Effectively, group is treated as a fixed, not a ran-
dom, factor.

It might be argued that group should be treated as a ran-
dom factor only when the groups are randomly sampled
from the population of groups. However, persons are
hardly ever randomly sampled, yet researchers routinely
treat themn as if they were random. Although sampling con-
siderations are important in statistical decision making, it
does not seem justifiable to insist on random sampling of
groups and not to insist on random sampling of persons.

If person is used as the unit and the test of the indepen-
dent variable is statistically significant. the fail-safe corre-
lation (Kenny, 1995) can be computed. This correlation es-
timates how large nonindependence would have to be to
render what is a statistically significant result no longer
significant. An approximation to the fail-safe r is the fol-
lowing:

F-F
F(n-1)+F(n-D)/(m=1)

where F is the test statistic for A, F- is the critical value
for that test, m is the number of persons at each level of
the independent variable. and n is the number of persons
per group. If the fail-safe r is implausibly high, then non-
independence is not a plausible rival explanation of a sig-
nificant result. We should make it clear that we do not rec-
ommend using person as unit. But if the researcher does
not follow this advice, computing a fail-safe r would be
advisable.

Crossed Independent Variable

Nested independent variables are much more frequently
used in group research than crossed independent variables.
In a crossed design, some members of each group are in
one treatment condition whereas other members of the
same group are in the second treatment condition. Thus, in
this design, condition and group are crossed.

Consider another hypothetical study: a researcher stud-
ies the effect of gender in group communication and forms
twenty-five groups. In each group there are two men and
two women, and the total sample size is 100. Table 7 pre-
sents the ANOVA table for the study. Included in this table
is the main effect of the experimental factor, a person’s
gender, denoted as factor A. This effect measures whether
men or women talk more. The second factor in the table is
the main effect of Group (G) which measures the extent to
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TABLE 7

ANOVA Source Table for the Crossed Design
Example with Twentv-Five Groups of Four Persons

Source A daf MS
Between Group .
Group (G) 120 24 5
Within Group .
Gender (A) 25 1 25
GxA 72 24 3
Person (S/GxA) 100 50 2

__ MSG — MSy6u
MSGe +11/q—11MSs/Gea

PG
(where n is the number of persons per group and ¢ the number
of levels of A)

. 3-2 _
P 3+[4/2-12

F(24,50) = M _ 1.50, p = 226, two-tailed
MSgGea

which people in some groups talk more than people in
other groups. The next source of variation is the interaction
between group and gender (GxA) which measures the ex-
tent to which, in some groups, gender differences are larger
than in other groups. The final source of variation is person
within the group X gender interaction (5/GxA) which mea-
sures the extent to which some persons talk more than oth-
ers controlling for both group and gender. In general. for a
crossed variable, there are n persons in each group and n/g
persons at each of g levels of the independent variable.
Note that if the researcher had studied opposite-gender
dyads (groups of size two), the person within group by
gender term could not be estimated. That is, within each
dyad there would be only one male and one female and so
variation within gender cannot be computed.

One key advantage of the crossed design over the
nested design is that the group main effect and the group X
condition interaction can be separated. In the nested design
the group and the group X condition interaction are com-
bined in the G/A term, and variance due to Scth is con-
tained in the mean square for treatment. However, in the
crossed design the condition effect contains only the group
X condition interaction variance and not the group main ef-
fect variance. Thus, in the crossed design the effect of the
independent variable is, at least in principle, estimated with
greater precision and therefore tested with greater power
than in the nested design.

For the crossed design, treating group as the unit of
analysis involves testing the effect of the independent vari-

able A, using the group X treatment interaction mean
square or MS_,. For the fictitious study presented in Table
7. that test is F(1.24) = 8.33. If person is the unit of analy-
sis, there are three possible ways to test the A effect. First,
S/GxA could be used as the error term such that F(1,50) =
12.50. Alternatively, the group X treatment interaction
(GxA) could be pooled with S/GxA to vield a pooled error
term of 2.32 ([72 + 100]/[24 + 50]). With this error term,
the test of A yields F(1,74) = 10.76. Finally, both the ef-
fects of group and its interaction with gender can be pooled
with MS,.. ,. and the resulting mean square error would
equal 2.98 ({120 + 72 + 100]/{24 + 24 + 50]). The test of
the independent variable would be F(1,98) = 8.39. In the
crossed design there are four alternative error terms. In the
example, the mean square error term ranges from 2.00 to
3.00, the degrees of freedom from 24 to 98, and the F from
8.33to 12.50.

Measuring the Group Main Effect and the Condition
by Group Intraclass Correlations If person is treated as
the unit of analysis in the crossed design there are two po-
tential sources of nonindependence in the data: the group
main effect and the group X condition interaction. The
presence of either of these sources of variance results in
nonindependence and invalidates the use of person as the
unit of analysis. The intraclass correlation on the outcome
measure for the group effect, or p., can be measured and
tested for statistical significance as before with the nested
design. The ingredients are the mean square for group
which equals 5 in the example (see Table 7), the mean
square for person within the group X condition interaction,
which equals 2, and the total number of persons per group
or 4. The value of p for the hypothetical example is [5 -
215+ -1)2]1=.27.

The bottom of Table 7 shows how the intraclass correla-
tion for the interaction, or p,. can be assessed. The ingre-
dients for the formula are the mean square for the interac-
tion, the mean square for persons within this interaction,
and the number of persons within each group and condi-
tion, two for the example. Like the group intraclass corre-
lation, the interaction intraclass correlation can be tested
by an F test. The lower limit of p_, is —1/{n/q — 1] where ¢
is the number of conditions.5

If the intraclass correlation for the interaction is posi-
tive, it means that within a group, the two women’s levels
of tatking are more similar to one another than to the two
men’s; and correspondingly, the two men’s levels of talk-
ing are more similar to each other than to the women’s. Al-
ternatively, the correlation implies that the gender differ-
ence in talking varies from group to group.

As stated earlier, if the group size equals the number of
levels of the independent variable, it is not possible to sep-
arate variation due to S/Gx4 from variation due to GxA.
Thus the group X condition interaction (GxA) cannot be
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tested and the intraclass correlations for GxA cannot be es-
timated. It is still possible to estimate the value of p. by
substituting MS, , for MSg,5, A-

There has been very little systematic investigation of
the size of the GxA interaction. However, it seems reason-
able to expect that variance due to this interaction is fairly
small. Usually, the group X condition intraclass correlation
is smaller than the group intraclass (p. , < p;); however,
there are certain to be exceptions to this rule.

The power of the test for p; is comparable to that for the
nested design (see Table 2). The power of the test of p. , is
likely even lower than the test of p for two reasons. First,
Py 18 usually smaller than p; (see above), and second, for
Pg.a the effective sample size is not n but rather n/g and
smaller group sizes result in lower power (see Table 2).

Effect of Nonindependence on Tests of the Independent
Variable What are the consequences of ignoring nonin-
dependence by treating person as the unit of analysis in the
crossed design? Consider an example in which there are
100 persons and two conditions. Assume first that the
group X condition interaction p,, is zero. When the group
intraclass correlation p; is negative, the test of factor A is
slightly too liberal. However, in the much more likely case
of a positive intraclass, the test is too conservative and
therefore artificially low in power.

When the intraclass correlation for group is positive, the
design is akin to a repeated measures design in the sense
that each group has persons in each condition. If group is
treated as the unit of analysis, variance due to group is sub-
tracted from the error term that is used to test the treatment
effect. Thus, treating group as the unit increases power in
the same way as a within-subjects design has more power
than a between-subjects design.

What, then, is the effect of treating person as the unit of
analysis when there is nonindependence due to both the
group and the group X condition interaction? As can be
seen in Table §, for dyads (n = 2) the interaction intraclass
correlation is irrelevant. If group size is greater than two,
the test of {actor A becomes somewhat more liberal as the
intraclass correlation for the interaction increases and as
the intraclass correlation for group decreases. Also, as the
number of groups declines (and hence the number of per-
sons per group increases) the alpha inflation increases. In-
terestingly, when there are four persons per group and the
intraclass correlation for groups equals the intraclass corre-
lation for interaction, the two sources of bias virtually can-
- cel each other. In addition, note the parallel between the
crossed design with interaction effects and weak group ef-
fects and the nested design with group effects. For both de-
signs, as the degree of nonindependence increases, the
value of the effective alpha also increases.

Power The determination of power of the test of a
crossed independent variable depends on the effect size,

the total sample size (N), the group size (n), the intraclass
correlation for group, and the intraclass correlation for the
group X condition interaction. Using the Severo and Zelen
(1960) approximation, Table 9 presents the power for a
moderate effect size (d = 0.5), total sample sizes of 40 and
80; groups of size 2, 4, and 10; and intraclass correlations
of —.10, .00, .20, and .40. The values in the table are based
on the assumption that group is treated as the unit of analy-
sis and so the A effect is tested by the GxA interaction. As a
reference point, the power with person as unit and indepen-
dence is .34 for N = 40 and .60 for N = 80.

The first thing to note in the table is that power in-
creases as the intraclass correlation for group or p;; in-
creases. Because variance due to group is removed,
power is increased. However, power declines as p, 4 in-
creases if the group size is larger than two. So for groups
larger than two, the increase in power due to removing
group variance can be lost if the variance due to group X
condition interaction is large. Also, increasing group size
lowers power, but this loss of power is most pronounced
as Pg,, increases.

General Guidelines for Crossed Independent Variables
The best general advice to give for a crossed independent
variable is to treat group as the unit of analysis. This would
be accomplished by evaluating the effect of the indepen-
dent variable using the group X condition interaction as the
error term. This approach results in the removal of the
group main effect which generally increases the power of
the test. There are several reasons for this advice. First,
very often crossed group designs are dyadic and so each
group has just one person in each condition. In this case,
the group X condirion interaction is the only available error
term. Second, even when each group has more than one
person in cach condition. usually there is more power in
the test of a crossed independent variable when group, not
person, is the unit of analysis.

When each group has more than one person in each
condition, the two-stage strategy discussed for nested inde-
pendent variables is an option. First, one estimates and
tests the group X condition interaction using the MS,. , as
the error term. We recommend as before using a liberal
alpha of .20. If the interaction is significant, then group
must be treated as the unit of analysis if effects are to be
generalized beyond the specific groups studied.

If the test of group X condition is not significant, then per-
son can be treated as the unit of analysis. Using person as the
unit involves pooling the group X condition sums of squares
{8S,4) with the sum of squares for persons within the group
X condition interaction (SS;,;_ ,). Similarly, the degrees of
freedom from these two effects should be pooled. Pooling
these two sources of variation should provide a more power-
ful test of a crossed independent variable than would occur if
the MS,,; , alone were used as the error term.

The major drawback of this two-stage procedure is that
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TABLE 8

Effect of Group (p;) and Group by Treatment (p, ,) Correlations and Group (n) Size on Alpha (Times 100)
with Person as the Unit of Analysis

n

2 4 10

Poza ‘ Pg fg Pg
1 1 2 3 a 1 1 2 3 4 1 1 2 3 4
-1 6 4 3 2 1 s o3 2 1 | 2 1 0 0 o0
1 6 4 3 2 1 7 5 4 3 2 9 8 7 6
2 6 4 3 2 1 9 6 5 4 3 6 14 13 12 11
3 6 4 3 2 1 07 6 5 4 20 18 17 17 16
4 6 4 3 2 1 n 9 8 6 5 2 2 2 2 2

Note: There are 100 persons and two treatment groups. The number of groups varies from fifty. twenty-five, to ten groups. The intraclass correla-

tions are adjusted as in Table 3.

the test of the group X condition interaction may often have
very low power. Uniess it can be established that there is
sufficient power, we feel the safest course of action is to
use the group X condition interaction as the error term in
the test of the independent variable.

Sometimes because of poor design, there may be too
few groups to make group the unit of analysis. In this in-
stance, the researcher may be forced to treat group as a
fixed effect and person as the unit of analysis. However,
the conclusions from such an analysis would refer to the

specific groups that were sampled resulting in little gener-
alizability.

Mixed Independent Variable

A mixed variable varies both between and within groups.
For example, if one were studying romantic relationships
(so n equals 2) and included gay as well as heterosexual
couples, gender would be a mixed variable. A second ex-
ample of a mixed variable is intelligence level in a study in

TABLE 9
Power (Times 100) for the Crossed Design with a Medium Effect Size (d = 0.5)

n

2 4 10

Pg o6 o6
Opss 1 0 2 4 a1 0 2 4 1 0 2 a4
40 1 28 31 38 48 28 31 38 Sl 26 30 41 66
0 28 31 38 48 26 28 34 44 19 20 24 30
2 28 31 38 48 23 24 28 34 1313 15 16
4 28 31 38 48 20 21 24 28 oo 112
80 -1 54 58 69 82 s6 61 72 87 63 70 8 99
0 s4 S8 69 82 52 56 66 79 45 48 58 70
54 58 69 82 45 48 56 66 8 29 32 36
4 54 58 69 82 40 42 48 56 20 2 23 25

Note: There are either forty or eighty persons and two conditions. Group is the unit of analysis. The intraclass correlations are adjusted as in Table 3.
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whic: persons are randomly assigned to groups of four
persins, Intelligence is a mixed variable because within
grou:s snme persons would be more intelligent than oth-
£rs, ind some groups would have a higher average intelli-
gencs than others.

‘ Cre way to determi 1e whether an independent variable
IS Muzed, nested, or crossed is to compute its intraclass cor-
relaten. To compute that correlation for the independent
varisle, denoted as p, in this section, the independent vari-
able s treated as a dependent variable. If the independent
varimle js nested, the intraclass correlation equals one; if
the izdependent variable is crossed, the intraclass equals its
lows fimit; and if the independent variable is mixed, the
intrilass correlation is not at either limit. The intraclass
Correiation for the outcome variable is denoted as p.,.

L our discussion of mixed variables we focus on three
Issues. First, we consider the effect of using person. rather
than sroup, as the unit of analysis thereby ignoring nonin-
depradence. Second, we discuss how mixed designs. un-
like sested or crossed designs, allow the estimation of part-
ner =ffects: the degree to which a person’s level of the
indesendent variable affects the dependent variable scores
of ther group members. Third, we describe the statistical
and: ssis of mixed independent variables.

Effect on p Values As noted, a mixed variable’s intraclass
Corrslation is less than one and greater than —1/(n — [) where
7 is the group size. When the independent variable is not a
Matipulated variable, it is often mixed. For instance, 1n an
Investipation of the effect of attraction toward the group on
WOk performance in groups, it is likely that attraction varies
bot; between persons (Some persons are more positive about
the Zroup than others) and between groups (some groups on
average are more positive than others). Thus, attraction is
likely to be a mixed independent variable with an intraclass
Correlation that is positive, but not perfect.

Kenny (1995) presents the details on how to compute
the intraclass correlation when a variable is assumed to be
Caused by a mixed variable. The bias to the F test is quite
Complicated for the mixed case. Fortunately, for dyads the
bius to F is relatively simple (Kenny, 1995) and is pre-
Sented in Table 3. However, the adjustment to the degrees
of freedom is very complicated, even for dyads.

Table 10 presents the bias in the test of the effect of a
Mized independent variable when group size is limited to
dyads. In this table, there are assumed to be fifty dyads
(1) persons). When p, and p, have the same sign, the ¥
st is inflated and so the test is too liberal. Importantly,
there is not as much bias in the test when the independent
variable is mixed as when it is nested or crossed. Because a
Mixed variable is between a nested and a crossed variable
{m‘l because the effect of nonindependence is the opposite
for nested and crossed designs, mixed independent vari-
ables create relatively weak effects due to nonindepen-

y TABLE 10
Effect on Alpha of the Intraclass Correlation of the
Independent (p ) and Dependent Variable (p ) for
the Mixed Desngn for 100 Persons and 50 Dyads

Px
p, =5 -3 -1 0 1 3 5
-5 080 .068 .056 .05 045 034 024

-3 068 .06l 054 051 .047 041 .034
-1 056 053 .0sl 050 .049 047 044
0 050 050 .0s0 050 .050 .050 .050
A 044 047 049 050 051 053 .06
3 034 040 047 050 .054 061 .068
S 024 034 045 051 056 068  .080

Note: The tabled values are the actual p values when the test statistic
has a nominal p value of 0.05.

dence. In fact. if p, and p, are less than or equal to .3, alpha
never exceeds .06 1. Generally, for mixed independent vari-
ables there is less distortion of alpha than there is for
nested or crossed variables.

To determine the approximate power for a mixed inde-
pendent variable, we can extrapolate from the power analy-
ses that were done when the independent variable 1s nested
or crossed. If the product of the two intraclasses p p, is
positive, power tends to decline when dyad, not person, is
the unit of analysis. Alternatively, if p p, is negative, power
is usually increased by using dyad as unit. If p_is near
zero, there is little effect on power. So for small values of
p,, both power and p values are not much affected.

Partner Effects Nested, crossed, and mixed indepen-
dent variables all allow for the examination of the degree
to which a person’s score on the independent variable af-
fects that person’s score on the response variable. With a
mixed independent variable, however, it is possible to es-
timate a second effect that cannot be estimated with either
a nested or a crossed independent variable. This second
effect measures the degree to which one person’s score on
the independent variable affects the responses of the other
persons in the group. To distinguish these two types of ef-
fects, the former is called an actor effect and the latter a
partner effect (Kashy & Kenny, 1997; Kenny, 1996b). As
an example, consider again the effect of attraction toward
the group on productivity. The actor effect measures
whether persons who are highly attracted to the group are
more productive. The partner effect measures whether
being in a group with a person who is highly attracted to
the group results in the other group members being more
productive. Kashy and Kenny (1997) present a detailed
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discussion of what they call the Actor-Partner Interde-
pendence Model.

Although the sizes of actor and partner effects are in
principle independent, there are two special cases that are
particularly relevant to the study of group behavior in s0-
cial psychology. In the first case, which we will call group
orientation, the actor and partner effects are approximately
equal. In the second case, called social comparison, the
actor and partner effects are equal in magnitude but oppo-
site in sign, such that the actor effect is usually positive and
the partner effect is negative. To illustrate these two types
of effects, consider the effect of physical attractiveness on
outcomes. If the model is group orientation, then a per-
son’s physical attractiveness leads to positive outcomes for
the person and his or her partners. If the model is social
comparison, then physical attractiveness leads to better
outcomes for the self but reduced outcomes for the partner.
Tesser’s (1988) self-evaluation maintenance model explic-
itly considers these two types of effects.

Although the concept of partner effects may seem to be
new, it has been used extensively in work in social psy-
chology. particularly in small group theory and game the-
ory. Consider first its use in small group theory. Partner ef-
fects provide an empirical method of gauging whether the
group is one in which people see others as part of self or as
different from self. If there are group-norm effects, then the
success of the other leads to feelings of happiness, as much
happiness as one’s own success; it really does not matter
who succeeds. If there are social comparison effects, then
the success of the other leads to unhappiness.

Partner effects can also be used to define the classic
prisoner’s dilemma (PD) game. In this game, two people
are given two choices. Each of these outcomes depends on
their joint choice. If behavior choice is the independent
variable (cooperative versus competitive) and outcome the
dependent variable, then the essence of PD is that the actor
effect and partner effect have different signs: actions that
lead to better outcomes for the self have negative conse-
quences for the partner. In fact, the defining feature of PD
is that partner effects are larger than actor effects: a per-
son’s choice affects the partner’s outcome more than that
person’s. Kelley and Thibaut (1978) decompose outcomes
in two-person games into actor and partner effects, but they
use different terms for the two effects.

Statistical Analysis Perhaps the first explicit recognition
of the analysis difficulties raised by a mixed design, as well
as a realization that partner effects can be estimated, is
work by Kraemer and Jacklin (1979). Their approach
though ground-breaking is limited: the independent vari-
able can be only a dichotomy; there can be no additional
independent variables; and the tests are large sample tests.
Kenny (1996b) has developed two generalizations of the
Kraemer and Jacklin (1979) approach. The first generaliza-

tion involves computation o two regression equations. In
one regression, the group average of the independent vari-
able 1s used to predict the group average of the response
variable. In the second regression, the deviations from the
group mean for both the independent and dependent vari-
ables are used in a regression equation. The regression co-
efficients from these two analyses are then pooled (Kashy
& Kenny, 1997; Kenny, 1996b) to estimate the actor and
partner effects. The second generalization involves the use
of structural equation modeling (e.g., LISREL) and is de-
scribed in detail in Kenny (1996b). These generalizations
presume that group sizes are equal. A more general proce-
dure for analyzing mixed designs, one that does not pre-
sume equal group sizes, is discussed in the multilevel mod-
eling section of this chapter.

General Guidelines for the Analysis of Mixed Variables
An examination of Table 10 indicates that the value of the
intraclass correlations must be very large to have conse-
quential effects on the significance testing of the indepen-
dent variable. If the intraclass correlation is not larger than
.5, it is safe to use person as the unit of analysis, at least for
dyads. We need further study about the effect of noninde-
pendence and mixed variables for groups. The more impor-
tant i1ssue with mixed variables is to estimate partner ef-
fects because partner effects capture the truly interpersonal
nature of group interaction. The analysis of data from
mixed designs poses special difficulties that cannot be han-
dled within a traditional ANOVA framework.

Summary

Most group research contains not one independent variable
but multiple independent variables. Likely, some variables
are nesied. others are crossed, and some are mixed. As we
have seen. 2 given level of nonindependence has very dif-
ferent effects for the different types of independent vari-
ables. For instance, if the intraclass correlation of the out-
come variable were .45 and person is the unit, for a nested
variable the F test would be too large, for a crossed vari-
able it would be oo small. and for the mixed variable there
may be little or no effect.

Generally the safest course of action is to make group
the unit of analysis and so it is then necessary to collect
data from a sufficient number of groups. Although there
may be some loss of power (perhaps not nearly as much as
might be thought), treating group as the unit avoids many
of the problems detailed in this section.

MULTILEVEL MODELS

In the previous section, ANOVA provided the framework
for analyzing data from nested and crossed independent
variables. As noted, ANOVA models cannot be used to an-
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alyze data from mixed variables; these models are furthet
limited by the assumptions that group sizes are equal and
the independent variables are categorical. There is an alter-
native to the ANOVA approach that can be used with any
of the three types of independent variables which allows
both continu>us independent variables and unequal group
sizes. This data-analytic approach has many names: multi-
level models, hierarchical linear models, mixed model
ANOVA, and random regression estimation.

The defining feature of multilevel data is that there is a
hierarchy of observations. The lower level is the level at
which the outcome variable is measured and is nested or
grouped within an upper-level unit. In group research. the
lower-level unit is person, and the upper-level unit is
group. Applications of multilevel modeling are not, how-
ever, limited to group research. Most especially, in re-
peated-measures research (e.g., diary studies), observation
or time point can be treated as the lower-level unit, and
person can be treated as the upper-level unit. There is no
requirement that persons have the same number of data
points, as there is in repeated-measures ANOVA.

The Basic Data Structure

As an example of the basic data structure, we consider a
fictitious study examining the effects of leadership style.
authoritarianism, and satisfaction of group members. The
participants in this “study™ are military recruits in twenty-
three platoons. Platoons range in size from five members 1o
fifteen members, and recruits are randomly assigned to pla-
toons with either a democratic or an autocratic leader. At
the beginning of the study, all the recruits are pretested on
authoritarianism. After six weeks of boot camp, the recruits
rate their level of satisfaction with their platoon.

This study can be used to investigate several questions
concerning leadership style, authoritarianism, and group
satisfaction. First, it can test whether recruits generally are
more satisfied with autocratic or democratic leadership
styles. This first question concerns the effects of a nested
independent variable, and ANOVA could be used to ana-
lyze such data if the leadership effect were the sole ques-
tion of interest. The second question that can be addressed
by this study is whether authoritarianism predicts satisfac-
tion. Authoritarianism is a mixed independent variable be-
cause some recruits in a platoon are more authoritarian than
others and some platoons score higher on average in au-
thoritarianism than others. The third question that this
study can address, using a multilevel approach, is the inter-
action between leadership style and authoritarianism: are
recruits who are higher in authoritarianism more satisfied
with autocratic leaders?

In this example, recruit is the lower-level unit and pia-
toon is the upper-level unit. Authottarianism is a lower-
level predictor variable which we symbolize as X. Note
that X can be either continuous or categorical (categorical

Xs are dummy coded). When X is continuous, as is the
case for authoritarianism. it should be centered (Aiken &
West, 1991) so that the intercepts are more interpretable.
To center the variable, we subtracted the grand mean of
authoritarianism (i.e., 5.53) from each score in this artifi-
cial data set. Leadership style is an upper-level predictor
variable and is denoted Z. Like X, Z can be either continu-
ous or categorical. In the present example, leadership style
is effect coded: Z = -1 tor the democratic style and Z = 1
for the autocratic style. Again, if Z were continuous, it
should be centered. Finally, the outcome variable, satisfac-
tion with the platoon, is measured on a seven-point scale
at the lower level (recruit) and is symbolized as Y. Table
11 presents selected observations from this fictitious ex-
ample data set.

Note that we are not allowing for partner effects (see
the discussion of mixed variables in the previous section).
For the example. the partner effect would refer to the effect
of the authoritarianism of the other platoon members on
the recruit’s satisfaction. Had we wished to allow for such
effects. we would create an additional X variable: the mean
authoritarianism of those in the platoon besides the recruit
(Kenny, 1996a).

Consistent with the conclusions drawn in the unit of
analysis section, in multilevel modeling the upper-level
unit, platoon in the example, is treated as the fundamental
unit of analysis. The basic analysis is a two-step procedure
in which an analysis is performed within each upper-level
unit (platoon) and then the results of all these analyses are
pooled. That is, in the first step the relationship between X
and Y is estimated for each upper-level unit. In the example
data set. the first step of the analysis estimates the relation-
ship between authoritarianism and satisfaction separately
for each platoon. In the second step, the results from the
step one analyses are pooled across the upper-level units
and the effects of the upper-level predictor variable, leader-
ship condition, are assessed.

Unweighted Regression

It is usually advisable to relate X and Y by a regression
analysis. So for each upper-level unit, Y is regressed on X.
In the example, for platoon i with recruit j, the model is
Equation | where platoon i has its own intercept &,; and
slope b,;:

Y,.j =by + b“Xl.j +eg )]

This analysis approach presumes that there are at least
three observaticns for each group and that both X and Y
vary for each group. There are k groups, n; observations for
group { (so thzre are #, recruits in platoon i), and N or Zn,
total observations. The number of observations per group
need not be equal. These k regressions are called the firs:-
step regressions.
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TABLE 11

Selected Observations from the Leadership and Authoritarianism
Hypothetical Data Set

Platoon Leadership Recruit

Number Condition Number Authoritarianism Satisfaction
2 -1 7 -0.53 4
2 -1 8 ~-1.53 3
2 -1 9 -2.53 4
2 -1 10 2.47 5
2 ~1 11 2.47 4
2 -1 12 0.47 3
2 -1 13 -0.53 6
4 1 22 0.47 6
4 1 23 1.47 4
4 1 24 1.47 5
4 1 25 3.47 6
4 1 26 2.47 5

For the second-step analysis, the regression coefficients
estimated in the first-step regressions (see Equation 1) are
assumed to be a function of the upper-level predictor vari-
able Z:

by=ay+a,Z +d,

b =co+cZ+f

There are two second-step regression equations, the first of
which treats the first-step intercepts as a function of the Z
variable and the second of which treats the first-step re-
gression coefficients as a function of Z. The parameters in
Equations 2 and 3 are as follows:

a,: the response on Y for persons scoring zero on both X
and Z

a,: the effect of Z on the average response on Y
¢, the effect of X on Y for groups scoring zero on Z
¢,: the effect of Z on the effect of X on Y.

For the intercepts (by;» ag. and ¢p) to be interpretable, both
X and Z must be scaled so that either zero is meaningful or
the mean of the variable is subtracted from each score. In
the example used here, X is continuous and centered
around its mean and Z is an effect-coded (-1, 1) categorical
variable. With this coding scheme, zero can be thought of
as an “average” across the two types of groups (democratic

and autocratic). The top of Table 12 gives the interpretation
of these four parameters for our example.

To repeat, there are two steps in the estimation proce-
dure. In the first step, the slope and the intercept, b,; and
by, are estimated for each group. That is, for each group Y
1s regressed on X as in Equation [ and the slope b,,, and in-
tercept b, are estimated. In the second step these slopes
and intercepts serve as criterion measures in two regression
equations in which Z is the predictor variable.

This two-step analysis procedure, where regression
slopes from the first step are dependent variables in the sec-
ond step, may seem unfamiliar. In fact, this procedure is simi-
lar in important respects to a conventional regression analysis
with interactions between the lower-level predictor X and the
upper-level predictor Z. To see this clearly, we need to substi-
tute the terms for by, and b,; in Equations 2 and 3 into Equa-
tion 1. This results in the following combined equation:

Vi=sag+aZi+clXy+ o ZX;+d +f X, +e; (4
If we ignore the terms d; and fX,;, we can see that this
equation is identical to a conventional regression equation
that specifies an interaction between X and Z; i.e., the ef-
fect of the lower-level predictor X depends on the upper-
level predictor Z. A conventional regression model of this
sort contains only one random effect, € However, the
multilevel model specified in Equation 4 contains two ad-
ditional random effects: d,, a random intercept effect; and
fX,» a random slope effect for X,. It is essential that these
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TABLE 12 .
Definition of Effects and Variance Components for
the Example
Effect Estimate
Constant: a,

Typical level of satisfaction across all recruits and platoons
Leadership Style (Z): a,

Degree to which recruits in the autocratic condition are

more satistied than recruits in the democratic condition
Authoritarianism (X): ¢

Degree to which a recruit’s authoritarianism relates to

satisfaction, controlling for leadership style

XbyZ: ¢
Degree to which the effect of leadership style varies by
authoritarianism
Variance
Platoon: 52

Platoon differences in the recruits’ satisfaction, controlling
for leadership style and level of authoritarianism

X by Platoon: 52
Platoon differences in the relationship between authoritari-
anism and satisfaction, controlling for leadership style

Error: 5,2

Within-platoon variation in satisfaction, controlling for au-
thoritarianism

additional random effects be considered to draw correct in-
ferences from multilevel data.

Table 13 presents the estimates from these second-step
regressions for the fictitious platoon data set. They are pre-
sented under the column designated OLS (ordinary least
squares). We see that the intercept is about four and a half
units. The estimates in Table 13 indicate that recruits in
groups with autocratic leaders say that they are more satis-
fied than recruits with democratic leaders by about two-
thirds of a point. (Because of effect coding, the coefficient
must be doubled.) Also, recruits high in authoritarianism
are more satisfied than those low in authoritarianism, but
the effect is only marginally significant. There was no sig-
nificant evidence of a differential effect of authoritarianism
on satisfaction for the two leadership conditions.

Weighted Regressions

The first-step regression coefficients are likely to differ in
their precision. Some are estimated more precisely than
others because they are based on more observations and
because X varies more. It seems reasonable to weight the
second-step equation by the precision of the first-step esti-

mates. That is, groups whose coefficients are better esti-
mated should count more than groups whose coefficients
are not well estimated.

Although weighting greatly complicates multilevel
analysis, it provides two important dividends. First, when
the se~onc step regressions are weighted, the estimates are
more precise; i.e., they are, in principle, closer to the popu-
lation values than the unweighted estimates. Second, be-
cause weighting corrects for sampling error, variances of
effects can be estimated. For instance, it can be determined
whether the effect of X on Y varies across upper-level units.
In terms of the example, we can estimate the degree to
which the relationship between authoritarianism and satis-
faction varies across platoons. So weighting at step two
provides important benefits. Two different weighting
strategies are considered: weighted least squares (WLS)
and maximum likelihood (ML).

WLS Weighting To determine the weight or the accu-
racy of each group's regression coefficient w, we use the
sum of squares for X or $S,. This weight depends on two
factors: the number of observations for group / and the
variance of X for group i. Note that the larger the value of
w,, the more precisely b, is estimated and the more it is
weighted in the second-step regression equation.

To better understand the difference between OLS and
WLS, Table 14 presents information concerning the rela-
tionship between authoritarianism and satisfaction for five
of the twenty-three groups. Platoon nine’s data should be
weighted more heavily because that platoon has more re-
cruits than platoon four. Note alsc that the weight of pla-
toon eleven is larger than platoon nine’s, despite the fact
that platoon nine has more recruits than platoon eleven.
The pattern in the weights happens because platoon nine
has less variation in authoritarianism than platoon eleven
and so platoon nine has a smaller weight.

Table 13 presents the WLS estimates which are some-
what similar to the OLS estimates. Platoons with auto-
cratic leaders have more satisfied recruits, and recruits
higher in authoritarianism are more satisfied. The interac-
tion is now statistically significant. Recruits higher in au-
thoritarianism are especially satisfied when they have auto-
cratic leaders.

For the weighted solution, there are two variances of
effects. First, there is variance in the intercepts of odz.
(From Equation 2, 4 is the residual term in the second-step
regression of the intercepts.) It measures the extent to
which there are differences between upper-level units in
their average scores on Y when X is zero, after removing
variation due to Z. So o> measures the degree to which
platoons differ in average levels of satisfaction controlling
for both the levels of authoritarianism in the platoon and
leadership style. The interpretation of o ? depends on the
meaning of zero for the X variable. Recall that the inter-
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TABLE 13
Estimates and Tests of Coefficients and Variance Components
for the Example
Coefficients
OLS WLS ML
b t b t b t
\ Constant 4.645 37.63%* 4.598 39.76** 4.604 41.79**
Leadership (Z) 0.352 2.85% 0.346 2.99** 0.318 2.88%*
Author. (X)) 0.162 1.94% 0.206 2.58%* 0.162 2.03*
XbyZ 0.141 1.69 0.158 1.97% 0.163 2.04t
Variances
2 F 52 X¥df
Platoon (G/Z or d) 0.109 1.55¢ 0.085 1.54t
X by G/Z (f) 0.087 242% 0087  2.44%x
Error 1.470 1.481
**p < .01
*p < .08
p<.10

cept for group / is the predicted score when X is zero. Be-
cause authoritarianism is centered on its mean, the inter-
cept is the level of satisfaction for a recruit who is average
in authoritarianism.

Additionally, there is variance in the coefficients or sz
(see Equation 3). This variance measures the extent to
which the relationship between X and Y varies across the
upper-level units after removing variation due to Z. So for
the example, this variance assesses the degree to which the
relationship between satisfaction and authoritarianism
varies across platoons, controlling for leadership style.

To summarize, there are two group effects that are rep-
resented by variances:6

o, group or upper-level differences in the average re-
sponse controlling for X and Z

afzz group or upper-level differences in the effect of X
on Y controlling for Z.

The bottom of Table 12 presents the interpretation of these
variances for the platoon example.
To test whether there 15 significant variance in the firsi-

TABLE 14
Five Selected Platoons from the Example
Group Variance in Effect of
Platoon Size Authoritarianism Authoritarianism Weight*

4 5 1.30 0.115 5.20
9 9 2.44 0.341 19.56
11 8 5.56 0.608 38.88
15 13 242 -0.489 29.08
18 9 361 -0.212 28.89

*Weight equals the variance of authoritarianism times the group size less one.
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step regression coefficients, one must first compute the fol-
lowing: i

sz: the error variance from the weighted second-step re-
gression where b|; was treated as the criterion variable

5,% the pooled error variance or Z(df;s,2V/Zdf;

where s,;2 and df; are the error variance in group i and its
degree of freedom. By pooling the error variances, we are
assuming that they are homogeneous across the upper-level
units (groups). The test of whether the first-step regression
coefficients vary significantly (o = 0) is F(k -2, N - 2k) =
s?/s,? where k equals the number of groups and N the total
number of observations in the data set. The estimate of the
variance of the coefficients or o/ is

2 2
Sf 75 (5)

q

The value of g can be viewed as an average of the weights.
When the weights do not vary, q equals that weight. But
when the weights do change, q is a quite complicated average
of weights (Kashy, 1991; Kenny, Boiger & Kashy, 1997).

In the bottom of Table 13, for the platoon example, the
variances are presented. The standard deviation for the pla-
toons is about 0.3 and is only marginally significant. How-
ever, the effect of authoritarianism on satisfaction does vary
significantly from platoon to platoon. Assuming a normal
distribution of slopes, the results indicate that about 68 per-
cent of the platoons have authoritarianism slopes between
0.206 * 0.295. So, although in most platoons recruits higher
in authoritarianism are more satisfied, in some platoons re-
cruits who are lower in authoritarianism are more satisfied.

The value of g for the example is 23.900 for the slopes
and 7.371 for the intercepts. As has been stated, the value
of g can be viewed as an average weight. This WLS esti-
mation method can be implemented using the GLM proce-
dure done within SAS (Kenny, Bolger & Kashy, 1997).

Maximum Likeiihood (ML) Weighting In multilevel
modeling, WLS estimation is rarely used, the more com-
mon method being maximum likelihood. To explain the
difference between ML and WLS weights, consider the
simplest multilevel model, one with no X or Z variables. As
an example, fifteen members of three platoons rate their
satisfaction with the group.

The model is the familiar one-way ANOVA model with
random effects. There is only one fixed effect in this
model, the constant or typical level of satisfaction. At issue
here is how to estimate that effect. There are two different
approaches: the weighted mean (sum of ail the observa-
tions divided by N) and the unweighted mean (sum of all
the group means divided by k). The OLS estimate of the in-
tercept is the unweighted mean whereas the WLS estimate
is the weighted mean.

ML uses a compromise between these two means
based on the ratio of the variation within each group’s
data and the variation between groups. Consider the two
sets of data in Table 15. In both sets there are three pla-
toons whose means are 6, 7, and 8. The unweighted mean
for both data sets is 7.000 and the weighted mean is
6.733. The difference between the two data sets is that for
data set A, there is no within-group variance (recruits
from the same platoon agree) whereas for B there is con-
siderable variation. The unweighted mean is the appropri-
ate measure of the intercept for data set A. Because there
is no variation within platoons, having more observations
really does not increase the precision in the estimation.
But for data set B, there is considerably more variation
and so having more observations is meaningful. So for
data set B, the ML estimate (using the computer program
HLM; see below) of the intercept is 6.746, which is
closer to the weighted mean than the unweighted mean.
Thus, the ML estimate does not use either the weighted or
unweighted mean but rather uses an appropriate compro-
mise based on the data.

The ML weight used to estimate o,* is s5,> + w,s,?
where w, is the WLS weight for unit i, 52 is the variance of
the intercepts, and s_? is the pooled error variance. Note
that if there is no witﬁin-group variation (s 2 = 0), which is
the case for the data set A of Table 15, then the weights are
homogeneous and the unweighted mean is used. If, how-
ever, sa,2 1s near zero (its estimate for data set B is only
0.054), then the weighted mean is used.

Although there is an impressive statistical logic to ML
weighting, it presents an estimation difficulty. To estimate
o, one must know s,? beforehand because s, is used in
the weighting. This is the fundamental computational diffi-
culty with ML. It results in the following consequences: it-
erative solutions and approximate standard errors. For
more extended descriptions of maximum likelihood esti-
mation of multilevel models, the reader should consult
Bryk and Raudenbush (1992); Hedeker, Gibbons, and Flay
(1994); and Goldstein (1995).

There is now a wide array of specialized computer pro-
grams that calculate these maximum likelihood estimates:
HEM/2L and HLM/3L (Bryk, Raudenbush, & Congdon,

TABLE 15
Ilustration of Weighting
Group Data Set A Data Set B
1 6666666 3456789
2 77777 467810
3 8§88 68 10

Unweighted Mean = 7.000; Weighted Mean = 6.733.
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1994), MIXREG (Hedeker, 1993), MLn (Goldstein, Ras-
bash, & Yang, 1994), as well as 5V within BMDP and
PROC MIXED within SAS. It should be noted that these
programs actually accomplish the estimation in one step
(and then iterate) and do not take two steps as do the OLS
or WLS approaches. Also, most programs implement a va-
riety of estimation approaches, the most common being re-
stricted maximum likelihood.

We used the computer program HLM (Bryk et al.,
1994) to estimate the parameters for the example platoon
data set. Both the OLS and WLS results are fairly similar
to the ML estimates. HLM uses a chi square test to evalu-
ate the statistical significance of the variances. To com-
pare this value to the WLS F tests, we divided the chi
square by its degrees of freedom. As with WLS, the test
that the effect of authoritarianism varied across groups is
statistically significant.

ML also provides a measure of the covariance between
d; and f;, the degree to which group differences in the
slopes and intercepts are correlated. (Although WLS does
pot estimate this term, WLS does not assume that it is
zero.) For the example, the correlation between 4 and f is
.338 which indicates that platoons with more satisfied re-
cruits also had a more positive effect of authoritarianism on
satisfaction.

Summary

There are three strategies for estimating models with group
or upper-level as unit: OLS, WLS, and ML. An OLS solu-
tion is the simplest to accomplish, but least efficient, and
there are no estimates of the variances of the effects. A WLS
solution provides estimates of the variances, but it can be
much less efficient than the ML method. The ML method is
the most efficient and is the most computationally complex.
* However, multilevel software is becoming increasingly ac-

cessible. It seems certain that ML will become the method
of choice for the estimation of muliievel models.

It is helpful to contrast muluilevel modeling with ML
estimation to ANOVA with least-squares estimation. The

* major differences between the two are presented in Table
16. Within multilevel modeling, variables are denoted as
fixed or random. In ANOVA. such a distinction can be
made, but it is usually not featured. There is typically only
one random factor: person. However, in many settings
there are multiple random variables. As has been exten-
sively discussed in this chapter, in group research there are
two random variables: person and group.

One potential benefit of the use of multilevel models in
social psychology is that they are likely to promote greater
awareness of the distinction between fixed and random ef-
fects. In particular, stimuli in social psychological experi-
ments (e.g., targets, words, sentence-stems) should prop-
erly be treated as random effects, but instead they are
treated as fixed. Strictly speaking, then, the results of such
experiments do not generalize beyond the specific stimuli
used. Persons, on the other hand, are always treated as ran-
dom effects, and statistical theory permits generalization to
the population from which they were drawn. It is ironic
that we social psychologists, who theorize that the situa-
tion is more important than the person, use analysis meth-
ods that make the person more important than the situation.

Random factors are featured much more in multilevel
modeling than are fixed factors. The analyst examines the
variance due to the presumed random effects in the model.
If such variances are near zero, the model would be reesti-
mated with the term dropped. Also, fixed factors may inter-
act with random factors.

Classically in ANOVA, designs are balanced. Equal
sample sizes in each cell of the design, though not a re-
quirement, are highly desirable. Although this assumption
can sometimes be relaxed, ANOVA works best on designs
that are balanced. Multifevel modeling can handle bal-

TABLE 1¢
Differences Between ANOVA and Multilevel Modeling Paradigins
Paradigm
Factor ANOVA Multilevel modeling
Random factors One More than one
Terms estimated Effects Effects and variances
Design Balanced Unbalanced
Missing data None Allowable

Estimation technique

Least squares

Formulas for estimates Yes

Maximum likelihood

No
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anced as well as unbalanced designs. Although multilevel
models can handle unbalanced data, the principle of bal-
ance is important and researchers should strive for it when
they design research. There is a comparable parallel in la-
tent variable modeling. Although those models allow the
researcher to analyze unreliable measures (see below), it is
still desirable to have as reliable measures as possible.

A related feature of multilevel modeling is that it allows
for missing data. Consider conventional repeated-measures
designs. Within ANOVA, if there are missing data from a
person on a repeated measure, that person would have to be
dropped from the analysis or the missing data would have
to be “imputed.” Multilevel models are often able to ana-
lyze all the data. Another feature is the estimation method
for multilevel models. ANOVA models are estimated by
least squares and significance tests involve comparison of
mean squares. Generally, multilevel modeling employs
maximum likelihood estimation.

Within ANOVA one can use the raw data to estimate an
effect, and very often the estimates are means. For many
classic social psychological experiments, the entire study is
captured by a 2 x 2 table of means. With multilevel model-
ing, very complicated algorithms are used and the esti-
mates are so complicated that no formula can be used to
provide an estimate. Instead an iterative algorithm is used
to approximate an estimate. The estimates are not means
but coefficients from a complicated two-level analysis.
Thus, it is much more difficult to go from the raw data to
the results from the statistical analysis.

Multilevel modeling is quite different from the standard
ANOVA framework. It promises to allow for more efficient
and more flexible estimation of models than ANOVA.
Moreover, it is reasonable to expect that multilevel model-
ing will become easier to implement and to interpret. We
return to these differences in the conclusion of the chapter.

IDENTIFICATION IN STRUCTURAL
EQUATION MODELING

Contemporary research in social psychology routinely uses
structural equation models (Breckler, 1990). These models
employ latent constructs that are measured by imperfect in-
dicators. The set of links between indicators and latent
constructs is called the measurement model (see Judd &
McClelland, 1998, in this Handbook), and the set of links
between constructs (i.e., causal paths) is called the struc-
tural model.

Structural equation modeling involves four steps. In the
first step, called specificarion, the researcher determines
which indicators reflect which latent variable and what the
causal relations between latent variables are. Specification
not only involves stating what causes what, but also what
does nor cause what. Certainly all models are incorrectly
specified. The goal is to specify a model that is not too

complex that it cannot be ¢stimated (see below), but not
too simple that it is tivial. Such a blend of “complex sim-
plicity” can be difficult to achieve.

In the second step, called /dentification, the researcher
determines whether there is enough information to esti-
mate the model. For many investigators, this is the most
mysterious step. The focus of this section is to provide
guidance on this topic.

In the third step, called estimation, the parameters of the
model are estimated. For some models without latent vari-
ables (called path analysis models), multiple regression is
the estimation method. The estimation of models with la-
tent variables requires specialized structural equation com-
puter programs and. geneially, maximum likelihood esti-
mation is the estimation method. Because maximum
likelihood estimation of structural equation models usually
presumes a multivariate normal distribution, less restrictive
estimation methods have also been developed.

The statistical theory on which structural equation mod-
eling is based presumes that the models are estimated
using the covariance matrix (a covariance between two
variables equals their correlation times the product of their
standard deviations). In practice, many models do not re-
quire that the covariance matrix be used for estimation
(Cudeck, 1989). and a correlation matrix can be used in-
stead. It is possible to reformulate the statistical theory and
presume that the model is estimated from a correlation, not
a covariance, matrix (Browne & Mels, 1994).

In the fourth step, the fit of the model is evaluated. If
the fit is poor, the model can be respecified and so part of
the evaluation of model fit is the determination of where
the poor fit lies. Since the pioneering paper by Bentler and
Bonett (1980). literally hundreds of measures of model fit
have been developed (Botlen & Long, 1993). Although the
choice of model fit depends on a host of factors, the
Tucker-Lewis or nonnormed measure (Bentler & Bonett,
1980) is very often quite informative (Marsh, Balla, & Mc-
Donald, 1988).

After all four steps. the model is usually respecified
based on the analysis of the data. In structural equation
modeling, the researcher usually cycles through the steps
of specification, identification, estimation, and mode] fit
many times. Models that are respecified based on the data
are exploratory and not confirmatory. Generally, the signif-
icance testing within structural equation modeling pre-
sumes that the model was specified without looking at the
data. Capitalization on chance is a serious problem when
models are substantially altered based on the analysis of
the data (MacCallum, Roznowski, & Necowitz, 1992). Ex-
clusive reliance on statistical and not theoretical criteria for
respecification can lead to misleading models.

In the estimation step, the measured variables are corre-
lated, and their correlations (or more generally covari-
ances) are used for parameter estimation. However, some-
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times the information available from the correlations is not
sufficient to enable the researcher to estimate the parame-
ters. For instance, for a model in which two variables indi-
cate a single latent variable, there is a single correlation.
With that one correlation, it is impossible to solve for the
two factor loadings. The problem is a standard algebraic
one of fewer equations than unknowns. In cases such as
this, there is no unique mathematical solution for the
model’s parameters and the model is said to be not identi-
fied. An essential task in structural equation modeling is to
establish whether the model is identified.

Traditionally, the determination of a model’s identifica-
tion status requires a formal mathematical analysis that is
described in texts like Bollen’s (1989). In practice, this
analysis is too complex for most researchers, and so they
rely on structural equation modeling software to determine
whether a given model is identified (Hayduk, 1987). How-
ever, finding out that one’s model is not identified at the data
analysis stage means that the study has to be redesigned and
rerun. Researchers need to know if their models are identi-
fied, in principle, before they collect the data. This section
presents rules so that researchers can determine if their mod-
els are identified before they are estimated.

However, even models that are in principle identified
may not be identified when they are actually estimated.
Such models are said to be empirically underidentified. A
simple example can illustrate this condition: if a causal
variable does not vary in the sample, its effects cannot be
empirically estimated. So a second purpose of this section
is to assist researchers in the recognition of models that are
not identified empirically.

The following set of rules can be used to check whether
a given model is identified. What follows should be taken
as a guide and not as gospel. The rules, by no means ex-
haustive, are nonetheless helpful in determining identifica-
tion. What follows presumes some knowledge of structural
equation modeling. If the reader lacks that knowledge, this
section should be skipped.

If both the structural and the measurement models are
identified, then the entire model is identified. For the entire
model to be identified, the structural model must be identi-
fied. Occasionally, the measurement model alone is not but
the entire model may be identified when certain paths in
the structural model are set to zero (see Condition B3b).

Measurement Model Identification

In the measurement model, indicators are used to assess
constructs or latent variables. For example, ratings by three
friends of a target’s friendliness might serve as indicators
of target friendliness, and ratings of intelligence from the
same three friends might be indicators of intelligence. Pairs
of latent constructs may be correlated. That is, there may
be a correlation between the constructs of friendliness and

intelligence. Variance in the indicators that is not due to the
latent constructs is called measurement error, and the er-
rors of two indicators may be correlated. For example, the
ratings by the same friend of friendliness and intelligence
are likely correlated due to a halo effect.

For the measurement model to be identified, five condi-
tions labeled A through E must hold. Conditions A and B
must be satisfied by each construct, Condition C refers to
each pair of constructs, and Condition D refers to each
measure or indicator. Condition E refers to indicators that
load on two or more constructs.

These rules primarily concern models in which each
measure loads on only one construct. Fortunately, most es-
timated models in social psychology are of this type. If a
variable loads on more than one construct, that variable is
set aside and is discussed under Condition E.

Condition A: Scaling the Latent Variable Because a la-
tent variable is unmeasured, its units of measurement must
be fixed by the researcher. This condition concerns the
manner in which the units of measurement are fixed. Each
construct must have either:

1. one fixed nonzero loading (usually 1.0),

2. for causal or exogenous factors, fixed factor variance
(usually 1.0), or for factors that are caused, fixed factor
disturbance variance (usually 1.0), or

3. a fixed causal path (usually 1.0) leading into or out of
the latent variable (see Kenny, 1979, pp. 180-182).

Some computer programs require that only strategy one be
used, but the other two strategies are perfectly legitimate.
For pure measurement model situations (no causation be-
tween latent variables) or confirmatory factor analysis,
strategy two is often used, yielding the standard factor
analysis model. Strategy three is hardly ever used.

Condition B: Sufficient Nummber of Indicators per Con-
struct For each construct in the model, at least one of the
following three conditions must hold.

1. The construct has at least three indicators whose errors
are uncorrelated with each other.
2. The construct has at least two indicators whose errors
are uncorrelated and either
a. both the indicators of the construct correlate with a
third indicator of another construct but the two in-
dicators’ errors are uncorrelated with the error of
that third indicator (i.e., the two constructs must be
correlated), or
b. the two indicators’ loadirgs are set equal to each other.
3. The construct has one indicator and either:
a. the indicator’s error variance is fixed to zero or some
other a priori value (e.g., the quantity one minus the
reliability times the indicator’s variance), or
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b. there is another variable that can serve as an instru-
mental variable (see Rule C under “Identification
of the Structural Model” below) in the structural
model and the error in the indicator is not corre-
lated with that instrumental variable.

Condition C: Construct Correlations For every pair of
constructs either

1. there are at least two indicators, one from each con-
struct, that do not have correlated measurement error
between them, or

2. the correlation between the pair of constructs is speci-
fied to be zero (or some other a priori value).

Condition D: Loading Estimation For every indicator,
there must be at least one other indicator (not necessarily of
the same construct) with which it does not share correlated
measurement error. If the three above conditions hold and
Condition D does not, then drop from the model all indicators
that do not meet this condition and the model is still identified.

Condition E: Estimation of Double Loadings One im-
portant model in which all indicators have double loadings
is the classic model for the muititrait-multimethod matrix
(Campbell & Fiske, 1959). Each indicator loads on both a
trait and method factor. Kenny and Kashy (1992) have
shown that there are serious empirical identification diffi-
culties with this model. All but the most adventurous re-
searchers are well advised to avoid the estimation of such
models. Altemative forms of multitrait-multimethod matrix
models can be estimated (Kenny & Kashy, 1992; Millsap,
1995; Wothke, 1995).

However, a subset of indicators may load on two or
more factors as long as Conditions A, B, and C are met for
those constructs by including some indicators that load on
only one construct. We refer to this as Condition E. Con-
sider the indicator X, that loads on more than one con-
struct. The errors of X| may be correlated with the errors of
other indicators, but for each construct on which X, loads,
there must be at least one singly-loading indicator that
does not share any correlated error with X.

The rule in the previous paragraph is a sufficient condi-
tion for the identification of models with double-loading
indicators. That is, some models that do not meet Condi-
tion E are identified in principle. However, in practice
these models are often empirically under-identified.

Summary

For most measurement models, Condition E is not relevant,
and it is usually very easy to verify that C and D are satis-

fied. Condition A can always be satisfied (but the re-
searcher must make sure that it is), and so ordinarily the
key condition to scrutinize carefully is B.

Constructs with a single error-free indicator (e.g., gen-
der) are best handled by fixing their loading to one, forcing
their error variance to zero, and leaving their variances free
to be estimated. Of course, the assumption of zero error
variance must be justified theoretically.

Empirical Identification of the Measurement Model
Some models that are identified in theory are not identified
for a particular study. Following Kenny (1979), these mod-
els are called empirically underidentified models. Consider
a simple one-factor model with three indicators, X, X,, and
X;. It can be shown that the standardized loading of X, on
the factor equals the square root of r;,r 4/r,;. Mathemati-
cally tor there to be a solution r,; must not equal zero. If its
value is near zero, then there is no well-defined solution
and the model is said to be empirically underidentified.”"

Coandition B, the number of indicators per construct, is
criticil to the empirical identification of each construct.
Condition Bl requires three indicators. For these three in-
dicators, each of the three correlations between those indi-
cators should be statistically significant and the product of
the three correlations must be positive.

Condition B2a has three indicators, two of which load
on the latent variable and the third loads on another factor.
As with BI, the three indicators must correlate signifi-
cantly with each other and their product must be positive.
If the two indicators of one construct correlate with the one
indicator of the other construct, then those two constructs
mus: be correlated.

For two indicators that are assumed to have equal load-
ings (Condition B2b), the correlation between the two
mus: be significantly positive. If the correlation is large but
negzive, given theoretical justification, the loadings can be
forcad to be equal but of opposite signs.

I7 there is a single indicator and instrumental variable
(Cozdition B3b) estimation is used, the indicator must
shar: unique variance with the instrument (see Rule C
bCIL‘W)

17 the latent variable is scaled by fixing a loading to one
(Coadition Al), the indicator with a loading of one must
corlate with other indicators of the latent variable. If all
of 21e loadings are free and the disturbance of residual
varance is fixed, empirical identification problems can
occzr if all or nearly all of the variance of the latent vari-
ablz 1s explained by the other latent variables in the model.

T an indicator loads on two constructs (Condition E),
the correlation between these two constructs cannot be
ver: large. If that correlation is too large, the resulting mul-
ticcilinearity makes it difficult to determine the indicator’s
loaiings on the two factors.
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Dlustrations Figure 1 contains a series of examples. The
latent factors or constructs are denoted by circled Fs and
Gs, the measures are denoted by Xs, and the errors by Es.
The reader should decide whether each model is identified
and then read the text that follows. .

Models I through IV are single-factor models. So Con-
ditions C and E do not apply. Condition A is met in each
model because one path is fixed to one. The key condition
for these models is Condition B, but D must also be
checked.

Model I meets Condition B1 and so is identified. Model
II does not meet Condition B and so is not identified.
Model III, though very similar to Model 11, is identified be-
cause it meets Condition B2. Model IV meets Condition
B1 but indicator X, fails to meet Condition D. So to iden-
tify this model, indicator X, must be dropped from the
model.

Models V through VIII are two-factor models. All the
conditions need to be checked, but we concentrate on Con-
dition B. Models V and VI are not identified because they
fail to meet Condition B. Both models would be identified
if the errors were not correlated. Model VII is identical to
Model VI, but there are three indicators per factor instead
of two. This model is identified because it meets both Con-
ditions B1 and B2a. Model VIII is identified because it
meets Condition B2a. However, Model IX is not identified
because B2a is not met since X, and X, do not correlate
with X5 and X, given that the correlation between the con-
structs is zero. Finally, Model X is identified. Condition
B2a is met for both factors and so under Condition E, X,
can load on both latent variables.

Identification of the Structural Model

The structural model consists of a set of causal equations.
Variables that serve only as causes in the model are called
exogenous variables. Unexplained variation in the effect
variable is referred to as disturbance.

Rule A: Minimum Condition of Identifiability Let & be
the number of constructs in the structural model and ¢ be
equal to k(k — 1)/2. The minimum condition of identifiabil-
ity is that g must be greater than or equal to p where p
equals the sum of:

a. the number of paths,

b. the number of correlations between exogenous vari-
ables,

¢. the number of correlations between a disturbance and
an exogenous variable, and

d. the number of correlations between disturbances.

In nearly all models, ¢ is zero, and in many models d is
zero. Theory places restrictions on a. Generally, b shouid

be set at the maximum value: that is. all pairs of exogenous
variables should be correlated.

If a structural model satisfies this minimum condition,
the model may be identified. if it does not, the model is not
identified; however, some but not all of the parameters of
the model may be identified.

Rule B: Apparent Necessary Condition All models that
satisfy the following condition appear to be identified: if
between any pair of constructs, X and Y, no more than one
of the following is true:

X directly causes Y
Y directly causes X

X and Y have correlated disturbances or if either X or
Y is exogenous, it is correlated with the other’s distur-
bance

X and Y are correlated exogenous variables.

Models that can be estimated by multiple regression
form an important special case of this rule. For such mod-
els, the structural equations can be ordered such that if a
variable appears as a cause in a given equation, it never
later appears as an effect. Although we know of no proof
for Rule B, we know of no exception. It seems likely that
the rule generally holds.

Rule C: Instrumental Variable Estimation This rule
considers exceptions to the previous rule: models that fail
to satisfy Rule B but are nonetheless identified. The mater-
ial in this section is very dense and may have to be read
more than once. Because of these complications, this esti-
mation method has rarely been used in social psychology,
however, there have been some important uses of the
method (e.g., Felson. 1981; Smith, 1982).

The estimation method is called insrrumental variable
estimation. An instrumenial variable is assumed not to
cause directly the effect variable. The absence of a causal
path is what permits the estimation of an otherwise not
identified model.

Consider X as a causal variable and Y as an effect vari-
able. Instrumental variable estimation can be applied to the
three following conditions:

1. spuriousness: an unmeasured variable causes both X
and ¥,

2. reverse causation: Y causes X, and

3. measurement error: measurement error in X which has
only a single indicator.

Notice that conditions 1 and 2 violate Rule B. For all three
conditions. the path from X to Y cannot be estimated by
traditional means.

These models can be identified by instrumental vari-
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ables. Denote X as a causal variable that meets one of the
three above conditions, Y as the effect variable, U as ¥’s
disturbance, / as an instrumental variable. and Z as a causal
variable not needing an instrumental variable. The defining
feature of an instrumental variable is that / is assumed not
to cause Y directly: the path from / to Y is zero. This zero
path is used to identify the model, but it must be given by
theory, not by empircal analysis.

The following conditions are necessary for a model
with instrumental variables to be identified.

1. The variable [ must not directly cause Y or be corre-
lated with U.

2. There must be as many or more / variables as there are
X variables.8

Empirical Identification of the Structural Model If
two variables that cause a third variable are strongly corre-
lated, a condition called multicollinearirv, the paths are not
very precisely estimated. When there is perfect correlation
between a pair of causal variables, the coefficients for
those causal variables cannot be estimated at all.

For models with instrumental variables. the conditions
for empirical identification are complicated. As before, let
X be the variable that needs an instrumental variable. / be
an instrumental variable, and Z be a causal variable that
does not need an instrument. After the partialling out vari-
ance due to Z, the set of [ variables must significantly cor-
relate (i.e., have a large multiple correlation) with X. For
there to be a correlation between [ and X and for Rule Cl
not to be violated. the following must hold for the appro-
priate use of instrumental variable estimation.

1. For spuriousness. X cannot cause ! and [ cannot be
correlated with the omitted variable.

2. When X is measured with error, variable / cannot be
correlated with the measurement ernr in X, however /
itself may have measurement error. That part of X that
contains error may cause /.

3. For a feedback relationship, X cannot cause /.

If there is more than one X variable (i.e.. variables needing
instruments) that cause Y. when each \ is regressed on /
and Z, the correlation between the predicted Xs should not
be too large (see Kenny [1979] p. 91). Finally, in a feed-
back loop, the same variable cannot serve as the instrumen-
tal variable for both variables in the loop.*

Illustrations Figure 2 contains six models containing
four variables, and the question is wheter the structural
model is identified or not. Model I is not :dentified because
it fails to satisfy Rule A, the minimum condition of identifi-
ability. There are four variables and so there are six correla-
tions. Because there are eight parameters 0 be estimated in

Model I, the minimum condition of identifiability has not
been met. All the remaining models meet that conditicn.

The next three models are identified because they sat-
isfy Rule B. Models II and III can be estimated by multiple
regression, and a variant of Model III is presented in the
section on mediation. Model IV contains a feedback cycle
(X, causes X,, X, causes X;, X5 causes X, and X, causes
X)), and it is identified.

Because Models V and VI do not meet Rule B, we need
instrumental variables and Rule C to identify these models.
Model V has a feedback loop between X, and X,. The vari-
able X, can serve as an instrumental vanable in estimating
the effect of X; on X5, and X, can serve as instrumental vari-
able in estimating the effect ofX on X,. For Model VI, the
path from X, to X, needs an mstrumental variable, because X,
is correlated with the disturbance in X,. It would seem that X
could serve as an instrumental vanable, but it cannot because
X, causes X; making the instrument correlated with the dis-
turbance in X,. Given this correlation, X; cannot serve as an
instrumental variable and so Model VI is not identified.

Conclusion

This section on identification is very dense, but it does ad-
dress an important and neglected issue in causal modeling.
To design intelligent measurement and the structural mod-
els, the researcher needs to know whether the models are
identified. Waiting to find out that model is not identified
during the estimation stage is too late. Issues of identifica-
tion are particularly relevant for the testing of mediational
models, the topic of the next section.

MEDIATIONAL ANALYSIS

Structural equation maodeling greatly facilitates the estima-
tion and testing of causal sequences, particularly those in-
volving theoretical constructs rather than measured vari-
ables. One particular tvpe of causal model, a model
proposing a mediational process, occurs frequently in so-
cial psychology. Very often a phenomenon is discovered
(e.g., social facilitaticn or group polarization), and re-
searchers are eager to Jdiscover the process by which the
phenomenon operates. As discussed by Taylor (1998, in
this Handbook), much of what social psychologists do is
attempt to understand how internal processes mediate the
effect of the situation on behavior. When a mediational
model involves latent censtructs, structural equation mod-
eling provides the basic Jata analysis strategy. If the medi-
ational model involves cnlv measured variables, the basic
analytical approach is multiple regression. Regardless of
which data-analytic me™od is used, the steps necessary for
testing mediation are the same. In this section, we describe
the analyses required Zor testing mediational hypotheses
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and we address several questicns that such analyses have
engendered.

Consider a variable X that is assumed to affect another
variable Y. The vanable X is called the initial variable and
the variable that it causes or Y is called the outcome. In dia-
grammatic form, the unmediated model is presented in
Figure 3(a). The effect of X on Y may be mediated by a
process variable M, and the variable X may still affect Y.
The mediated model is presented in diagrammatic form in
Figure 3(b). The mediator has been called an inrervening
Or process variable. Complete mediation is the case in
which variable X no Jonger affects Y after M has been con-

trolled and so path ¢” in Figure 3(b) is zero. Partial media-
tion is the case in which the path from X to Y is reduced in
absolute size but is still different from zero when the medi-
ator is controlled.

Baron and Kenny (1986) and Judd and Kenny (1981)
have discussed four steps in establishing mediation.

Step 1. Show that the initial variable is correlated with the
outcome. Use Y as the criterion variable in a re-
gression equation and X as a predictor—estimate
and test path ¢ in Figure 3(a). This step establishes
that there is an effect that may be mediated.
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(a)

FIGURE 3 Basic Mediational Structure.

(b)

X is the initial variable, Y the outcome variable, and M the mediator.

Step 2. Show that the initial variable is correlated with the
mediator. Use M as the criterion variable in the re-
gression equation and X as a predictor—estimate
and test path a in Figure 3(b). This step essentially
involves treating the mediator as if it were an out-
come variable.

Step 3. Show that the mediator affects the outcome vari-
able. Use Y as the criterion variable in a regression
equation and X and M as predictors—estimate and
test path b in Figure 3(b). It is not sufficient just to
correlate the mediator with the outcome; the medi-
ator and the outcome may be correlated because
they are both caused by the initial variable X.
Thus, the initial variable must be controlled in es-
tablishing the effect of the mediator on the out-
come.

Step 4. To establish that M completely mediates the X-Y
relationship, the effect of X on Y controlling for M
should be zero—estimate and test path ¢” in the
Figure 3(b). The effects in both Steps 3 and 4 are
estimated in the same regression equation.

If all four of these steps are met, then the data are consis-
tent with the hypothesis that M completely mediates the
X-Y relationship, and if the first three steps are met but
Step 4 is not, then partial mediation is indicated. Meeting
these steps does not, however, conclusively establish that

mediation has occurred because there are other (perhaps

less plausible) models that are consistent with the data
(MacCallum, Wegener, Uchino, & Fabrigar, 1993). Some
of these models are considered later in this section.

The amount of mediation is defined as the reduction of
the effect of the initial variation on the outcome or ¢ - ¢”.
This difference in coefficients can be shown to equal ex-
actly the product of the effect of X on M times the effect
of M on Y or ab and so ab = ¢ - ¢”. Note that the amount
of reduction in the effect of X on Y is not equivalent to ei-
ther the change in variance explained or the change in an
inferential statistic such as F or a p value. It is possible
for the F from the initial variable to the outcome to de-

crease dramatically even when the mediator has no effect
on the outcome.

If Step 2 (the test of a) and Step 3 (the test of b) are
met, it follows that there necessarily is a reduction in the
effect of X on Y. An indirect and approximate test that ab
= 0 is to test that both a and b are zero (Steps 2 and 3).
Baron and Kenny (1986) provide a direct test of ab which
is a modification of a test originally proposed by Sobel
(1982). It requires the standard error of a or s, (which
equals a/t, where ¢, is the ¢ test of coefficient a) and the
standard error of b or 5,. The standard error of ab can be
shown to equal approximately the square root of s,2s,% +
b%s 2 + a’s,? and so under the null hypothesis that ab
equals zero, the following

ab

Vs tsyt + bls,t+atsy?

is approximately distributed as Z. Measures and tests of in-
direct effects are also available within many structural
equation modeling programs.

One might ask whether all of the steps have to be met
for there to be mediation. Certainly, Step 4 does not have to
be met unless the expectation is for complete mediation.
Moreover, Step 1 is not required, but a path from the initial
variable to the outcome is implied if Steps 2 and 3 are
met.10 So the essential steps in establishing mediation are
Steps 2 and 3.

Example

Morse, Calsyn, Allen, and Kenny (1994) examined the ef-
fect of an intervention that was designed to reduce the
number of days homeless. The participants in this research
were 109 homeless adults in a large Midwestern city, and
the intervention was an intensive case management pro-
gram. A total of 46 persons was randomly assigned to the
intervention and the remaining 63 were assigned to a com-
parison group. The intervention serves as the initial vari-
able and is dummy coded such that 1 is treated and 0 is
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FIGURE 4 Mediation of Intervention Effects on Homelessness by

Housing and Entitiement Contacts.

control. The outcome measure is the number of days
housed per month during a period of 12 to 18 months after
the intervention was initiated. For this illustration, two me-
diators are tested. The first mediator is the number of con-
tacts per month about housing, and the second is the num-
ber of contacts per month about entitlements (money).
Both mediators were measured for nine months after the
intervention was initiated.

The total effect of the intervention on homelessness is
6.56 days, meaning that persons who received intensive
case management were housed about one week more per
month than those who did not. This effect is statistically
significant ( p = .009). So the Step [ criterion is met.

Figure 4 presents the estimated coefficients and their
standard errors in parentheses for this example. We see that
the intervention resulted in both more housing and entitle-
ment contacts. The effect for housing contacts is 0.458 (p =
.013) and for entitlements it is 0.437 ( p < .001). Both effects
indicate that individuals in the treatment group received an
average of about five more contacts per year than did control
group members. Because both effects are statistically signif-
icant, the Step 2 criterion is met for both mediators.

Also presented in Figure 4 are the effects from the me-
diators to the outcome. This effect is 5.16 for housing (p <
.001) and 2.99 for entitlements (p = .07, not significant).
The effect for the housing contact mediator indicates that
for every monthly housing contact, the person was housed
about five more days. The Step 3 criterion is met for only
the housing contact mediator.

Finally, Figure 4 presents the effect of the intervention
on the outcome, controlling for the mediators. That effect
is now 2.89 (p = .23). Thus, the Step 4 criterion is met. It
can then be concluded that housing contacts mediates the
effect of the intervention on the outcome.

Because the unmediated effect was 6.56, 56 percent of
the total effect is explained. The total reduction in the ef-
fect is 2.36 due to housing (0.458 times 5.16) and 1.31 due
to entitlements (0.437 times 2.99). The sum of these two
effects exactly equals the reduction in the effect of the in-
tervention when the mediators are introduced. Using the

_ Baron and Kenny modification of the Sobel test, the reduc-

tion due to housing contacts is statistically significant (Z =
2.12, p = .034) and the reduction due to entitlements is not
(Z=152,p=.13).

Problems in Testing Mediation

There are several issues that complicate the analysis of me-
diation. They can be divided into design issues, specifica-
tion issues, and multilevel data. These issues are consid-
ered in turn.

Design Issues

Distal and Proximal Mediation To demonstrate media-
tion both paths a and b [see Figure 3(b)] need to be rela-
tively large. Usually, the maximum size of the product ab
is ¢, and so as a increases, b must decrease and vice versa.
The mediator can be too close in time or in the process
to the initial variable and so @ would be relatively large and
b relatively small. An example of a proximal mediator is a
manipulation check. The use of a proximal mediator may
create multicollinearity which is discussed in the next part.
Alternatively, the mediator can be chosen too close to
the outcome and with a distal mediator b is large and a is
small. Ideally, standardized a and b should be comparable

" in size.
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Multicollinearity If M is a successful mediator, it is nec-
essarily correlated with X due to path a. This correlation,
called collinearity, affects the precision of the estimates of
the last set of regression equations. If X explains all the
variance in M, then there is no unique variance in M to ex-
plain ¥. The power of the tests of the coefficients b and ¢”
is compromised. The effective sample size for :hese tests is
approximately N(1 — ry,,*) where N is the total sample size
and ry,, is the correlation between the initial variable and
the mediator. So if M is a strong mediator (path a is large),
to achieve equivalent power the sample size would have to
be larger than what it would be if M were a weak mediator.

Specification Errors

Reverse Causal Effects The mediator may be caused by
the outcome variable (¥ would cause M in Figure 3). When
the initial variable is a manipulated variable, it cannot be
caused by either the mediator or the outcome. But because
both mediator and the outcome variables are generally not
manipulated variables, they may cause each other. Often if
the mediator and the outcome variable were interchanged,
the outcome would seem to “cause” the mediator.

Sometimes reverse causal effects can be ruled out theo-
retically. That is, a causal effect in one direction does not
make sense. Design considerations may also weaken the
plausibility of reverse causation. Ideally, the mediator
should be measured before the outcome variable, as in the
Morse et al. (1994) example.

If it can be assumed that ¢ is zero, then reverse causal
effects can be estimated. (A review of the use of instrumen-
tal variables in the structural equation identification section
may be helpful at this point.) That is, if it can be assumed
that there is complete mediation (X does not directly cause
Y), the mediator may cause the outcome and the outcome
may cause the mediator.

Smith (1982) has developed another method for the es-
timation of reverse causal effects. Both the mediator and
the outcome variables are treated as outcome variables, and
they each may mediate the effect of the other. To be able to
employ the Smith approach, for both the mediator and the
outcome, there must be a different variable that is known to
cause each of them but not the other. So a variable must be
found that is known to cause the mediator but not the out-
come and another variable that is known to cause the out-
come but not the mediator. These variables are called in-
strumental variables (see the identification section).

Measurement Error in the Mediator If the mediator is
measured with less than perfect reliability, then the effects
are likely biased. The effect of the mediator on the out-
come (path b) is likely underestimated and the effect of the
initial variable on the outcome (path ¢”) is likely overesti-
mated if ab is positive (which is typical). The overestima-

+ tion of ¢” is exacerbated to the extent to which the mediator

is caused by the initial variable.

To remove the biasing effect of measurement error,
multiple indicators of the mediator can be used to tap a la-
tent variable. Alternatively, instrumental variable estima-
tion can be used, but as before, it must be assumed that ¢’
is zero. If neither of these approaches is used, the re-
searcher needs to demonstrate that the reliability of the me-
diator is very high so that the bias is fairly minimal.

Omitted Variables This is the most difficult specification
error to solve. The variance that the mediator shares with
the outcome may be due to another variable that causes
both the mediator and the outcome. Although there has
been some work on the omitted variable problem (Mauro,
1990), the only complete solution is to specify and mea-
sure such variables and control for their effects.

Sometimes the source of covariance between the media-
tor and the outcome is a common method effect. Ideally,
efforts should be made to ensure that the two variables do
not share method effects (e.g., both are self-reports from
the same person).

Multilevel Data and Mediational Analyses With multi-
level data, there are two levels; for example, person may be
the upper-level unit and time or day the lower-level unit.
There are two types of mediation within multilevel models:
the initial variable can be either an upper-level variable or a
lower-level variable, but for both cases, the mediator and
the outcome are lower-level variables. Before reading this
part, the reader should have read the earlier section on mui-
tilevel modeling.

Upper-level Mediation Consider the effect of stress on
mood. On each day for two weeks, stress and mood are
measured for each person. Imagine that half the sample is
classified as high on neuroticism and the other haif is not.
So the mediational question is the extent to which stress
mediates the effect of neuroticism on mood.

This data structure naturally lends itself to an investiga-
tion of both mediation and moderation (Baron & Kenny,
1986). First, there is the simple mediational hypothesis:
those high on neuroticism experience more stress and that
stress leads to negative moods. Second, there is the moder-
ation hypothesis that those high on neuroticism may react
to stress more than those who are not. So stress might
moderate the effect of neuroticism on mood. Following
Bolger and Schilling (1991), the total effect of neuroticism
on mood can be partitioned into a mediation and a modera-
tion piece.!!

With multilevel modeling of over-time data, the general
hypothesis that person interacts with a within-person vari-
able can be tested. For the example, within levels of neu-
roticism, stress may have more or less of an effeet on mood
for some individuals than for others, i.e., some individuals
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react rhore to stress than do others. Multilevel modeling
provides a method for determining whether processes vary
by person.

Lower-level Mediation We modify the example by mak-
ing stress the initial variable and adding the lower-level
variable, coping, that is assumed to mediate the stress-
mood relationship, a model studied by Bolger and Zucker-
man (1995). So coping, a lower-level variable, is triggered
by stress and coping then elevates mood. It can be tested
whether the mediational effects of coping vary across per-
sons. First, the effect of stress could lead to coping for
some persons and not for others. Second, coping may im-
prove the mood of some but not others. In this way we can
discern how the mediation of coping effects are moderated
by individual differences.

Both mediational effects (the effect of stress on coping and
the effect of coping on mood) can be treated as dependent
variables, and measures of individual differences can be used
to predict them. So, for example, it can be tested whether peo-
ple who receive training in coping with stress do in fact use
coping strategies when they experience stress and whether this
coping is effective in raising mood. The training variable
would serve as a moderator of the mediational process.

SUMMARY

Data analysis in social psychology all too often is a mind-
less exercise. Data are gathered using a standard design (a
factorial experiment) and the same statistical analysis is
performed (ANOVA followed by post hoc tests of means).
An anthropologist might describe social psychological data
analysis as a ritualistic exercise with Greek incantations
mixed with practices developed in the early twentieth cen-
tury to test the relative advantages of crop fertilizers.

Data analysis should be a more thoughtful process.
Careful consideration should be given to the process that
generated the data. Even with a factorial experiment, atten-
tion must be given to model assumptions. We have empha-
sized the assumption of independence in the first two sec-
tions of the chapter, but the other assumptions merit
scrutiny (Judd et al., 1995; Wilcox, 1987).

We must learn to model a process not just to analyze
data. Mediational analyses are likely to be helpful toward
meeting this aim. Generally mediational analyses require
structural equation modeling. This chapter has provided a
detailed analysis of mediation, as well as provided advice
concerning the difficult issue of identification. Moreover,
we have discussed mediational analyses of multilevel data.

In the last twenty years we have witnessed a paradigm
shift in the analysis of correlational data. Confirmatory fac-
tor analysis and structural equation modeling have replaced
exploratory factor analysis and multiple regression as the
standard methods. We are currently in the early stages of a

paradigim shift in the analvsis of experimental data. Multi-
level modeling is reptacing ANOVA. Certainly, ANOVA
will remain a basic tool in sncial psychological research,
but it can no longer be considered the only technique.
Many models can be more efficiently estimated by multi-
level modeling than by ANOVA. More importantly, many
scientifically interesting hypotheses can be tested within
multilevel modeling that cannor be easily addressed within
an ANOVA framework.

Multilevel modeling is the wave of the future, and so-
cial psychology must begin to use it in research or other
disciplines may lay claim to more of what is traditionally
viewed as social psychology. Many traditional social psy-
chological topics, such as group behavior and close rela-
tionships, are now being studied more by our colleagues in
communications, family studies, and organizational behav-
ior. If we continue to conceptualize social psychological
research in terms of 2 x 2 designs and ANOVA, we will
further narrow the scope of our field.

NOTES

1. Some meta-analysts are engaging in problematic prac-
tices. Occasionally, p values are reported as one-tailed
tests when they should be two-tailed. Also very often
large-sample theory is used (e.g., a Z test) when there is
an available small-sample test (e.g.. a r test). Finally, uni-
variate tests (e.g., r or t tests of means) are used when
multivariate tests (e.g.. multiple regression) should be.

2. Some of the material in this section parallels the discus-
sion of Crits-Christoph and Mintz (1991). Computations
based on the formulas in Table 3 of this chapter were able
to reproduce many of Crits-Christoph and Mintz's simu-
lation results.

3. [f a value of .10 seems too large, it should be realized that
the effective alpha tor the study would be only .06 be-
cause 80 percent of the time the nonindependence would
be detected resulting in an alpha of .05 and 20 percent of
the time the effective alpha would be .10.

4. Because only positive values of the intraclass correla-
tion make the significance test of treatment effects too
libera! (see Table 4), only positive values of the intra-
class correlation are tested and so the tests in Table 6 are
one-tailed.

5. The intraclass correlations, p; and p_,. when computed
using the formulas in Tables 1 and 4, are actually partial
correlations. That is, the variance due to G is removed
when pg,, is computed, and the variance due to GxA is
removed when pg is computed. Sometimes the regular,
nonpartial correlations are needed, and they are presented
in Table 3 as p, and p,.

6. Though not obvious, <:ld2 takes on the role of p (dis-
cussed in the unit of analysis section) and 0f2 takes on the
role of pg -



264

Part Two / Methodological Perspectives

7. Note that when r,, is zero, the estimate of the loading
equals infinity. In physics, a black hole occurs when a
particular equation has zero in its denominator. So empir-
ical underidentification is causal modeling’s equivalent of
a black hole. .

8. If an instrumental variable is needed because X has mea-
surement error, then X need have an instrument in only
one equation in which it is a causal variable. However, for
both spuriousness and feedback, X needs to have an in-
strumental variable each time such conditions arise.

9. Alternatively one variable in the feedback loop need not
have an instrument if the disturbances of the two vari-
ables in the loop are uncorrelated.

10. If ¢’ is opposite in sign to ab, then it could be the case
that Step 1 is not met, but there is still mediation. In this
case the mediator acts like a suppressor variable.

11. Because of the differential weighting of estimators across
groups that occurs in multilevel modeling, the total effect
does not usually exactly equal the sum of the direct and
the mediated or indirect effects.
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