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Multilevel models are increasingly used to estimate models for hierarchical and
repeated measures data. The authors discuss a model in which there is mediation at
the lower level and the mediational links vary randomly across upper level units.
One repeated measures example is a case in which a person’s daily stressors affect
his or her coping efforts, which affect his or her mood, and both links vary ran-
domly across persons. Where there is mediation at the lower level and the media-
tional links vary randomly across upper level units, the formulas for the indirect
effect and its standard error must be modified to include the covariance between the
random effects. Because no standard method can estimate such a model, the authors
developed an ad hoc method that is illustrated with real and simulated data. Limi-
tations of this method and characteristics of an ideal method are discussed.

Multilevel models for hierarchical and repeated
measures data are becoming increasingly common
(Diggle, Heagerty, Liang, & Zeger, 2001; Hox, 2002;
Raudenbush & Bryk, 2002; Snijders & Bosker, 1999).
These models assume that there are at least two levels
in a data set, an upper level, or Level 2, and a lower
level, or Level 1. The Level 1 units are nested within
the Level 2 units. In some applications, the upper
level refers to persons and the lower level refers to
observations or repeated measurements. For example,
a researcher might collect daily diary (repeated mea-
sures) data over several weeks on people’s exposure
to daily stressors, their coping efforts, and their emo-
tional states (e.g., Bolger, Davis, & Rafaeli, 2003;
Bolger & Zuckerman, 1995). In other applications,
the upper level refers to groups and the lower level
refers to persons who are members of those groups.
For example, a researcher may collect demographic
background, parenting practices, and educational
achievement data on all schoolchildren in a sample of
schools (e.g., Raudenbush & Bryk, 1986). In this ex-
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ample, schools are the groups, and schoolchildren are
the persons nested within those groups.

A basic multilevel model for the repeated measures
data might specify that at Level 1, the repeated mea-
sures level, a person’s mood on a given day is a func-
tion of a baseline mood level that is common across
all days, a stressor reactivity effect that reflects
whether or not he or she has experienced a stressor
that day, and a Level 1 residual effect that varies
randomly from day to day but whose average value is
zero. At Level 2, the between-person level, the model
might specify that people differ in how reactive they
are to daily stressors and that a given person’s reac-
tivity is a function of an effect that is common to all
people, and a residual Level 2 effect that varies ran-
domly from person to person but whose average value
is zero.

Multilevel modeling has several advantages over
traditional models for such data. For instance, unlike
traditional models for repeated measures data, multi-
level models can effectively manage unequal group
sizes and missing data on the repeated measure. Mul-
tilevel modeling can also be used to examine simul-
taneously the effects of Level 2 (e.g., school level)
and Level 1 (e.g., child level) variables in nested data
sets. In doing so, multilevel models take account of
(and adjust for) any bias in standard errors and statis-
tical tests resulting from the nonindependence of
observations that is typical in such data (Krull &
MacKinnon, 2001). Because of these advantages and
others, multilevel modeling has drawn substantial at-
tention recently.
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Testing mediational hypotheses is a central activity
in psychological science (Baron & Kenny, 1986;
Kenny, Kashy, & Bolger, 1998; Shrout & Bolger,
2002), and mediational questions are as relevant to
multilevel data as they are to traditional data struc-
tures. Kenny, Kashy, and Bolger (1998) introduced
the topic of multilevel mediation and explained the
distinction between upper level and lower level me-
diation. In upper level mediation the initial or putative
causal variable whose effect is mediated is an upper
level variable. An example of this type of mediation is
where the effect of a school-level safer-sex interven-
tion program (upper level initial variable) on students’
intentions to engage in safer sex (lower level depen-
dent variable) is mediated by students’ motivations to
engage in safer sex (lower level mediator).

In lower level mediation, the initial variable is at
the lower level. In the repeated measures example
described previously, this might be where the reactiv-
ity effect of a daily stressor (lower level initial vari-
able) on a person’s mood on a given day (lower level
dependent variable) is mediated by the person’s cop-
ing efforts that day (lower level mediator). In their
discussion of lower level mediation, Kenny, Kashy,
and Bolger (1998) considered cases where the lower
level initial variable and mediator show random upper
level variability in their effects. This variability can be
thought of as a form of moderation (Baron & Kenny,
1986), a topic that we return to later. For instance, in
the repeated measures example, the effect of stressors
on coping and the effect of coping on mood may vary
across persons, the upper level units. In prior work
using daily diary reports of stressors, coping, and
mood, Bolger and Zuckerman (1995) found evidence
of random variability in these links.

Several researchers have focused on upper level
mediation. For example, Krull and MacKinnon (1999)
described and evaluated methods used to test upper
level mediated effects. Using both simulated and real
data, Krull and MacKinnon compared single level and
multilevel mediation analyses, two ways to calculate
the effect of the mediator, and two coefficient estima-
tion methods, which coincided with the types of me-
diation analyses. Raudenbush and Sampson (1999)
also focused on upper level mediation. They demon-
strated how the computer program HLMS5 (Rauden-
bush, Bryk, Cheong, & Congdon, 2000) can be used
to estimate and test upper level mediational models.
Raudenbush and Sampson demonstrated this ap-
proach using a multilevel design with latent variables
in which measurement error is represented as a level

within the model. Lastly, Krull and MacKinnon
(2001) compared the appropriateness of single level
and multilevel data analysis procedures to test media-
tion effects in nested data. Two of the three models
that they considered were upper level mediational
models.

By comparison, discussion of lower level media-
tion in multilevel modeling has been sparse, and to
date there has been no discussion of the case in which
the mediational links show random upper level vari-
ability. Judd, Kenny, and McClelland (2001) dis-
cussed lower level mediational analysis but only in
the limited case where the problem could be recast in
terms of standard fixed-effects analysis of variance.
Krull and MacKinnon (2001) also considered lower
level mediation in nested data but only to compare the
appropriateness of single level and multilevel data
analysis procedures to test a fixed-effects mediational
model.

Thus, although mediation in multilevel models has
been the focus of increasing attention recently, there
has been no discussion of analysis methods for cases
where the putative causal variable is at the lower
level. As noted, with lower level mediation, all the
mediational links may vary randomly across the upper
level units, and so, it is much more complicated than
upper level mediation. The present article provides a
complete overview of lower level mediational analy-
sis in a fully random model using a multilevel frame-
work, and it shows that interesting, unexpected, and
important complications arise in this case.

The Lower Level Mediational Model

Consider a Level 1 variable, Y, that is assumed to
be caused by two other Level 1 variables, X and M. Of
key interest in this article is the possibility that the
variable M may mediate the effect of X on Y, lower
level mediation. In this article, variable X is called the
initial or putative causal variable, M is the mediator,
and Y is the outcome. Ideally X is a variable that is
experimentally manipulated, but it need not be. For
ease of understanding, it might help to think of the
example given previously where X is the occurrence
of a stressor on a given day, M is the person’s coping
efforts that day, and Y is the person’s mood that day.
The upper level unit would be person, and the lower
level unit would be day.

Equations

Figure 1 presents the basic mediational model as a
path diagram. For the moment, the reader should
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Figure 1. The Level 1 mediation model in which the effect
of X on Y is partially mediated by M, for Level 2 unit j, X

causes M (path a;), M causes Y (path b)), and X causes Y
(path ¢;").

ignore the subscripts in the coefficients. The variable
X causes M, which in turn causes Y. For the example,
stressors cause coping, which in turn causes mood.
The direct effect of X on Y would be ¢’, and the
indirect effect would be ab. The total effect, the direct
effect plus indirect effect, would equal ¢’ + ab, which
we denote as c¢. The reader should note that we do not
use Greek letters for these effects, even though they
are population values. Whenever they are sample es-
timates, we will make it clear.

In a multilevel model, lower level effects may vary
by upper level unit. So, all of the effects, a, b, ¢', and
¢ might vary by the upper level unit. That is why they
are subscripted by the upper level unit, denoted in
Figure 1 as j. The figure presents the mediational
model for upper level unit j. For the example, the
mediation of the stressor—mood relationship by cop-
ing might vary by person, and so the direct effect of
stressor on mood, path cj', might be different for dif-
ferent persons.

More formally, we consider a two-level model in
which the first subscript, i, refers to the lower level,
and the second subscript, j, as in the figure, refers to
the upper level. The Level 1 equation for Y without
the mediator is

Y, = doj +¢; X+ 1y (D)

In this equation, Y is the outcome, d,; is the intercept
for each upper level unit, ¢; represents the effect of X
on Y for each upper level unit, and r;; is an error term.
The two mediational equations, implied in Figure 1,
are

Mij=d1j+anij+eij 2)
and
Yiy=dy+c/X;+bM;+f 3

Equations 1, 2, and 3 are sometimes called the lower
level or Level 1 equations. We refer to path ¢ (from

Equation 1) as the total effect of X on Y, path ¢’
(Equation 3) as the direct effect, path a (Equation 2)
as the effect of X on M, and path b (Equation 3) as the
effect of M on Y. All of these coefficients may vary
across the upper level units, which is why they each
have the subscript j. The two intercepts in Equations
2 and 3, denoted by d, are not central to our media-
tional model.

The Level 2 equation for the total effect, when
there are no Level 2 effects, is

¢; = ¢+ g, @

which simply says that the coefficient for unit j equals
the average coefficient (the population mean) plus a
deviation from that average for each upper level unit.
So, ¢ would represent the typical level of the total
effect, and uy; would represent a deviation from that
typical level for upper level unit j. In the same way,
we can write upper level equations for the other co-
efficients in the lower level mediational model. The
following are the upper level equations for the other
lower level coefficients when there are no Level 2
effects:

a;=a+uy, (&)

b;=b+ uy;, (6)
and

¢/ =c' +uy, @)

Thus, we denote the unsubscripted parameter as the
average parameter value. (The intercepts also have
similar Level 2 equations, but as noted, they are ir-
relevant to our discussion.) Returning to the stressor—
coping—mood example, we would allow for individual
differences in the effect of stressors on mood (¢ and
cj’; i.e., for some persons, stressors have more of an
effect on mood than for others). There might also be
individual differences in the effect of stressors on cop-
ing (path a; i.e., a stressor might activate a coping
strategy for some persons but not for others). Finally,
the effect of coping on mood (path ») might also vary
by person (i.e., the coping strategy is effective for
some people but not for others).

Decomposition of Effects

The single level equation for the decomposition of
mediations effects (MacKinnon, Warsi, & Dwyer,
1995) is

¢ =c' +ab. )
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The equation states that the total effect (c) equals the
direct effect (¢") plus the indirect effect (ab). How-
ever, Equation 8 presumes that a and b are fixed pa-
rameters; that is, a and b do not vary across upper-
level units.

If we assume that mediational effects a and b are
random variables that have a bivariate normal distri-
bution, a standard assumption within multilevel mod-
eling, then it can be shown that the expected value of
ab; does not equal ab but rather equals ab + o,
(Goodman, 1960). The expected value of a product or
E(a;b;) does not equal the product of the expected
values of the components of that product or E(a))E(b;)
when a; and bj are correlated. Thus, given multivariate
normality, the total effect in fully random lower level
mediated multilevel models is decomposed as

c=c +ab+o,, 9)

where o, is the population covariance of a; with b;
and refers to a possible correlation of a; and b; effects.
A positive value for o, implies that those upper level
units that have large values of a; also have large val-
ues of b;. Conversely, a negative value for o, implies
that those upper level units that have large values of g;
also have small values of b;. For the example, o,
refers to the covariance between the effect of stressors
on coping and the effect of coping on mood.

We should note that even if a and b were not ran-
dom, then Equation 9 would not exactly hold for es-
timates obtained from multilevel models (Krull &
MacKinnon, 1999). Because maximum-likelihood es-
timation, not ordinary least squares (OLS), is used,
the equation is not exact, only approximate. Alterna-
tively, we can avoid obtaining an independent esti-
mate of the total effect ¢ by instead estimating it in-
directly by calculating ¢', ab, and o, and summing
them. Thus, the total effect would be defined as ¢’ +
ab + o,

In single level mediational analysis, the formula for
the sampling variance of the mediated effects, de-
noted as a(ab)z, is

0'((1[,)2 = b’c,” +a’c,’ + 0,0, (10)

The formula for the variance of indirect effects given
by Sobel (1982) is an approximation and does not
include the last term of the above equation (Aroian,
1947; Baron & Kenny, 1986). Equation 10 presumes
that a and b are fixed; that is, they do not vary across
upper level units. If, however, we presume that these
parameters are random, the equation for the variance

of mediated effects assuming multivariate normality
of effects is

(r(ab)2 = b’o,? +d’0,” + 0,0, + 2abo , +0,,°  (11)

(see Kendall & Stuart, 1958). The two terms in the
right side of the equation that are not included in the
single level formula (see Equation 10) involve o,
the covariance of a and b, which is critical in the
estimation and testing of lower level mediation in
multilevel models with random effects.

The variance of the total effect 062, given the as-
sumption that all mediational links are random vari-
ables whose joint distribution is multivariate nor-
mal, is

2

c

=0, + bzo;a2 +ad*c,’ +0,%0,” + 2abo
+ 0, +2bo,. +2a0,.. (12)

(o3

Note that there are two new terms in this equation;
one is the covariance between a and ¢’ and the other
is the covariance between b and ¢’. We consider the
term o, in more detail in the next section when we
discuss moderation.

Mediation and Moderation

In this section we consider both the mediation and
moderation of the effect of X on Y. We see that with
multilevel data in which both X and Y are Level 1
variables, considerable detail can be obtained for both
mediation and moderation, much more than with
single level models. For ease of presentation, we as-
sume in this section that a, b, and ¢ are all positive.

Controlling for M might reduce the overall effect of
Xon Y (i.e., ¢). This is classical mediation. In the fully
random-effects multilevel model, there are two ways
in which ¢’ might be less than c. First, there is reduc-
tion if ab is nonzero, or second, if o, iS nonzero.
Note that ab might equal zero, but ¢’ can still be less
than ¢ because o, can be nonzero.

In the fully random-effects model, there is poten-
tially Level 2 variation in the effect that X has on Y.
This variation designated as o reflects evidence of
moderation of the X-to-Y relationship, though the
identity of the moderating variable has yet to be dis-
covered. We can also determine how much of this
moderation is reduced or even eliminated by control-
ling for M. Note that if o> were zero, then X would
affect Y to the same degree for all upper level units;
that is, there would be no moderation. Stated differ-
ently, if 062 equals zero, the effect of X on Y does not
vary, and so, it does not make sense to search for
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Level 2 factors that would explain any variation. In
summary, if the effect of X on Y is fully explained by
M, then (a) the overall effect, ¢, should be explained,
and ¢’ would be zero, and (b) the variance of the
effects, (r(,z, should be explained, and, therefore, (rc,2
would be zero.

For instance, assume that the population values are
a = 0.50,b = 1.00, and ¢’ = 0.25. We set 0,> =
1.00, > = 1.00, 0.* = 0.25, ¢, = 0.50, and 0.
= 0, = 0.00. When we use the single level model
(Equation 8), ¢ = 0.25 + 0.50 = 0.75. Then, 67%, or
(0.75 = 0.25)/0.75, of the overall effect of X on Y, or
0.75, is mediated. However, using the formulas for a
fully random-effects model, it follows that ¢ = 0.25
+0.50 + 0.50 = 1.25 (Equation 9) and that ¢, > =
0.25 + (1.00)*(1.00) + (0.50)*(1.00) + (1.00)(1.00) +
2(0.50)(1.00)(0.50) + (0.50)* + 2(1.00)(0.00) +
2(0.50)(0.00) = 3.25 (Equation 12). Consequently, it
is really that 80%, or (1.25 — 0.25)/1.25, of the overall
effect of X on Y, or 1.25, is mediated. It also follows
that 92% of the variance of the X-to-Y effect is ex-
plained by variation in M, (3.25 — 0.25)/3.25. These
proportions of the total effect, which in the current
example are calculated using population values, illus-
trate the importance of considering o, when estimat-
ing the amount of mediation in a fully random model.
Note too that the correct value for ()'(ab)2 would be
3.00 as estimated by the formula for the fully random-
effects model (Equation 11), not 2.25 as would be
estimated using the single level formula (Equation
10). The proportions of the total effect can also be
calculated using sample estimates, though these pro-
portions can be very unstable.

Even more surprising, consider the case where the
population values are a = 0.00, » = 0.00, ¢’ = 0.00.
In this model, there is no overall effect of X on Y,
either direct or indirect. Using the single level model
formula (Equation 8), we would think that the total
effect would have to be zero. However, it is not. If we
set 0,> = 1.00, 0, = 1.00, or 0. = 0.00, 0, =
1.00, and o, = 0, = 0.00, using the random ef-
fects formulas, it follows that ¢ = 0.00 + (0.00)(0.00)
+ 1.00 = 1.00 (Equation 9) and that o> = 2.00
(Equation 12). Thus, we find that the total effect for
the average Level 2 unit is nonzero and is entirely due
to the covariance between a and b. To understand why
this is the case, we need to consider that in this ex-
ample, although the average of a and the average of b
both equal zero, the average of ab tends to be positive
because positive as are paired with positive bs and
negative as are paired with negative bs.

As the above examples illustrate, when o, is the
same sign as ab and is not considered when determin-
ing the amount of the mediation, the amount of me-
diation is underestimated. However, when o, is not
considered, the amount of mediation could be over-
estimated. This is the case when o, is opposite in
sign to ab. Consider the following case: a = 0.50, b
= 1.00, ¢' = 0.25, and 0, = —0.50. When we use
the single level approach (Equation 8), ¢ = 0.25 +
(0.50)(1.00) = 0.75. Then, 67%, or (0.75 — 0.25)/
0.75, of the overall effect of X on Y, or 0.75, is me-
diated. However, when we use the correct equation
for a random effects model (Equation 9), it follows
that ¢ = 0.25 + (0.50)(1.00) — 0.50 = 0.25. Conse-
quently, it is really that there is no mediation; that is,
0%, (0.25 — 0.25)/0.25, of the overall effect of X on ¥,
or .25, is mediated.

The Substantive Meaning of the ab Covariance

The interpretation of ¢, and ¢, is straightforward.
The variance o, represents differences in the effec-
tiveness of X in causing the mediator M. The variance
o,” represents differences in the effectiveness of M in
causing the outcome Y. How might o, be inter-
preted? First, note that there must be some variation in
a and b for there to be any covariance between the
two. Such variation should be first established before
o, 1s interpreted.

The exact interpretation of o, depends on the par-
ticular application. Consider again the example of the
effect of stressors on mood. The mediator might be a
coping style. It might be the case that the coping style
is more effective in relieving distress for some indi-
viduals than for others and that variation is captured
by o,% For persons who have a large b (i.e., the
coping style is effective), it seems reasonable to ex-
pect that stressors would induce more coping; there-
fore, their a parameter would be large. By the same
token, for those whose b path was small meaning that
the coping style was ineffective, it is expected that the
a path would be small indicating that stressors would
not affect amount of coping. Thus, it seems plausible
that o, would be positive and would be theoretically
interesting, although theoretical importance is not re-
quired for consideration of o ,,; the term o, should be
considered whenever decomposing the effects of a
lower level random-effects mediational model. If o,
is the same sign as ab and is not considered, the
amount of mediation would be underestimated.

It might also be the case that o, is the opposite
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sign of ab. Consider the case where ab is positive, and
o, 1s negative. For example, suppose that the effect
of instruction quality (the degree to which the lesson
is taught well) on a student’s learning is mediated by
student motivation to learn. Overall, high quality in-
struction leads to more motivation to learn, and more
motivation to learn leads to more learning. However,
it might be the case that some students are extrinsi-
cally motivated to learn and so are greatly affected by
instruction quality (i.e., their a parameter is large),
whereas other students are intrinsically motivated and
are not as affected by instruction quality (i.e., their a
parameter is relatively small). This variation would be
captured by o%, which is the amount of variation in
the a parameter due to Level 2 unit, or in this case,
participant. It may also be the case that the students
who are extrinsically motivated to learn—have a large
a parameter—have not developed good study skills.
Consequently, an increase in their motivation to learn
has little impact on learning (i.e., their b parameter is
small). Conversely, students who are intrinsically mo-
tivated to learn—have a small a parameter—have de-
veloped their study skills, and consequently, an in-
crease in their motivation has a great impact on
learning (i.e., their b parameter is large). In this case,
o, 1s negative because small as are paired with large
bs, and large as are paired with small bs.

As the prior example illustrates, it is possible for ab
to be positive and o, to be negative. However, a
change in scale of M might artificially create this state
of affairs. Imagine that M was standardized by divid-
ing each M,; by the standard deviation of M for upper
level unit j, s,,;. Even if it were true that both o,” and
o,> were zero before such a standardizing, the stan-
dardizing within each upper level unit would result in
a spurious negative o, because the new a; path would
now equal s,,.a;, and the new b; path would now equal
bj/syy;. Because one path is multiplied and the other
divided by the same value, the result would be a nega-
tive correlation between a and b. For instance, if s,,
were large, then the new a path would be relatively
large and the b path relatively small. But if s,, were
small, then the new a path would be small and the b
path would be large. Thus, the presence of a negative
o, might be due to an artifact of scale transformation,
therefore, such transformations (e.g., standardizing
within Level 2 units) should be avoided.

We suspect, but do not know, that typically o, and
ab will have the same sign. Regardless if o, and ab
have the same or opposite sign, it is critical to mea-
sure and interpret o, in multilevel mediation.

Level 2 Variables

Although the major focus of the present article is
lower level or Level 1 mediational analyses, typically
in a multilevel model there are Level 2 variables that
can be used to explain the coefficients of the Level 1
equations. For instance, in cases where the Level 2
unit is group, group-level variables such as classroom
might explain the coefficients of the Level 1 equa-
tions. In cases where the Level 2 unit is person, person
variables such as attitudes, aptitudes, or personality
traits might explain the coefficients in the Level 1
equations. Therefore, it is important to consider Level
2 variables in this type of model. To illustrate, con-
sider again the stressor—coping—mood example. Bol-
ger and Zuckerman (1995) examined how individual
differences in the personality variable of neuroticism
were related to individual differences in stress reac-
tivity (the total stressor-to-mood link). They then ex-
amined the extent to which these reactivity differ-
ences could be explained in terms of individual
differences in coping choice (the stressor-to-coping
link) and coping effectiveness (the coping-to-mood
link). In this section, we consider the incorporation of
such Level 2 variables within our approach. We shall
see that such variables can be treated as potential
moderators of the mediational process.

Consider a variable Q that is measured for each
upper level unit. The Level 2 equations would be as
follows:

a;=a+dQ+uy, (13)

bi=b+eQ+u,y, (14)
and

¢/ =c" +f0+uy (15)

The terms a, b, and ¢’ would be the overall effects
when Q is zero. If zero for Q were not meaningful,
then a, b, and ¢’ would be uninterpretable. Thus, it is
important that zero is a meaningful value for Q, and if
it is not, then Q should be centered. The Level 2
variables may also explain the intercepts, but we do
not consider this because our focus is on the media-
tion of effects. We can view Q as a moderator variable
in that it would explain some of the Level 2 variation
in the effect of X on Y.

Key parameters in the mediational model are the
variances of effects (e.g., 0'u2) and the covariances of
effects (e.g., o,,,). However, if there are Level 2 vari-
ables in the model, these variances and covariances
are partial variances with the variance due to the



MEDIATION IN MULTILEVEL MODELS 121

Level 2 variable removed. So the variances and co-
variances refer to the residual values of U, Uy, and
us; (see Equations 13, 14, and 15).

It is generally advisable to center Q or at least to
make sure that Q is initially scaled or rescaled so that
a zero value on Q is meaningful. One should avoid
“group centering” (Kreft, DeLeeuw, & Aiken, 1995).
The scaling of Level 2 variables is critical to the in-
terpretation of the estimates of a, b, and ¢'.

It is possible for a Level 2 effect to be mediated by
a Level 1 variable. The estimation and testing of such
a mediational process is described by Krull and
MacKinnon (1999) and Raudenbush and Sampson
(1999). Recall that the focus of this article is the
analysis of mediation of a Level 1 effect.

Estimation

We have described a complication that arises in
lower level mediational analysis in a fully random-
effects model using a multilevel framework. Here we
discuss a general procedure for testing lower level
mediation in multilevel models and suggest an interim
procedure for addressing this complication. (Our ap-
proach using HLMS5 is described in great detail at
http://users.rcn.com/dakenny/mlm-med-hlm5.doc)

The first step in lower level mediational analysis is
determining if the model is a random-effects model.
Of particular interest is whether both of the effects in
the indirect path are random or vary at Level 2. To
determine the nature of these effects, researchers
should inspect the variance components of the random
effects when they regress the mediator on the putative
causal variable and the outcome variable on the me-
diator. Assuming that there is sufficient power, re-
searchers can determine if these effects are indeed
random by using statistical tests of whether the
amount of variance is greater than zero. Variance
components statistically greater than zero indicate that
the effects of the variables specified in the model vary
by Level 2 unit and, consequently, indicate that the
model is a random-effects model.

If at least one of the two effects in the indirect path
is nonrandom (i.e., fixed), then ordinary mediational
analysis procedures that have been used to date can be
used to estimate and to test the mediated effects. If,
however, both a and b are random, then the covari-
ance between a and b might be nonzero. One would
then test the covariance to determine if it is statisti-
cally different from zero. However, even if the co-
variance is not statistically different from zero, we

think it best not to fix it to zero. In conducting tests of
statistical significance of random effects, researchers
should consider the possibility that in their particular
study there is low power to detect effects. In such
cases, it may be worthwhile to allow the statistically
nonsignificant random effects to be estimated and to
estimate o,

Multilevel modeling techniques can be used to es-
timate the effects and the variances, but it is unclear
how the covariance o, can be estimated. It would not
seem possible to do so with the computer programs
that allow for only a single outcome variable because
in the model considered in this article there are two
outcome variables, M and Y. With these programs, it
is possible to estimate the covariance between two
effects, but the outcome variable must be the same
variable. It is inadvisable to use the empirical Bayes
estimates to estimate o, because their variance is
shrunken; therefore, it would likely underestimate the
absolute value of o ,,.

One straightforward way to estimate o, would be
to compute the covariance' of the OLS estimates of a;
and bj. To do this, one correlates the estimates of a;
and b; and then multiplies that correlation by the prod-
uct of the standard deviations of the sample estimates
of a; and b;. We believe that this is an unbiased esti-
mate of o, To test the null hypothesis that o, equals
zero, we use the usual test of a correlation coefficient.
This correlation is between the estimates of a and b.

However, the correlation between estimated a and
b does not tell us how correlated a and b are because
sampling error is not controlled. To avoid this prob-
lem, we suggest using the disattenuated correlation
between population a and b. To determine the disat-
tenuated correlation between population a and b, we
divide the estimated o, by the square root of the
product of the estimates of ¢,* and o,%, assuming of
course the two variances are nonnegative. This disat-
tenuated correlation of a and b will almost always be
greater than the correlation between estimated a and
b. There is no guarantee that the correlation will be in
bounds, that is, between 1 and —1. We think that even
if the correlation is out of bounds, one should still use
the estimate of o,

We know of no current computer program that will
estimate this entire model in a straightforward fash-

! If there were Level 2 variables, one would need to com-
pute the partial covariance, controlling for the Level 2 vari-
ables.
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ion. One might think that HLMS would accomplish
this purpose. Although it allows for the parameter b to
be a random variable, parameter a cannot be a random
variable with this program. Because a is not random,
it follows that o, is zero. Various multilevel model-
ing programs (e.g., MLwiN; Rasbash et al., 2000)
allow for multivariate outcomes, and some structural
equation modeling programs (e.g., LISREL 8&;
Joreskog and Soérbom, 1996) have options that allow
for multilevel data, but so far as we know, none of
these programs allow for paths from one outcome to
another.

In the absence of a general program, we recom-
mend the following piecemeal and interim strategy.
We first estimate the effect of X on Y to obtain o> and
c. We then estimate the effect of X on M to obtain o,
and a. Next, we estimate the effect of X and M on Y
to obtain estimates of (r,,z, (rcfz, b, and ¢’. To estimate
o> We compute the OLS estimates of the slopes and
then compute their covariance across Level 2 units or
partial covariance if there are Level 2 variables. We
can use the same procedure to estimate o, and o,
With all of these estimates we can decompose effects
using the formulas that we have provided.

The estimation method that we have developed re-
quires the assumption that a, b, and ¢’ have a joint
multivariate normal distribution. Although this as-
sumption is standard in multilevel modeling, the vio-
lation of the assumption would be more serious here.
Normality is assumed here to identify a model. That
is, Equations 9 and 11 were derived by assuming nor-
mal distribution. Without normality, the equations
would not hold. Alternatively, we need not make the
assumption of normality, and we could compute ¢ and
o,? directly. So for instance, we could estimate ¢ and
then subtract estimated ¢’ and ab. By this method, the
remainder would reflect not only o, but also the
effect of nonnormality. By using the estimation pro-
cedure that we have developed, we can directly esti-
mate o,,. More details about this estimation proce-
dure are provided in the two examples that follow.

Examples

We present two rather detailed examples of the
piecemeal strategy to compute o, that we outlined
above. We first present an example using a simulated
data set. We used a simulated data set for two reasons.
First, we want to show that our method, and not the
usual method, correctly decomposes effects and de-
termines their variance. Second, with simulated data,

we know that the assumption of multivariate normal-
ity is exactly met in the population.

Simulated Data

Using a QBasic computer program, we generated a
simulated multilevel data set based on the population
parameters displayed in Table 1. The distributions for
all random variables were normal. So, for instance, a,
b, and ¢’ were generated as random normal variables.
The data set consisted of 200 upper level units each
with 10 lower level observations per variable, there-
fore, 2,000 observations per variable. We realize that
this data set is much larger and balanced than the
typical multilevel data set, but we wanted to reduce
the effects of sampling error on the solution. In choos-
ing parameter values in the simulation, we selected
values that created sizable mediation effects that var-
ied considerably.

The specified model is a fully random-effects
model. Although we did correlate a and b, we did not
correlate a or b with ¢’. The sample data (available at
http://users.rcn.com/dakenny/mul-lev-sim.txt) were
analyzed by HLM5 (Raudenbush et al., 2000). Addi-
tionally, we used MLwiN (Rasbash et al., 2000) and
SAS’s PROC MIXED, and their estimates were vir-
tually identical to those of HLM5. We note that the

Table 1
Simulation Model and Sample Statistics Estimated by
HLM5 (Raudenbush et al., 2000)

Parameter Population Sample (SE)

Paths

c .672 .673 (.044)

¢ (inferred) .672% .704%

a .600 .585 (.032)

b .600 .646 (.036)

¢’ .200 201 (.027)
Variances and covariances

a? 274 .290

a2 (inferred) 2740 312°

(r(a,))z .235¢ .254¢

a,’ .160 135

g’ 160 184

o’ .040 .058

O 113 125

Note. The parameters 0'(“,))2 as well as the inferred values of ¢ and
o2 are not free parameters but rather equal a function of the other
parameters in the model. See the text for the formulas. Also, o,
and o, are set to zero. Note that ¢, refers to the covariance of a
and b, whereas 0'(“[,)2 refers to variance of the product ab.

# Calculated using Equation 9.

" Calculated using Equation 12.

¢ Calculated using Equation 11.
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method that we propose can use virtually any multi-
level estimation computer program. Table 1 presents
the population values of the parameters.

A random-effects mediational model was estimated
using the Baron and Kenny (1986) steps. The result-
ing parameter estimates from the simulation data set
are displayed in the right column of Table 1. We now
use HLMS5 notation, not the notation that we have
used so far in the article, to describe the estimation
steps. First, using HLMS, we estimated the unmedi-
ated effect of X on Y or path c. In this model the Level
1 equation is ¥ = B, + B;(X) + r. The Level 2
equations are 3, = Yoo + Up and B, = y,o + U;.

Second, the effect of X on the mediator M, which is
path a in Figure 1, was estimated. The Level 1 equa-
tion in this model using HLMS notation is M = B, +
B,(X) + r. The Level 2 equations for this model are
the same as those for the model of the unmediated
effect, that is, By = voo + Uy and B; = vy,o + u;.
While estimating the effect of X on M, we created a
file containing the OLS estimates of the Level 1 path
a coefficients? (i.e., the a coefficients for each indi-
vidual), which are necessary to estimate o .

Next, the effects of M and X on Y—paths b and ¢’
displayed in Figure 1, respectively—were estimated.
In this model the Level 1 equationis ¥ = B, + ,(X)
+ B,(M) + r, and the Level 2 equations are 3, = Yg
+ Uy, By = Yo+ Uy, and By, = ¥, + Uu,. As was done
with path a coefficients, a file containing the path b
coefficients was created.

Finally, the OLS estimates of the b coefficients and
OLS estimates of the a coefficients (contained in the
first residual file created) were then copied into a
single file and the covariance between a and b or o,
was estimated. Lower level path a and path b coeffi-
cients were correlated, r = 472, p < .01, with a
covariance of .125, as displayed in Table 1. The dis-
attenuated correlation between a and b (as opposed to
the correlation between estimated a and b) is .793.
Table 1 displays a summary of population or theoret-
ical and sample or estimated model parameters. We
used HLMS to estimate the model parameters.

We can perform the decomposition of the total ef-
fect both for the theoretical and empirical values. The
population total effect or ¢ is equal to .672. In the
standard single level model formulation (see Equation
8), the total effect should equal the direct plus the
indirect effect or 0.20 + (0.60)(0.60) or 0.56. Clearly,
the standard single-level model formulation underes-
timates the total effect. The population total effect
0.672 is underestimated by 0.113, which exactly

equals the covariance between a and b. The popula-
tion total effect inferred using the suggested formula
for random-effects models (Equation 9), which con-
siders o, estimates the population total effect ex-
actly. The population Level 2 variance of estimated
ab using the suggested formula for random-effects
models (Equation 11) equals 0.235. This population
variance is underestimated at 0.141 when the standard
single level model approach, Equation 10, is used.

In the sample, the estimated total effect ¢, 0.673, is
virtually identical to the population value of 0.672.
We can also decompose the sample total effect using
the standard single level model approach to decom-
position or Equation 8. This approach underestimates
the total effect as 0.579. The correct equation for ran-
dom-effects models, Equation 9, is closer to the total
effect, somewhat overestimating it as 0.704. Using the
suggested formula for multilevel random-effects mod-
els (Equation 11), we estimate a(ab)z as 0.254, which
is not that far from the population value, .234, and
much closer than using the standard single level
model approach (Equation 10), which results in a
value of 0.144.

Finally, we examined how the introduction of the
mediator affects the variation in the effect of X on Y.
In the population, o, is 0.274 and ¢ _.% is 0.040. Thus,
the mediator explains 85% of the variation of the
effect of X on Y. Using sample estimates, o is esti-
mated as 0.29 and (rcr2 as 0.058; therefore, the me-
diator explains 80% of the variation of the effect of X
on Y.

Example Using an Existing Data Set

We next apply our estimation method for random-
effects models to an actual data set. Korchmaros and
Kenny (2001) examined the mediation of genetic re-
latedness on willingness to help by emotional close-
ness. That is, the decision to help kin is mediated by
feelings of closeness. Korchmaros and Kenny (2002)
followed up this study with an investigation of the
mediation of the effect of genetic relatedness on emo-
tional closeness. It seemed very plausible that per-
ceived similarity was a possible mediator. Korch-
maros and Kenny (2002) asked persons to list their

2 Actually the residual file created by HLMS5 (Rauden-
bush et al., 2000) contains residual coefficients, the coeffi-
cients minus the “average” coefficient. Because we seek to
compute a covariance between two sets of coefficients and
covariances subtract off the mean, this is not a problem.
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family members by name and to report each family
member’s relationship to them (e.g., mother, grand-
father, or stepsister). Degree of genetic relatedness or
proportion of genes identical by descent was inferred
from this information (e.g., .50 for parents, .25 for
grandparents, and .00 for stepsiblings). Ten family
members were selected from each person’s list of
family members. Persons then rated each of their 10
family members on emotional closeness and similar-
ity on 7-point scales. The data set consisted of 72
upper level units (i.e., persons) each with 10 lower
level observations (i.e., family members) per variable.
Thus, there were 2,160 observations in total, 720 per
variable.

In this data set the putative causal variable is ge-
netic relatedness, the mediator is perceived similarity,
and the outcome variable is emotional closeness. Pos-
sibly, the effect of genetic relatedness on perceived
similarity varies by person. Some people may spend
more time with their kin than others spend with their
kin, and as a consequence, these people become more
similar to them, variation that is captured by o,%. One
could also imagine that the effect of similarity on
emotional closeness might vary by person. Some per-
sons may be more inclined to be attracted to similar
others, whereas others may be less attracted because
they feel they are similar because of undesirable fac-
tors. This variation would be captured by o, For
persons who have a large b (i.e., similarity lies in
desirable traits; therefore, similarity leads to emo-
tional closeness), it seems reasonable to expect that
they would spend more time with their kin and so
their a parameter would also be large. By the same
token, for those whose b path was small, we would
expect that their a path would also be small. Thus, it
seems plausible that o, would be positive.

A random effects mediational model was estimated
using HLMS5. The results are presented in Table 2.
First, the unmediated effect of genetic relatedness on
emotional closeness—path c—was estimated and
equaled 5.923, 1(71) = 19.199, p < .001. On average,
emotional closeness increased 5.923 points on a
7-point scale for every 1-unit change in genetic relat-
edness (i.e., a change from no genetic relationship to
perfect genetic relationship as is found in monozy-
gotic [identical] twins). The variance in this path is
1.386, x*(71, N = 720) = 95.388, p = .028, which
indicates that the effect of genetic relatedness on emo-
tional closeness varied by Level 2 unit or participant,
a random effect.

Second, the effect of genetic relatedness on per-

Table 2
Estimates for the Korchmaros and Kenny (2002) Example
Estimated by HLM5 (Raudenbush et al., 2000)

Parameter Sample (SE)

Paths

c 5.923 (.309)

¢ (inferred) 6.054*

a 3.643 (.387)

b 0.491 (.038)

¢’ 3.918 (.319)
Variances and covariances

a.? 1.386

o 2 (inferred) 2.099°

(r(abf 3.057¢

g’ 2.919

g’ 0.061

o’ 3.260

O 0.348

O e 0.252

Oper -0.613

Note. The parameters (r(a,,)z as well as the inferred values of ¢ and
o2 are not free parameters but rather equal a function of the other
parameters in the model. See the text for the formulas. Note that o,
refers to the covariance of a and b, whereas (r(“b)2 refers to variance
of the product ab.

# Calculated using Equation 9.

® Calculated using Equation 12.

¢ Calculated using Equation 11.

ceived similarity—path a—was estimated, and it
equaled 3.643, #(71) = 9.405, p < .001. On average,
perceived similarity increased 3.643 points on a
7-point scale for every 1-unit change in genetic relat-
edness. There was variation in the a paths of 2.919,
X2(71, N = 720) = 100.430, p =.012, indicating a
random effect. As in the previous example, while es-
timating the effect of the putative causal variable on
the mediator (in this case, genetic relatedness and per-
ceived similarity, respectively), we used HLMS to
create a file containing the OLS estimates of the Level
1 path a coefficients for each individual).

Next, the effects of perceived similarity and genetic
relatedness on emotional closeness—paths b and c¢’,
respectively—were estimated. While estimating these
effects, we used HLMS to create a file containing the
OLS estimates of the Level 1 path b and ¢’ coeffi-
cients. Perceived similarity had a strong effect on
emotional closeness, path b, 0.491, #(71) = 12.799, p
< .001. On average, for every 1-unit increase in per-
ceived similarity on a 7-point scale, there was a 0.491
point increase in emotional closeness, which was
also measured on a 7-point scale. There was variation
in the b paths, 0.061, x*(71, N = 720) = 184,776,
p < .001, indicating a random effect. The direct effect
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of genetic relatedness on emotional closeness was re-
duced, though remained strong being equal to 3.918,
#(71) = 12.272, p < .001.

The lower level path a; and path b; coefficients
were correlated, » = .262, p = .026, with a covari-
ance of 0.348 and a disattenuated correlation of .825.
Also using the OLS paths, we estimated® o, as 0.252
and o, as —0.613, only the latter covariance being
statistically significant.

Consider the decomposition of the effects of the
mediational model. Using the standard single level
model formula where the o, is not considered, the
total effect is 5.706, 3.918 + (3.643)(0.491), which
underestimates ¢, the actual unmediated path coeffi-
cient (5.923) by 0.217. By this computation of the
total effect, only 31% of the total effect, (5.706 —
3.918)/5.706, is mediated. When using the suggested
random-effects formula where the o, is considered,
the total effect is 6.054, 3.918 + (3.643)(0.491) +
0.348, which somewhat overestimates the unmediated
path coefficient by 0.131. By this computation of the
total effect, 35% of the total effect, (6.054 — 3.918)/
6.054, is mediated. These proportions of the total ef-
fect illustrate the importance of considering o, when
estimating the amount of mediation. However, note
that these proportions may not characterize the popu-
lation because they are calculated using sample esti-
mates from a relatively small sample. The importance
of considering o, when estimating the amount of
mediation is also illustrated in the variance of the
mediated effects or (r(ab)z. This variance or G(be
equals 1.691 for the standard single-level model
specification (Equation 10) and 3.057 when allow-
ances for o, are made (Equation 11).

Very surprisingly, introducing the mediator in-
creases the variance in the effect of X on Y. Without
having the mediator in the model, the variance of c is
1.386, but having the mediator in the equation leads to
a variance of ¢’ of 3.260. We suspect that the follow-
ing might be happening. There is relatively little
variation in the total effect of genetic relatedness and
emotional closeness—for most people there is a
strong relationship between genetic relatedness and
emotional closeness. However, people may vary in
terms of the reason why this relationship exists. For
some people, the relationship between genetic relat-
edness and emotional closeness is completely medi-
ated by similarity, whereas for others, other variables
such as frequency of interaction might partially me-
diate the relationship. The negative correlation be-
tween b and ¢’ is consistent with this explanation.

When there is more mediation, leading to larger b
paths, the ¢’ path is smaller; and when there is less
mediation, leading to smaller b paths, the ¢’ path is
larger. Additionally, the inferred variance of c is
somewhat overestimated. This is possibly because of
nonnormality (or see Footnote 3).

Conclusion

Multilevel models are being increasingly used to
estimate models for both repeated measures and
nested data. We consider the use of multilevel mod-
eling to estimate mediational models in which there is
lower level mediation, and all terms are random. We
show that the standard formulas for indirect effects
and their variance must be modified for this type of
model. For each, the covariance between path a and b
should be considered.

None of the standard methods of estimating multi-
level models can estimate such a model. We suggest
an ad hoc procedure that uses conventional methods.
We present an example using simulated data, and we
see that our method adequately captures the model’s
parameters. We also present an example using an ex-
isting data set. These examples illustrate that our
method provides quite different and more accurate
results than using conventional methods that have
been used in single level models.

This method, though adequate, is less than ideal.
First, it does not exactly reproduce the total effect as
is estimated by the unmediated model. There are a
few reasons for this inexact estimation. One reason is
that maximum-likelihood estimation weights the esti-
mates differently when the mediator is in the model
and when it is not. Some of the difference between the
coefficient of the X-to-Y path in the mediated model
and the corresponding coefficient in the unmediated
model is due to this difference in weighting rather
than to mediation (Krull & MacKinnon, 1999). Note
that a similar problem can arise for standard, single
level mediational models when X, M, or Y are defined
as latent variables or when logistic regressions are
run. Because of maximum-likelihood estimation, the
overall X-to-Y effect can change when the mediator M
is included in the model.

3 Because b and ¢’ are estimated from the same equation,
they contain correlated sampling error that is ignored in the
OLS estimation method of the covariance. The presence of
this correlated sampling error likely biases the estimate of
Tper-
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A second limitation of the proposed procedure is
that we use OLS estimation to calculate o, and do
not weight @ and b by their statistical precision. An
ideal estimator of the covariance would take the sta-
tistical precision of a and b into account. Additionally,
although we do provide for a statistical test for o,
using the correlation of the estimates of a and b, we
do not directly estimate its standard error.

Finally, the estimation method that we have devel-
oped requires the assumption that g, b, and ¢’ have a
joint multivariate normal distribution. Although this
assumption is standard in multilevel modeling, as
mentioned previously, the violation of the assumption
might be more serious here. This is because normality
is assumed to identify a model.

We view our method as only an interim method,
and we expect that a single step estimation method
will be developed to replace our piecemeal approach.
Ideally, a computer program would simultaneously
estimate several multilevel models (one for M and one
for Y) and allow for paths between outcome variables
(from M to Y). With these programs, it would be
possible to simultaneously estimate the Level 1 a and
b coefficients and also to estimate o ;. It would be
even better if the program would have an option for
nonnormal distributions of a and b. Given that struc-
tural equation modeling software is beginning to in-
clude multilevel capabilities (e.g., LISREL 8
[Joreskog & Sorbom, 1996]; EQS [Bentler, 1995];
Mplus [Muthén & Muthén, 2002]; Mx [Neale, 2002]),
and multilevel software is beginning to add structural
equation modeling capabilities (HLMS5), we expect
that single-step estimation methods will soon be avail-
able.

There are additional limits in our approach. First,
we make all of the usual assumptions of multilevel
modeling. One standard assumption of that approach
is that the random effects have a multivariate normal
distribution. Some of the formulas are based on the
assumption of multivariate normality. However, we
need not make that assumption because we can com-
pute ¢ and ¢ 2 directly. We have assumed that a and
b have a bivariate normal distribution. Equations 9,
11, and 12 would be much more complex if we allow
the distributions of a and b to be nonnormal. Because
it is already standard practice to assume normal dis-
tributions and because the formulas are already very
complicated, we do not consider nonnormality in this
article. A recent article by Shrout and Bolger (2002)
used bootstrapping to estimate and to take account of
nonnormality in the sampling distribution of ab in a

fixed-effects mediational model. Although it would
be considerably more difficult to implement, it is pos-
sible that this or some similar approach may be useful
in tackling nonnormality in the random-effects case.

Second, we assume that the mediational model is
correctly specified. A mediational model is a causal
model. Ideally the variable X is a manipulated vari-
able, and consequently, we know that if there is a
statistical association, then X causes M and Y, and not
vice versa. The variable M is not manipulated and so
the assumption that M causes Y is more problematic.
Both substantive theory and research design (e.g.,
measuring M before Y) should be used to justify the
causal direction. One key assumption is that there is
no measurement error in either M or X. If there were
measurement error in either of these variables, differ-
ent methods would have to be used (Raudenbush &
Sampson, 1999).

A statistical mediational analysis never establishes
or proves mediation. Mediation occurs when a puta-
tive causal variable causes the putative mediator,
which causes an outcome. Causation is a logical, theo-
retical, and experimental issue. A statistical analysis
by itself cannot prove causation and, consequently,
cannot prove mediation. For instance, seemingly cred-
ible estimates can often be obtained if Y is treated as
the mediator and M is treated as the outcome. Like
other causal models, a mediational analysis can estab-
lish that the model is false; however, it cannot ever
prove that it is true.

We do believe that studying mediation with a mul-
tilevel context affords a much greater understanding
of the process than a single level analysis. First and
foremost, we can test to see if the mediation is the
same for all upper level units. If there is no variation,
then we gain confidence that the process is universal.
Second, if we find that the mediation varies by upper
level unit, then we can see if that variation is mean-
ingful theoretically. So, for instance, if some people
(or groups in the case where groups are the Level 2
unit) show the mediation and others do not, then we
can investigate why we get mediation for some people
and not for others. In this way we can probe theories
in greater detail. However, some methodologists
might question interpreting mediation as a causal ef-
fect when that mediational effect varies randomly.

Third, we have considered only lower level media-
tion. However, upper level mediation is considered in
other articles (Krull & MacKinnon, 1999; Rauden-
bush & Sampson, 1999).

Multilevel models are now becoming common in
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the social and behavioral sciences. These models al-
low researchers to study important social processes
such as how intimate relationships affect the course of
a person’s health and psychological well-being (e.g.,
Bolger, Zuckerman, & Kessler, 2000) and how social-
structural variables affect the likelihood of individual
level victimization (Sampson, Raudenbush, & Earls,
1997). We hope that by providing a method of assess-
ing mediation in multilevel models, their value to re-
searchers will be substantially increased.
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