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Mediation is said to occur when a causal effect of some variable X on an outcome
Y is explained by some intervening variable M. The authors recommend that with
small to moderate samples, bootstrap methods (B. Efron & R. Tibshirani, 1993) be
used to assess mediation. Bootstrap tests are powerful because they detect that the
sampling distribution of the mediated effect is skewed away from 0. They argue
that R. M. Baron and D. A. Kenny’s (1986) recommendation of first testing the
X → Y association for statistical significance should not be a requirement when
there is a priori belief that the effect size is small or suppression is a possibility.
Empirical examples and computer setups for bootstrap analyses are provided.

Mediation models of psychological processes are
popular because they allow interesting associations to
be decomposed into components that reveal possible
causal mechanisms. These models are useful for
theory development and testing as well as for the
identification of possible points of intervention in ap-
plied work.

Mediation is equally of interest to experimental
psychologists as it is to those who study naturally
occurring processes through nonexperimental studies.
For example, social–cognitive psychologists are in-
terested in showing that the effects of cognitive prim-
ing on attitude change are mediated by the accessibil-
ity of certain beliefs (Eagly & Chaiken, 1993).
Developmental psychologists use longitudinal meth-
ods to study how parental unemployment can have
adverse effects on child behavior through its interven-
ing effect on quality of parenting (Conger et al.,
1990). Mediation analysis is also used in organiza-
tional research (e.g., Marks, Zaccaro, & Mathieu,
2000; Mathieu, Heffner, Goodwin, Salas, & Cannon-
Bowers, 2000), clinical research (e.g., Nolen-

Hoeksema & Jackson, 2001), and prevention research
(MacKinnon & Dwyer, 1993).

When researchers are able to show that the putative
intervening variables account for the association of
the distal variable with the outcome, they sometimes
say that they have “explained” the association. Al-
though statistical analyses of association cannot es-
tablish causal links definitively, they can provide evi-
dence that one mediation pattern is more plausible
than another, and they can provide invaluable infor-
mation for the design of fully experimental studies of
causal processes (see Bollen, 1989; MacKinnon,
Lockwood, Hoffman, West, & Sheets, 2002).

Statistical approaches to the analysis of mediation
have been discussed extensively in the psychological
literature (Baron & Kenny, 1986; Collins, Graham, &
Flaherty, 1998; James & Brett, 1984; Judd & Kenny,
1981; Kenny, Kashy, & Bolger, 1998; Maccorquodale
& Meehl, 1948; MacKinnon & Dwyer, 1993; Mac-
Kinnon, Krull, & Lockwood, 2000; MacKinnon,
Warsi, & Dwyer, 1995; Rozeboom, 1956; Sobel,
1982). In this article, we focus on the approach to
mediation analysis that was articulated by Kenny and
his colleagues (Baron & Kenny, 1986; Judd & Kenny,
1981; Kenny et al., 1998). As MacKinnon et al.
(2002) have documented, this formulation of the me-
diation process has been very influential, but we ac-
knowledge that other important frameworks exist
(e.g., Collins et al., 1998).1 We point out that new
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statistical methods that are available for analysis of
mediated effects (Bollen & Stine, 1990; Lockwood &
MacKinnon, 1998) have implications for Kenny’s ap-
proach to statistical mediation, and we show how
these new methods can be applied with relative ease
to data from both experimental and nonexperimental
studies.

Baron and Kenny’s (1986) Approach to
Statistical Mediation Analysis

An influential description of how mediation can be
detected statistically was given by Baron and Kenny
(1986); more recently, Kenny et al. (1998) presented
an updated account. Figure 1 shows the elements of
the mediation analysis. Let variable X be a presumed
cause of variable Y. Variable X may be experimentally
manipulated, or it might vary naturally in the popu-
lation. When X is an experimental variable in a ran-
domized study, its causal relation to Y can be inter-
preted unambiguously (Holland, 1986). When X is not
manipulated, definitive causal inferences cannot be
made about the relation of X to Y. Weaker inferences
about the plausibility of causal relations can be made
if certain assumptions can be shown to hold.2 It is
important to note that these assumptions are not met

simply by ordering the variables in time, as there are
other possible interpretations of correlation patterns
from longitudinal data, including spuriousness (e.g.,
Link & Shrout, 1992). When Part 1 of Figure 1 is to
be used with nonexperimental data, we need a clear
theoretical rationale for the possible causal relation of
X to Y, and it is the development of this rationale that
often brings nonexperimental researchers to media-
tion analysis.

For both experimental and nonexperimental data,
Part 1 of Figure 1 implies that a unit change in X is
associated with a change of c units in Y when only X
and Y are considered. For example, if Y is a test of
achievement of some technical material on a 100-
point scale and X is a measure of the number of min-
utes spent studying a relevant technical manual, then
c is the number of mastery points that one expects to
improve for each minute of study.

Part 2 of Figure 1 shows a model that includes
variable M, the proposed mediator. As noted earlier,
we explicitly assume that M precedes Y in time and
that it is a plausible causal agent for Y.3 The mediation
model assumes that M is affected by changes in X;
one unit change in X is associated with a change of a
units in M. The model also assumes that changes in M
are associated with changes in Y, above and beyond
the direct effect of X on Y. A unit change of M is
associated with a change of b units in Y when X is held
constant. As a result, X is said to have an indirect
effect on Y through the mediator M. The size of the
indirect effect is simply the product of the X-to-M and
M-to-Y effects, that is, a × b (see MacKinnon et al.,
1995). Continuing with the example discussed earlier,
if M is a count of technical vocabulary and Y and X are
measures of general achievement and time spent
studying in minutes, then we could determine (that a
new words are learned for each minute of study and
that b achievement points are gained for each new
word that is learned. Therefore, a × b achievement

refined by Rozeboom (1956), but their formulation does not
lead to a strong analysis of causation such as that presented
by Pearl (2000) and hence is not be considered in detail
here.

2 Bollen (1989, pp. 40–79) summarized the assumptions
as (a) association (X and Y are related), (b) direction (X is
prior to Y, not vice versa), and (c) isolation (the association
between X and Y is not due to another variable or process).
A more detailed analysis of causation is provided by Pearl
(2000).

3 Note that even if X is experimentally manipulated, M is
not. For this reason the usual caveats and concerns about
causal inference apply (see Kenny et al. [1998] for a dis-
cussion of this issue).

Figure 1. Path models showing total effect (Part 1) and
mediated effect (Part 2) of X on Y. When mediation occurs,
the c� path in Part 2 is smaller than the c path in Part 1, as
indicated by dashed lines. Residual terms are displayed as d
effects.
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points are gained through vocabulary improvement
for each minute of study.

When the indirect effect, a × b, equals the total
effect, c, we say the effect of X on Y is completely
mediated by M. In this case, there is no direct effect of
X on Y, and the path c� in Figure 1 is equal to zero.
When the indirect effect does not equal the total effect
but is smaller and of the same sign, we say the effect
of X on Y is partially mediated by M. In this case, the
path c� is a value other than zero. In their approach to
mediation analysis, Kenny and his colleagues (Baron
& Kenny, 1986; Judd & Kenny, 1981; Kenny et al.,
1998) did not assume that c� is zero. Their analysis
proceeded with the initial assumption of some form of
a partial mediation model.4 We adopted that approach
in this article.

In the restatement of Judd and Kenny’s (1981) and
Baron and Kenny’s (1986) guidelines, for assessing
mediation, Kenny et al. (1998) described four steps
that should be taken. The first step is to show that X
is related to Y by estimating and testing the regression
coefficient c in Part 1 of Figure 1 (where Y is the
outcome and X is the explanatory variable). Accord-
ing to Kenny et al. (1998), this first step “establishes
that there is an effect that may be mediated” (p. 259).
The second step is to show that X is related to M by
estimating the coefficient a in Part 2 of Figure 1
(where M is the outcome and X is the explanatory
variable). The third step is to show that M is related to
Y while X is held constant. This step involves esti-
mating b in Part 2 of Figure 1 in a multiple regression
equation with Y as the outcome and both X and M as
explanatory variables. The final step is to estimate and
test the path c� in Part 2 of Figure 1 to determine if the
data are consistent with complete mediation. If the
data suggest that c is nonzero but its analogue c� in the
multiple regression does not differ from zero, then
Kenny et al. would conclude that complete mediation
has occurred.

Although Baron and Kenny’s (1986) recommenda-
tions in their original and restated form are influential
and widely cited, they are not without their critics.
Several people have questioned the necessity of test-
ing the overall association in Step 1 (Collins et al.,
1998; MacKinnon, 2000; MacKinnon et al., 2000).
Still others have pointed out that the recommenda-
tions are nested in a framework that assumes that
mediation processes can be analyzed by linear regres-
sion analysis (Collins et al., 1998). One could also
take issue with the default use of a partial mediation
model approach in cases when a complete mediation

model is hypothesized (Rozeboom, 1956). We return
to possible limitations of the approach of Kenny et al.
(1998) later, but we use the recommendations as a
foundation for our current discussion.

When mediation has occurred, we expect that the
indirect effect, a × b, should be nonzero (see Mac-
Kinnon et al., 1995). However, the estimate of that
effect (the product of â and b̂, which are the sample
estimates of a and b) is subject to estimation error.
Baron and Kenny (1986) reported that the standard
error of the indirect effect estimate can be calculated
using a large-sample test provided by Sobel (1982,
1986). Variations of this formula are used to calculate
the standard error of mediated effects in many popular
programs for structural equation modeling (e.g., Ar-
buckle, 1999; Bentler, 1997; Jöreskog & Sörbom,
1993).

Until recently, researchers wishing to test the sig-
nificance of indirect effects had little option but to use
Sobel’s (1982) large-sample test. Now, however, de-
velopments in statistical theory provide alternative
methods for testing direct and indirect effects in me-
diation models. One particularly useful approach is
the bootstrap framework, which can be applied even
when sample sizes are moderate or small, that is, in
the range of 20–80 cases (Efron & Tibshirani, 1993).
In a groundbreaking article, Bollen and Stine (1990)
showed that bootstrap methodology could be very
useful in studying the sampling variability of esti-
mates of indirect effects in mediation models. Al-
though the bootstrap is well-known to statisticians and
has been incorporated as an option in structural equa-
tion modeling programs such as EQS (Bentler, 1997)
and AMOS (Arbuckle, 1999), it has only recently
begun to appear in the general psychology literature
(Chan, Ho, Leung, Chan, & Yung, 1999; Efron, 1988;
Lee & Rodgers, 1998). We hope to encourage its
widespread use in mediation analyses by describing
its benefits, showing how it can make a difference in
the interpretation of mediation studies, and provid-

4 Persons familiar with structural equation methods will
recognize that assuming a complete mediation model has
important statistical and conceptual advantages. When c�
can be fixed to zero, variable X is said to be an instrumental
variable for the M → Y path. Instrumental variables can be
used in structural equation methods to study model mis-
specification issues and reciprocal causal paths (Bollen,
1989). Estimates of coefficients a and b are more efficient
when the complete mediation model can be assumed.
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ing examples of how the new methods can be imple-
mented using commercial structural equation soft-
ware.

In the next section, we review issues in the estima-
tion and testing of indirect and direct paths in media-
tion analyses. We then describe the bootstrap and il-
lustrate the methodology with two numerical
examples. In interpreting mediation in these ex-
amples, we stress the importance of confidence inter-
vals rather than significance tests. We then explore
how the bootstrap methods can be used to evaluate
partial mediation effects, and we take into consider-
ation suppression or inconsistent mediation effects
(MacKinnon et al., 2000). We conclude the article
with reflections on Kenny’s recommendations for car-
rying out a regression-based mediation analysis.

Estimating and Testing Direct and
Indirect Paths

We begin by reviewing some of the standard meth-
ods for estimating direct and indirect paths in Figure
1. These standard methods can be implemented in
ordinary regression software programs as well as
structural equation modeling software. We then re-
view the usefulness of bootstrap methods for supple-
menting these methods.

In the review, we assume that X, Y, and M are
variables in a representative sample of N persons from
a specific population. We consider two examples of
this general problem. In the first example, X, Y, and M
are simply measured rather than manipulated. In-
stances of this type arise in cross-sectional or panel
studies. We explicitly assume that a case can be made
in these applications that X precedes M and M pre-
cedes Y temporally and that plausible causal relations
exist between X and M and between M and Y. We also
assume at this point that X and M are measured with-
out error, but we discuss later how unreliable mea-
sures can be handled with structural equation meth-
ods. In the second example, X represents a manipu-
lated variable in a two-group experiment. It takes the
value 1 in the treatment group and 0 in the control
group, and group membership is randomly assigned to
participants.

For both kinds of examples, ordinary least squares
regression methods5 can be used to estimate c�, a, b,
and c in Figure 1. We call these estimates ĉ�, â, b̂, and
ĉ. The standard errors of these estimates can be com-
puted using standard methods for linear models

(Cohen & Cohen, 1983; Draper & Smith, 1998).6 It is
well-known from the central limit theorem that the
estimates of c�, a, b, and c tend to be normally dis-
tributed, and it is possible to use their estimated stan-
dard errors to construct confidence intervals and to
carry out statistical tests using normal theory. Specifi-
cally, if the residuals from the regression are normally
distributed and the standard error of the estimate is
estimated on v degrees of freedom, then the parameter
is tested with a t test on v degrees of freedom and the
95% confidence interval for a given effect (say, c� )
can be constructed as

ĉ� ± sĉ�tv,.975, (1)

where Sĉ� is the estimated standard error of ĉ� and
tv,.975 is the constant from the t distribution on v de-
grees of freedom that marks 2.5% from each tail such
that the interval contains the central symmetric 95%
region of the distribution. The interval defined by
Equation 1 is symmetric, and it will include zero
when the two-tailed t test of ĉ� is not significant at the
.05 level. For degrees of freedom over 60, tv,.975 is
between 1.96 and 2.00 for the 95% coverage that is of
usual interest.

When inferences about the indirect effects are de-
sired, the statistical methods are not as simple. Al-
though standard statistical theory provides expres-
sions of the standard errors of the estimates of â and
b̂, it does not provide an estimate for the product of
these two quantities. Sobel (1982, 1986) derived ap-
proximate expressions for that standard error by using
a Taylor series approach, and he assumed that the
product would tend to be normally distributed as the
sample size gets large. Several versions of the ap-
proximate standard error have been reported (Mac-
Kinnon et al., 1995, 2002), and two of these versions
are most often used in the literature:

5 These are the methods implemented by default in SPSS
(SPSS Inc., 1999), Excel (Microsoft Inc., 1999), and other
regression software systems.

6 The standard error formulas depend on the variability of
the explanatory variables, the sample size, and the unex-
plained variance of the outcomes. In general, if the spread of
the predictors is increased, the sample size is increased, or
the residual variance of the outcome is decreased, then the
standard error of the estimate of the direct effects is de-
creased. The stability of the estimate of the standard error is
indexed by degrees of freedom associated with the residual
variance.
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sâb̂ �1� = �â2sb̂
2 + b̂2sâ

2 (2a)

sâb̂ �2� = �â2sb̂
2 + b̂2sâ

2 + sâ
2sb̂

2. (2b)

Baron and Kenny (1986) made Equation 2b well-
known, but for large samples Equation 2a is nearly the
same magnitude and has been recommended (Mac-
Kinnon et al., 1995). Stone and Sobel (1990), Mac-
Kinnon and Dwyer (1993), and MacKinnon et al.
(1995, 2002) have shown through simulation studies
that for large samples (>200) the estimators 2a and 2b
are close to the parameter they estimate. These stan-
dard error estimates are often used to test whether the
indirect effect is different from zero through z statis-
tics7 and to construct confidence intervals. For ex-
ample, the 95% confidence interval for the indirect
effect would be

(â × b̂) ± sâb̂z.975, (3)

where z.975 is equal to the constant 1.96. Even if the
estimate of the standard error is accurate, this confi-
dence bound will accurately cover 95% of the pos-
sible population values only if the product â × b̂ is
normally distributed. There are reasons to suspect that
this assumption does not hold when the null hypoth-
esis that a × b � 0 is false, that is, when mediation is
present. Although the sum of two normal random
variables will have a normal distribution, their prod-
uct will not be normal. Indeed, products of normal
variables with positive means will tend to have a posi-
tive skew, and products of normal variables with
means of opposite signs will tend to have a negative
skew (Bollen & Stine, 1990; Lockwood & MacKin-
non, 1998; MacKinnon et al., 2002). As we discuss
below, ignoring this skew in the distribution (as So-
bel’s test does) can reduce the power to detect me-
diation when it exists in the population.

Bootstrap Distributions of Effects

Bollen and Stine (1990) explored the distribution of
â × b̂ in several small-sample examples using boot-
strap methods (Efron & Tibshirani, 1993) and found
that the positive skew was notable. Stone and Sobel
(1990) examined the distribution of indirect effect es-
timates using simulation methods and also found evi-
dence of skew for sample sizes less than 400. Mac-

Kinnon and Dwyer (1993) obtained similar results in
their simulation studies of indirect effects. MacKin-
non and Lockwood (2001) discussed the skew from
the perspective of formal mathematical distribution
theory. Both Stone and Sobel and MacKinnon and
Dwyer observed that symmetric confidence intervals
constructed using assumptions of normality tended to
give asymmetric error rates. The intervals appeared to
be too wide in the direction of the null hypothesis but
too narrow in the direction of the alternative hypoth-
esis. The implication of these findings is that the usual
test of the indirect effect will lack statistical power to
reject the null hypothesis that a × b � 0. This impli-
cation has been documented in computer simulations
presented by MacKinnon and his colleagues (see, e.g.,
MacKinnon et al., 2002).

Bollen and Stine (1990) proposed computing non-
symmetric confidence bounds for a × b using boot-
strap information. The bootstrap approach allows the
distribution of â × b̂ to be examined empirically; the
percentile confidence interval is defined simply by the
cutpoints that exclude (�/2) × 100% of the values
from each tail of the empirical distribution. Efron and
Tibshirani (1993) provided a clear rationale for this
simple percentile interval as well as some refinements
that we discuss later in this article and in Appendix A.

To be concrete about how to compute the percentile
confidence interval, suppose that the models in Figure
1 are studied with a sample of N � 80 persons. The
bootstrap distribution of â × b̂ is constructed by the
following steps:

1. Using the original data set as a population res-
ervoir, create a pseudo (bootstrap) sample of N
persons by randomly sampling observations
with replacement from the data set.

2. For each bootstrap sample, estimate â × b̂ and
save the result to a file.

3. Repeat Steps 1 and 2 a total of J times.

4. Examine the distribution of the estimates and
determine the (�/2) × 100% and (1 − �/2) ×
100% percentiles of the distribution.

The standard deviation of the â × b̂ estimates also

7 Note that the standard error estimates are for large
samples; therefore, z rather than t tests are used, and degrees
of freedom are not relevant.
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provides an estimate of the standard error, which
could be used in the usual normal-theory confidence
interval. As Lockwood and MacKinnon (1998) have
pointed out, the bootstrap estimate of the standard
error is similar in magnitude to estimates provided by
Equations 2a and 2b.

Table 1 shows a numerical example that illustrates
the usefulness of the bootstrap procedure. The ex-
ample makes use of a sample of size N � 80 with
measures of X, M, and Y from Figure 1. In this ex-
ample, the population parameters in Figure 1 were set
to be a � 0.40, b � 0.30, and c� � 0.0. Thus, in this
hypothetical population the total effect, c, is com-
pletely mediated. Table 1 shows the results of an
analysis of the N � 80 data set from this population.8

Note that the standard least squares estimates of a, b,
and c� for the original sample deviate somewhat from
the (in this case) known population values. Table 1
also shows the means and standard deviations of the
estimates from the J � 1,000 bootstrap samples con-
structed in the way described in the preceding para-
graph.

The estimates (and standard errors) of the param-
eters from the original sample are â � 0.33 (0.15), b̂
� 0.28 (0.10), and ĉ� � −0.03 (0.14). The confidence
intervals in Table 1 exclude zero for a and b, which
means that they are statistically significant by con-
ventional standards. The means (and standard devia-
tions) of the bootstrap estimates are a � 0.3 (0.14),
b̂ � 0.27 (0.08), and ĉ� � 0.03 (0.12). The usual
estimate of the indirect effect from X to Y is â × b̂ �
0.33 × 0.28 � 0.09. Equation 2b from Baron and
Kenny (1986) suggests that the standard error of the
estimated indirect effect is approximately 0.06, and
Equation 2a yields a similar value of 0.053. The usual
95% confidence interval around the indirect effect
using the smaller standard error is (−0.01, 0.19). On
the basis of the standard analysis, we would conclude

that the indirect effect could be zero, even though
both â and b̂ are statistically different from zero.

A different conclusion is reached when we look at
the distribution of â × b̂ from the bootstrap proce-
dure.9 The mean of the bootstrap distribution is .089,
and the standard deviation is .05. Both of these values
are consistent with the results of the initial analysis.
However, Figure 2 shows the actual distribution of the
estimated indirect effects from 1,000 bootstrap
samples. From Figure 2, it is evident that the 95%
confidence interval for the indirect effect should not
be estimated using normal theory. The distribution
has a definite positive skew, and very few of the
samples led to estimates of the indirect effect that
were negative or zero. The extent of the skew can be
seen by comparing the actual distribution to a normal
distribution with the same mean and standard devia-
tion that is superimposed. From the bootstrap percen-
tile confidence interval shown in Table 1, we can see
that 95% of the bootstrap estimates were between the
values 0.01 and 0.20. This confidence interval leads
us to conclude that the indirect effect of X on Y is

8 This data set was artificially constructed using simula-
tion. Simulation was done using EQS (Bentler, 1997) soft-
ware. The software essentially samples observations from a
population in which the relations among the variables are
characterized by parameters a � .4, b � .3, and c� � 0.
Variables X, M, and Y all had variances of 1.0 in this hy-
pothetical population, and so the parameters can be inter-
preted as standardized coefficients.

9 The bootstrap procedure was implemented using op-
tions in EQS. The regression effects were estimated using
unweighted least squares, and 100% of the bootstrap
samples converged. Details of computation issues are dis-
cussed later in this article.

Table 1
Illustration of Standard and Bootstrap Methods for Mediation Example (Simulated) With N = 80

Effect Estimate SE

95% CI Bootstrap

Standard normal Bootstrap percentile M SD

a 0.331 0.147 (0.04, 0.62) (0.05, 0.60) 0.325 0.138
b 0.275 0.103 (0.07, 0.48) (0.11, 0.43) 0.274 0.082
c� −0.027 0.137 (−0.30, 0.25) (−0.27, 0.22) −0.029 0.122
a × b 0.091 0.053 (−0.01, 0.19) (0.01, 0.20) 0.089 0.047
c 0.064 0.138 (−0.21, 0.34)

Note. Data were sampled from a simulated population in which a � 0.4, b � 0.3, and c� � 0.0. Normal 95% CIs are computed using
estimate ±2 × SE. Percentile 95% CI for bootstrap is defined using the values that mark the upper and lower 2.5% of the bootstrap distribution.
CI � confidence interval.
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significantly different from zero.10 This result not
only contrasts with the normal-theory confidence in-
terval of Equation 3 but also contradicts the initial test
of an association between X and Y. In this sample of
80 observations, the correlation between X and Y is
only .06, and this number is not significantly different
from zero when tested as a simple bivariate associa-
tion.

It is not always the case that inferences based on
bootstrap procedures will differ from the standard
normal-theory method. Table 1 shows the 95% con-
fidence bounds for the regression coefficients a, b,
and c� as well as for the indirect effect. The substan-
tive conclusions from these bounds are similar to
those obtained using the standard method. Consider
the result for the direct effect coefficient c�, for ex-
ample. This is the direct effect of X on Y when the
mediator variable M is held constant. Recall that the
original sample of 80 was simulated from a popula-
tion in which c� � 0, and the sample result was ĉ� �
−.03. The normal-theory confidence interval based on
Equation 1 is −.03 ± (.14)(1.99) � (−.30, .25), where
.14 is the estimated standard error of ĉ� and 1.99 is the
value of the t distribution on 77 degrees of freedom
that yields a 95% confidence interval.

The bootstrap procedure yields a similar conclu-
sion. Figure 3 shows the shape of the bootstrap dis-
tribution for this parameter. When the estimate was

calculated 1,000 times in the bootstrap samples, the
mean of the distribution was −.029, the standard de-
viation was .12, and the shape of the distribution is
clearly symmetric and normal. In this case, it makes
no difference whether one computes a normal-theory
confidence interval using the bootstrap mean and
standard deviation or identifies the values that select
the observations in the middle 95% of the distribution.
Both bootstrap methods lead to the interval (−0.27,
0.22). Although this interval is somewhat narrower
than the confidence interval in the original sample, it
leads to essentially the same substantive conclusion.11

Thus, as we stated earlier, it is because the indirect
effect a × b has a distribution that is skewed away

10 Essentially the same distribution was obtained with
500 bootstrap samples, suggesting that the procedure has led
to a stable estimate of the distribution. The percentile con-
fidence interval in this case is virtually identical to a more
sophisticated interval procedure that adjusts for possible
bias (Efron & Tibshirani, 1993, pp. 178–199).

11 The confidence interval in the original sample is some-
what wider because the estimated standard error is slightly
larger than the bootstrap estimate. This difference reflects
sampling variability, as the usual estimated standard error is
itself a sample statistic. As the original sample size gets
larger, the standard errors and confidence intervals from the
two approaches are expected to converge.

Figure 2. Bootstrap distribution of indirect effect (â × b̂).
SD � .05; M � .089; N � 1,000.

Figure 3. Bootstrap distribution of direct effect c�. SD �
.12; M � −.029; N � 1,000.
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from zero that the bootstrap approach has more power
than the conventional approach. In contrast, the sam-
pling distributions of a, b, and c� are symmetrical and
normal, and therefore, the bootstrap test does not
emerge as more powerful.

Evaluating Mediation Models

Bootstrap procedures and confidence intervals were
not widely used at the time that Baron and Kenny
(1986) formulated their groundbreaking guidelines for
assessing mediation. In this section, we consider how
these new tools might lead to a somewhat different set
of guidelines. We first consider the nature of the hy-
pothesized mediation process, whether it is proximal
or distal. We argue that if the process that is to be
mediated is theoretically distal, then it may not be
necessary to first test the X → Y relation by using
bivariate methods. We next consider the case when
the bivariate relation between X and Y appears to be
weak because of a suppressor process. Finally, we
consider the problem of assessing whether mediation
is complete or partial.

Proximal Versus Distal Mediation Processes

The clearest examples of causal processes in gen-
eral, and mediated causal processes in particular, in-
volve temporally proximal causal components. If X is
a strong causal agent of Y, then one expects a change
in X to lead to a new value of Y shortly thereafter. For
example, an unobtrusive instance of social support to
a stressed person should lead to some sign of reduced
distress by the next day (Bolger et al., 2000). A cog-
nitive prime should lead to immediate facilitation of
certain memory processes. An improved lesson pre-
sentation should lead to better performance on a test
the next day.

When a causal process is temporally proximal, it is
likely that the effect c in Part 1 of Figure 1 will be
moderate or large in magnitude. (According to Cohen,
1988, a medium effect for regression or correlation is
around .30 in standardized units, and one needs a
sample size of approximately 85 to detect the effect
with 80% power when using the usual two-tailed sig-
nificance level of .05.) As the causal process becomes
more distal, the size of the effect typically gets
smaller because the more distal an effect becomes, the
more likely it is (a) transmitted through additional
links in a causal chain, (b) affected by competing
causes, and (c) affected by random factors.

The example in Table 1 illustrates the pattern of

results that one expects with a mediated, distal causal
process. We demonstrate that in such cases we may be
able to confidently detect mediation but not the over-
all or total effect. In this example, the effect of X on
M and of M on Y are both medium in size (0.33 and
0.28 in the sample), and the power to detect effects of
these sizes with a sample size of 80 is 86% and 72%,
respectively (Cohen, 1988). However, the expected
correlation between X and Y, assuming total media-
tion, is (.33)(.28) � .09. This is a small effect and
would be unlikely to be detected with a sample of
only 80. According to Cohen (1988), the power avail-
able to detect a correlation of .09 with a sample of 80
is only 12%. If one wanted to have 80% power to
detect a correlation of that size, one would need a
sample size of 966.12

When a valid mediation model is available and ap-
propriate statistical methods are used, the power to
detect a distal effect is often improved over the power
to test a simple bivariate association. The test of the
indirect path between X and Y benefits from knowl-
edge of the mediation process and the fact that the
more proximal X → M and M → Y associations are
larger than the distal X → Y association.13 Because
the test of the X → Y association may be more pow-
erful when mediation is taken into account, it seems
unwise to defer considering mediation until the bi-
variate association between X and Y is established.
This leads us to support recommendations to set aside

12 These calculations make use of the effects as estimated
from the sample. As we noted earlier, the data were gener-
ated from a model that had population parameters of 0.40
and 0.30 for the effects of X on M and of M on Y, and these
population values lead to an expected indirect effect of
(0.4)(0.3) � 0.12. The sample size needed to detect this
effect with 80% power is 542. Although this is still very
large, one can see that small differences in small correla-
tions have large effects on the required sample size.

13 The benefits of taking the mediated path into account
are somewhat complicated. When the X → M path is large
(i.e., standardized effect >.7), the multicollinearity of these
two variables leads to an increased standard error for b̂,
which can make the test of the mediated effect less powerful
than the bivariate X → Y test. For medium effects of
X → M, however, the mediated effect will be more power-
ful. There are other examples in data analysis of prior
knowledge leading to more powerful statistical models and
tests. In structural equation models, for example, the stan-
dard errors of parameter estimates are typically smaller
when paths that are known to have zero weight are elimi-
nated from the model.
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the first step of Baron and Kenny’s (1986) classic
approach (e.g., Collins et al., 1998; MacKinnon,
2000; MacKinnon et al., 2000). Especially for distal
processes, for which the usual bivariate tests of asso-
ciation have limited power, we recommend that the
mediation analysis proceed on the basis of the
strength of the theoretical arguments rather than on
the basis of the statistical test of X on Y.14

Relaxing the requirement that X → Y be statisti-
cally significant before going on to study mediation is
likely to be especially important for developmental
and other researchers who track long-term processes.
For example, Susser, Lin, Conover, and Struening
(1991) hypothesized that children who experience out-
of-home placement into foster care may be at risk for
increased adolescent behavior problems and that these
behavior problems put them at risk for adult substance
abuse and psychopathology. The effect of out-of-
home placement on adolescent problems is hypoth-
esized to be medium in size, as is the effect of ado-
lescent problems on adult problems. In this context,
the relation of out-of-home placement to adult psy-
chopathology and substance abuse is likely to be
subtle, but it is likely to be of theoretical interest as an
exemplar of one of many childhood antecedents that
contribute to adult functioning. We recommend that
studies of such distal processes proceed without the
initial bivariate test of the long-term effects and that
the test of the model-based association through the
indirect path be approached through the bootstrap pro-
cedure or other recommended methods (MacKinnon
et al., 2002).

When the effect to be studied is proximal to its
cause, however, we believe Baron and Kenny’s
(1986) classic recommendation that the X → Y effect
be tested has conceptual usefulness. Unless there is an
a priori argument that the relation of X to Y is subtle
or due to a suppression process (see below), the effect
size of proximal causes is likely to be medium or
large, and well-designed studies will have adequate
power to detect the bivariate effect. The evidence for
an association between X and Y will be more convinc-
ing if both the bivariate and the indirect associations
are established. Clearly, experimentalists who wish to
elaborate the mechanisms of an experimental effect
need to first establish that the effect exists. In sum, we
agree with others that the rigid requirement of the first
step of Baron and Kenny’s mediation guidelines be
dropped but that it be retained in specific cases in
which theory suggests that the associations are large
or medium in size.

Suppressor Variable Processes

In the preceding section we assumed that path c in
Figure 1 will be diminished in studies of distal pro-
cesses because of the dilution of one or more medi-
ating processes. Diminution of effects over time is not
the only way for a theoretically interesting association
to become empirically weak in magnitude. Even
proximal effects can be substantially diminished if
they are suppressed by a competing process (see Co-
hen & Cohen, 1983, pp. 95–96; see also Tzelgov &
Henik, 1991). Suppression occurs when the indirect
effect a × b has the opposite sign of the direct effect
c� in Figure 1.15

MacKinnon et al. (2000) recently provided an ex-
cellent description of suppression in the context of
mediation analyses. They pointed out that Figure 1
applies to suppression effects as well as the mediation
effects discussed by Baron and Kenny (1986), and
following from this, they discussed Davis’s (1985)
conception of suppression as “inconsistent mediation”
(p. 33). Because of the importance of these points, we
review them in detail here.

We first illustrate suppression with an example.
Consider coping behavior that is initiated because of
exposure to a stressor. In this instance, X might be the
occurrence of an environmental stressor (e.g., a
flood), M might be the level of coping behavior (e.g.,
support seeking), and Y might be experienced distress.
In terms of Figure 1, path a is positive (exposure to
the stressor leads to the initiation of coping), but path
b is negative (coping leads to reduced distress), and
the indirect path through M is negative (because a ×
b < 0). If coping behavior is held constant, the stressor
is likely to lead to distress, as reflected by a value of
c� that is positive. The total effect of X on Y is the sum
of the indirect effect a × b and the direct effect c�. In

14 Collins et al. (1998) and MacKinnon and colleagues
(MacKinnon, 2000; MacKinnon et al., 2000) recommended
dropping the first step of Baron and Kenny (1986) for a
different reason than we do. They considered inconsistent
mediating variables that may have effects that go in oppo-
site directions, so the total effect may seem to disappear.
This situation is considered briefly in the next section on
suppression effects.

15 Suppression has had a more restricted definition in
educational psychology (Horst, 1941) that we are not using
here. The more general meaning of suppression discussed in
detail by Tzelgov and Henik (1991) and used in the present
article appears to be the more widely accepted one.

SHROUT AND BOLGER430



a population of persons who possess good coping
skills, the magnitude of c� may be similar to that of a
× b but opposite in sign. In this case, the total effect
(which is effect c in Part 1 of Figure 1) may be close
to zero (MacKinnon et al., 2000). Clearly, the bivari-
ate effect X → Y obscures the complexity of the cau-
sal relations between these variables.

When a suppression process is hypothesized, one
may still use the mechanics of the mediation analysis
that we discussed above. The indirect path a × b is
meaningful and can be studied using both standard
regression methods and bootstrap techniques. The di-
rect effect c� is also meaningful but should be inter-
preted as a conditional effect (holding constant M;
MacKinnon et al., 2000). The primary caveat is that
the total effect (c in Part 1 of Figure 1) is not ex-
plained by decomposing it into two additive parts with
the same sign. In fact, the suppression system can
explain why a theoretically interesting relation is not
strong. As we discuss in detail later, care needs to be
taken when talking about total effects in the presence
of suppression.

Even when a suppression process is not of initial
theoretical interest, it may be observed in empirical
results (see also MacKinnon et al., 2000). This is well
illustrated by the numerical example shown in Table
1. The total effect of X on Y in the original sample is
c � 0.06, which is somewhat smaller than the indirect
effect of a × b � 0.09. The direct effect of X on Y,
holding M constant, is −0.03. In this case, the medi-
ated effect explains more than 100% of the total ef-
fect.

This numerical example is, of course, artificial. It is
a sample from a simulated population in which c� was
exactly zero, and thus we know that these data should
show complete mediation. Because we have unusual
prior information about the population, we can be
confident that the estimate of c� is negative simply
because of sampling fluctuations. Both confidence in-
tervals for c� shown in Table 1 indicate that the sam-
pling distribution of c� ranges from around −0.3 to
0.2, given that the sample size is only 80. This is a
remarkably broad range, when one considers that the
indirect effect is only expected to be (0.4 × 0.3) �
0.12. From this example we can see that empirical
suppression will occur about 50% of the time when a
model can be specified that totally accounts for a
causal effect. Thus, if the population c� � 0, then we
can expect sample estimates of c� to be negative about
half of the time. As MacKinnon et al. (2000) noted,
this is not true suppression, and hence we call it “em-

pirical suppression.” Our example illustrates that the
degree of empirical suppression due to sampling fluc-
tuations can be striking.

If our theory predicts that c� is near zero, then we
can invoke traditional hypothesis-testing conventions
to argue that these data are consistent with the null
hypothesis.16 The confidence intervals from both tra-
ditional methods and the bootstrap include zero, and a
t test of the sample result c� � −0.03 would be far
from statistically significant. In this case, we might
argue that the data are consistent with total mediation.
In a later section, we discuss how a bootstrap analysis
might tell us how confident we can be of that claim.

In some cases, one might expect that c� � 0 but
find that the empirical estimate of c� is negative and
significantly different from zero. When this occurs,
one must think carefully about the possibility of sup-
pression effects or other alternative models rather than
of the original additive mediation model. Although it
is tempting to think of unexpected suppression effects
as artifacts, it is our experience that they can often be
informative, if not interesting.

Unexpected suppression effects sometimes occur in
the context of multiwave longitudinal studies when
growth processes are analyzed using simple regres-
sion models. For example, imagine a situation in
which marital conflict at two points in time is used to
predict marital dissatisfaction at a third time. When
considered as pairs of variables, we expect that con-
flict (Time 1) should. be positively related to dissat-
isfaction (Time 3), as should conflict (Time 2), and
that the two conflict measures should also be posi-
tively related. These expectations might lead us to
hypothesize that the effect of conflict (Time 1) might
be mediated by conflict (Time 2) and that the direct
effect of conflict (Time 1) on dissatisfaction (Time 3)
would be nearly zero.

In some data sets, however, suppression is found
instead. When conflict is held constant at Time 2,
higher levels of conflict at Time 1 seem to reduce
dissatisfaction at Time 3. Mathematically speaking,
this occurs when the magnitude of the overall corre-
lation between conflict (Time 1) and dissatisfaction
(Time 3) is less than one expects given the known
indirect path, conflict (1) → conflict (2) → dissatis-

16 If another researcher has a theory that c� � 0.20 or that
c� � −0.20, then the confidence intervals also remind us
that the data are consistent with that alternative theory as
well.
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faction (3). Psychologically speaking, such patterns of
correlations can occur when the Time 1 and Time 2
measures of conflict reflect trajectory processes,
whereby some couples are steadily increasing in con-
flict while others are reducing their conflict. The
proper interpretation of such trajectory patterns has
been discussed by Rogosa (1988; Rogosa, Brandt, &
Zimowski, 1982). In a nutshell, when conflict at Time
2 is held constant at its mean value, then persons with
unusually low Time 1 conflict will tend to have a
trajectory of increasing conflict, whereas persons with
unusually high Time 1 conflict will tend to have a
trajectory of decreasing conflict. If the slope rather
than the level is what predicts marital dissatisfaction,
then the suppression pattern will be observed. The
point that we make here is that some unexpected sup-
pression results can reflect the need for an alternative
theoretical model.

To recap, suppression models are closely related to
mediation models, and they can be analyzed using the
same set of methods. When an association is com-
pletely mediated in the population, we expect to see
spurious suppression effects about half of the time
because of sampling fluctuations. These effects, how-
ever, are unlikely to be statistically significant. When
suppression effects are expected theoretically or when
they are statistically significant, the total effect of X
on Y in models involving suppression must be inter-
preted with caution.

Partial Mediation: Guide to
Unexplained Effects

Suppression effects are observed when the direct
effect c� in Figure 1 is opposite in sign to the indirect
effect a × b. A more common result is a value of c�
that is different from zero but in the same direction as
a × b. As we mentioned before, this is what Baron and
Kenny (1986) and Kenny et al. (1998) call “partial
mediation.”

Partial mediation can be observed in at least four
situations. The first is the most obvious but may not
be the most common. This is the situation when X has
a specific and direct effect on the outcome Y in addi-
tion to its indirect effect through the mediator M. For
example, suppose we were studying the effect of in-
terpersonal conflict (X ) between persons in a romantic
relationship on their appraisals of intimacy (Y ) the
next day. The conflict may have a partially mediated
effect through conscious, social–cognitive processes
(M ) that occur between the time of the conflict and
the time of the intimacy rating, but it may also have a

direct and specific path because of affective states that
were induced at the time of the conflict. In this situ-
ation, we say that the mediation model is properly
specified and that the estimates of a, b, and c� are
unbiased relative to population values. This situation
is shown in the top panel of Figure 4.

The second situation that produces partial media-
tion patterns in the data is only subtly different from
the first. This is the situation when there are several
processes that taken together completely mediate the
relation between X and Y (see Bollen, 1987; Mac-
Kinnon, 2000), but only a subset is specified explic-
itly in the mediation analysis. In this case, the direct
effect of X on Y (c� ) reflects the effects that are not
captured by the mediators included in the model. We
illustrate this situation with an example discussed pre-
viously. Suppose X is study time, Y is achievement
performance, M1 is vocabulary acquisition, and M2 is
acquisition of technical relationships. Achievement
performance is likely to be affected by both media-
tors. A model that omits one will have a c� path that
is nonzero. In this case, the path c� can be interpreted
as a kind of residual effect of X in addition to its
indirect effect through M1. We do not really expect
that study time has a direct effect that is specifically
comparable to vocabulary acquisition but rather that
there is some other way for study time to affect per-
formance in addition to vocabulary enrichment. Tech-
nically, the model that excludes M2 is statistically
misspecified, and the estimate of b can be biased. This
is because the path from M1 to Y is not adjusted to
take into account a possibly correlated process
through M2.17 This situation is illustrated in the
middle panel of Figure 4.

The third situation that leads to the impression of
partial mediation is another example of model mis-
specification. It sometimes happens that different me-
diation mechanisms apply to different persons in the
population, but we are not able to anticipate this fact
when designing the study. This situation has been
discussed by Collins et al. (1998). Specifically, sup-
pose that there is a group of subjects for whom M
completely mediates the X → Y relation, but there is

17 To simplify exposition, Figure 4 does not show that M1

and M2 could be correlated other than by their common
cause X. In general, d1 and d2 could also be correlated. If M1

and M2 are positively correlated, such as would be expected
of vocabulary and relationship acquisition, then the estimate
of b (the effect of M1 on Y ) will be somewhat too large.
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another group for which M does not operate. If the
groups are equally represented in the population, then
the analysis of the model in Figure 1 will lead to an
inference that about half of the effect of X on Y is
mediated through M. Unlike the first situation in
which that ratio might apply to each and every subject
in the study, this third situation is informative only as
a statistical average of heterogeneous effects. The sta-
tistical model in this case is technically misspecified
because it does not take into account the interaction
between group and mediation process (Baron &
Kenny, 1986; described as moderated mediation ef-

fects by James & Brett, 1984). This situation is shown
in the bottom panel of Figure 4.

For example, Nolen-Hoeksema, Larson, and Gray-
son (1999) have argued that the relation between
chronic strain and depressive symptoms is more likely
to be mediated by rumination processes in women
than in men. An analysis that pooled men and women
when studying mediation of this sort would find that
rumination is a partial mediator on average, even
though it may explain all of the association in women
and little of the association in men.

A fourth situation, not shown in Figure 4, that can

Figure 4. Three situations in which partial mediation may be suggested by the data (c� is
reliably different from zero).
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lead to partial mediation is when the variable M is
measured with error. This is another example of
model misspecification, but it reflects a methodologi-
cal artifact rather than an opportunity to refine theory.
When the mediator is measured with error, its asso-
ciations with X and Y are underestimated, and hence
the indirect effect would also be underestimated
(Bollen, 1989).

Regardless of the source and interpretation of par-
tial mediation effects, their presence in the data sug-
gest that the causal mechanism is more, rather than
less, complicated. With the exception of the fourth
situation, these complications have the potential of
enriching both theory and practice, and hence it is
unfortunate that researchers often categorically dis-
miss partial mediation effects on the basis of null-
hypothesis tests. Under this convention, authors test
whether c� is statistically different from zero and, if
not, declare that complete mediation has been ob-
served. This practice ignores the fact that the test of c�
often has limited statistical power and that the data are
consistent with important partial mediation as well as
with complete mediation.

The disadvantages of rigid adherence to null-
hypothesis statistical tests have been extensively
documented by Cohen (1994) and others (e.g., Carver,
1978, 1993) and are not repeated here. Instead, we
simply encourage the use of the logical alternative to
null-hypothesis statistical tests, the 95% confidence
interval. As we discussed earlier, confidence intervals
for c� can be constructed using both normal theory
(Equation 1) and bootstrap distributions of ĉ�. For
example, Table 1 shows numerical results that suggest
that the data are consistent with parameter values of c�
in the range (−0.30, 0.25). Although we note that the
data are consistent with complete mediation, we
should also note that the sample size of 80 does not
allow us to rule out the possibility of direct effects as
large as 0.25. Given that the total effect of X on Y in
the population is 0.12, one can appreciate that this
sample does not allow one to say with much certainty
that complete mediation is established.

Quantifying Strength of Mediation

Whether or not ĉ� is significantly different from
zero, it may be of interest to represent the strength of
mediation on a continuum, rather than as the partial or
complete dichotomy. One approach that has been
taken is to compute the ratio of the indirect effect over
the total effect of X → Y. We call this ratio PM for
effect proportion mediated. The notion is that the total

effect is mediated by one or more processes and that
the effects of these mediation processes add up to the
total effect. In the case of a single mediator such as
that shown in Figure 1, PM can be estimated using
estimates of a, b, and c:

P̂M � (â × b̂)/ĉ, (4)

where a and b are estimated from Part 2 of Figure 1
and c is estimated using Part 1. MacKinnon et al.
(1995) studied P̂M and derived an estimate of its
standard error. In simulation studies of PM estimates,
they found that large samples (e.g., >500) were
needed to obtain estimates of PM with acceptably
small standard errors.

One reason that estimates of PM may have a large
standard error is that empirical suppression effects
may result in values of ĉ that are smaller than esti-
mates of â × b̂ or even different in sign. The inter-
pretation of PM is clear only when the mediated and
direct effects are the same sign. If suppression occurs,
estimates of PM can exceed 1.00 or even become
negative.

We recommend that the effect ratio be computed
only when there is no strong evidence of suppression.
If slight empirical suppression is unexpectedly ob-
served but is not statistically significant, we recom-
mend that PM be set at the upper bound of 1.00. The
data displayed in Table 1 illustrate such an instance.
The indirect effect is â × b̂ � 0.09, the direct effect
is −0.03, and the total effect is ĉ � 0.06. However,
given that c� is not significant, there is no strong evi-
dence that suppression exists. In this case, we would
compute the point estimate of the ratio as 1.00, indi-
cating that the data set displays complete mediation.

We know that the example in Table 1 arises from a
population model in which complete mediation is ex-
hibited, but we also know from the confidence inter-
val for c� that a sample size of 80 cannot provide
assurance that partial mediation does not occur. We
can use the bootstrap samples to investigate the sam-
pling variation of the effect ratio, defined assuming no
real suppression. Figure 5 shows the distribution of
the ratios computed from the bootstrap samples for
the data set of Table 1. The distribution is highly
skewed, with more than half of the samples producing
ratios of 1.00, and the other samples producing values
that tail off over most of the possible range. The long
tail on this distribution reminds us of MacKinnon et
al.’s (1995) result that the effect ratio is a highly vari-
able quantity to estimate. Although this sample shows
complete mediation, and more than half of the boot-
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strap samples are consistent with complete mediation,
our 95% confidence interval indicates that the ratio
could be as small as 0.22. The flattened shape of the
distribution suggests that a convention of a 90% or
even an 80% confidence bound for the effect ratio
would be useful. The 90% lower bound in this case is
0.28, and the 80% lower bound is 0.34. This sample
size of 80 is strongly consistent with complete me-
diation, but it is also consistent with partial mediation
with as little as one third of the effect explained by the
mediating process, as indicated by the lower bounds
of the confidence intervals.

Illustration With Empirical Example

We illustrate these computations with an example
of a published mediation study that has a slightly

smaller sample size than our first example. Chen and
Bargh (1997) were interested in demonstrating that
subliminal primes given to a participant (the observer)
could affect his or her verbal behavior toward another
participant (the target) and that this hostility would in
turn evoke increased hostility from the target. They
studied 46 dyads, each of which consisted of one ob-
server and one target, who interacted verbally without
seeing each other. The observers were exposed sub-
liminally to male faces, half to an African American
and half to a Caucasian American. The verbal behav-
ior was evaluated blindly by independent raters for
hostility on a 7-point scale ranging from 1 (super
nice) to 7 (high levels of outward hostility). Chen and
Bargh expected the subliminal priming of the ob-
server to affect the behavior of the target in the fol-
lowing way: The African American prime would
make the observer more hostile, and the observer’s
verbal hostility would make the target more verbally
hostile. Thus, the observer’s hostile behavior would
mediate the relation between the prime and the tar-
get’s hostile behavior. This is what they found: The
observers who were exposed to the African American
face had higher levels of hostility, and this appeared
to mediate a relationship between the prime and the
hostility of the target.

The results of the mediation analysis are shown in
Table 2. Path a represents the effect of the prime on
the observer’s behavior. The observers who were ex-
posed to the African American prime tended to have
hostility scores 0.34 units (on a 7-point scale) higher
than those who were exposed to the Caucasian prime.
Both the normal-theory confidence intervals and the
bootstrap percentile interval give the sense that this
effect is reliable. Path b represents the effect of ob-

Figure 5. Bootstrap distribution of effect ratio. SD � .28;
M � .82; N � 1,000.

Table 2
Illustration of Standard and Bootstrap Mediation Methods Using Chen and Bargh’s (1997) Data on the Effect of
Observer’s Subliminal Priming (X) on Target’s Behavior (Y) as Mediated Through Observer’s Behavior (M)

Effect Estimate SE

95% CI
Bootstrap

Standard
normal

Bootstrap
percentile

Bias-
corrected M SD

a 0.342 0.159 (0.02, 0.66) (0.04, 0.67) (0.03, 0.67) 0.347 0.155
b 0.429 0.172 (0.08, 0.77) (0.03, 0.82) (0.04, 0.82) 0.424 0.191
c� 0.158 0.190 (−0.22, 0.54) (−0.23, 0.51) (−0.20, 0.53) 0.148 0.188
a × b 0.147 0.089 (−0.03, 0.32) (−0.001, 0.49) (0.004, 0.52) 0.160 0.121
c 0.304 0.192 (−0.08, 0.69)

Note. Estimates are unstandardized. The prime is coded as a binary (0,1) variable, and perceiver and target hostility are coded on a 7-point
(1–7) scale. Unlike Chen and Bargh, we did not adjust for gender because it had no relation to any of the other variables. Normal 95% CIs
are computed using estimate ±2 × SE. Percentile 95% CIs for bootstrap distributions are defined using the values that mark the upper and lower
2.5% of each distribution. CI � confidence interval.
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server’s behavior on target’s behavior. In Chen and
Bargh (1997) data, on average, one unit change in the
hostility of the observer was associated with a 0.43-
unit higher hostility score in the target. Again, the
normal-theory confidence intervals and the bootstrap
percentile interval give similar results, although in
this case the intervals based on the bootstrap tend to
be somewhat wider than those based on the ordinary
least squares analysis. Path c� represents the direct
effect of the prime on the target’s behavior after con-
trolling for the observer’s behavior, and path c is the
total effect of the prime on the target’s behavior with-
out adjusting for the observer’s behavior. The former
is about half the size of the latter, and all the forms of
the confidence interval range from −0.20 to 0.50. The
data are consistent with no direct effect, but they are
also consistent with relatively large direct effects.

Figure 6 shows the bootstrap distribution of the
indirect effect a × b. The average indirect effect was
about 0.16, and both the normal-theory and the per-
centile intervals include zero. Chen and Bargh (1997)
noted that a one-tailed, normal-theory significance
test (corresponding to the 90% confidence bound)
leads to the conclusion that the indirect effect is non-
zero and that observation holds for the percentile re-
sults as well. Although the 95% interval includes zero,

the lower bound is much closer to zero than the nor-
mal-theory lower bound. Figure 6 shows that the dis-
tribution of a × b is distinctly skewed in this example
and that an assumption of normality will lead to in-
accurate probability statements.

The last column of Table 2 gives a slightly different
result from the intervals based on the standard normal
and percentile methods. This is a bias-corrected boot-
strap confidence interval that produces more accurate
confidence intervals with small samples (see Efron &
Tibshirani, 1993, pp. 178–188).18 In the first example
with N � 80, the refinement did not make any dif-
ference, but in this case, the bias-corrected interval for
the indirect effect no longer includes zero. With the
skewed distributions of the indirect effect estimates,
the application of the bias-corrected interval method
tends to improve the power of the test of the indirect
effect.

Whereas the conventional analytic methods avail-
able to them led Chen and Bargh (1997) to conclude
that the effect of priming on target behavior was com-
pletely mediated by observer behavior, the analysis
with bootstrap methods and confidence intervals sug-
gests that these data are consistent with partial me-
diation as well as with complete mediation. Figure 7
shows the distribution of the ratio of mediated effects
to total effects, assuming no genuine suppression. It is
clear that the sample size does not allow much closure
to be reached regarding how much of the effect of
priming on target behavior is mediated by observer
behavior. Both the mean and the median of this dis-
tribution are around 0.50, and the bootstrap 95% con-
fidence interval ranges from −0.02 to 1.00. The 90%
interval ranges from 0.05 to 1.00. The best guess at
this point is that about half the effect of the prime on
target hostility is mediated by observer hostility, as
detected by the judges rating the nonverbal behavior,
but complete mediation may also be consistent with

18 The computational details of the bias-correction adjust-
ment are beyond the scope of this article, but, in brief, takes
into account skewness of the bootstrap distribution and the
estimated change in the standard error of the parameter as a
function of the presumed parameter value. The bias-
correction adjustment is not a closed-form equation but
rather an algorithm that makes use of resampling. Efron and
Tibshirani (1993) provided the details as well as evidence of
the improved accuracy of the adjustment. The algorithm is
implemented in the AMOS statistical software system (Ar-
buckle, 1999).

Figure 6. Bootstrap distribution of indirect effect (â × b̂),
Chen and Bargh’s (1997) example. SD � .12; M � .16;
N � 1,000.
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the data. The bootstrap confidence intervals are con-
sistent with MacKinnon et al.’s (1995) warning that
PM has extensive sampling variation when samples
sizes are small, even if the distribution is adjusted so
that P̂M does not exceed 1.00.

Practical Computation of
Bootstrap Distributions

Bootstrap samples are conceptually easy to con-
struct, as they are simply samples with replacement
from an existing data set. However, the practical com-
putation of large numbers of bootstrap samples, and
the repeated application of estimation methods to
these samples, requires special computer programs.
Lockwood and MacKinnon (1998) have shown how
these programs can be written for analyses of media-
tion models using the SAS statistical software (SAS
Institute, 1989), and Efron and Tibshirani (1993) rec-
ommended S-PLUS (StatSci, 1999).

For the substantive researcher who is interested in
mediation models, we recommend the use of the
structural equation packages EQS (Bentler, 1997) and
AMOS (Arbuckle, 1999), which are commonly avail-
able in academic settings. These packages now in-
clude bootstrap options that make the formation of
bootstrap samples and the estimation of results easy to
compute. Annotated examples of programs that cre-
ated the results from Table 1 (EQS) and Table 2
(AMOS) are shown in the appendixes. For both illus-
trations, 1,000 bootstrap samples were created. In the

EQS example, we save the 1,000 sets of estimates,
which can be summarized using any statistical soft-
ware. Examples of SPSS (SPSS Inc., 1999) syntax for
reading the bootstrap estimates, creating the effect-
ratio estimates, and plotting results are also provided
in Appendix B.19 If one is not computing the effect
ratio, then AMOS may be more convenient at this
time. Results are available in one step, and one can
request bias-corrected confidence intervals.

New Recommendations for Analysis of
Mediation Processes

Figure 8 is a schematic representation of our guide-
lines for assessing mediation. It is a revision of Baron
and Kenny’s (1986) and Kenny et al.’s (1998) guide-
lines that explicitly takes into account the strength of
the effect to be mediated (distal vs. proximal) and the
possibility that suppression might be involved. Al-
though not explicit in Figure 8, for Step 4 we suggest
that researchers make use of new statistical tools for
studying relations in mediation/suppression models,
including bootstrap methods for studying variation of
parameter estimates and confidence intervals for rec-
ognizing that small samples yield shades of gray
rather than black-and-white results.

The first step is to think conceptually about the
nature and size of the effect to be mediated. If the
effect can be experimentally induced, it is usually
proximal, and one should be able to demonstrate it by
showing an association of the causal variable X with
the outcome Y. We put this step in a dashed box in
Figure 8 to indicate that the step is not rigidly re-
quired. If, for example, there is good reason to believe
the statistical power to detect X → Y is inadequate,
one may proceed to Step 2. In this case, one would
expect that the confidence interval around the c effect
includes effect sizes that are predicted by the theory
being examined, even if the confidence interval also
includes zero. Our suggestion that Step 1 not be rig-
idly held in investigations of proximal effects should
not take away from the fact that the most convincing
evidence of a causal effect will always follow from
demonstrating that an experimentally manipulated X
has a reliable association with the other variables in
Figure 1.

19 Readers may download these programs and the data set
used in Table 1 from the following Web site: www.psych.
nyu.edu/couples/PM2002.

Figure 7. Bootstrap distribution of effect ratio, Chen and
Bargh’s (1997) example. SD � .33; M � .54; N � 1,000.
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If the X → Y effect is more distal and the magnitude
of the expected effect is small, we recommend pro-
ceeding directly to the second step of Baron and Ken-
ny’s (1986) procedure, rather than risking a Type II
error for the entire mediation system. If the associa-
tion between X and Y can be explained with a model
that involves suppression, then one also proceeds
to the second step of the causal process analysis. As
we noted above, we are not the first to recommend
that Step 1 of Baron and Kenny’s analysis be sus-
pended.20

In addition to the formal statistical tests of effects,
Figure 8 reminds researchers to attend to estimation,
both point estimates and interval estimates. The point
estimates of a, b, c�, and c give important information

20 The reviewers of this article had mixed opinions about
whether any form of Step 1 should be retained. Two be-
lieved it should be dropped completely. Another argued for
retaining the step because it provides protection against al-
ternative causal models, whereby the associations of X and
M and of M and Y are spurious. We believe our suggestion

Figure 8. Schematic decision tree for mediation analysis. The dashed box indicates a step that is recommended but not
required. Solid boxes indicate steps that are strongly recommended.
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about the potency of the mediation,21 and the confi-
dence intervals help to gain perspective on how de-
finitive are the results. The confidence intervals on
these regression coefficients can be computed using
usual normal-theory methods when the variables M
and Y are quantitative, or they can be computed more
generally using the bootstrap methods described
above.

The product of the point estimates of a and b de-
scribes the indirect effect of X on Y through mediator
M, and the confidence interval for this quantity should
be computed using percentile methods applied to the
bootstrap distribution. In many cases, the lower bound
of this confidence bound will exclude zero even if the
total effect of X on Y is not significantly different from
zero. The increased power of this test derives from the
assumption that the mediation model is correct.

If no suppression exists theoretically or empiri-
cally, then Figure 8 recommends that the strength of
the mediation effect be estimated using the ratio of the
indirect effect to the total effect. This quantity is sub-
ject to a large amount of sampling variation, however,
so we also recommend that confidence intervals be
computed using the percentile bootstrap methods. In
most cases, this analysis will lead to conclusions that
have shades of gray rather than being black or white.

Concluding Comments

In this article, we have focused on three-variable
mediation models, in which the relation between a
pair of variables is mediated by a third variable. In
doing so, we made a number of assumptions that de-
serve reiteration. We assumed that the independent
variable, X, and the mediator variable, M, were mea-
sured without error and that the hypothetical causal
sequence X → M → Y was plausible, if not compel-
ling. We also assumed that the relations among the
variables could be represented using linear models.
Even when all of these assumptions are met, we ac-
knowledge that statistical mediation analyses based
on nonexperimental data provide suggestive rather
than definitive evidence regarding causal processes.
We did not consider studies that experimentally ma-
nipulate M, but such designs are worth pursuing if
statistical evidence of mediation is observed.

The bootstrap methods that we recommend for test-
ing indirect effects complement the methods recently
studied by MacKinnon et al. (2002) in extensive
simulations. Although they did not include bootstrap-
based tests in their simulations, they showed that the
usual tests based on large-sample standard errors are
too conservative. They recommended, with caveats,
some methods that use information about the exact
distribution of the products of two normal variables
(Meeker, Cornwell, & Aroian, 1981). The bootstrap
method can be viewed as an approximation of this
exact distribution.

In principle, the bootstrap methods can be general-
ized to mediation analyses that make use of structural
equation methods with measurement models for the
independent, mediator, and outcome variables. Mea-
surement models can be used to adjust for measure-
ment error, and given that measurement error in the

that Step 1 be recommended for proximal effects, but not be
essential for distal effects, will still encourage investigators
of proximal effects to use study designs that have sufficient
statistical power to detect such effects.

21 A reviewer questioned whether it is wise to estimate c�
routinely. The reviewer strongly endorsed Rozeboom’s
(1956) formulation of mediation, whereby the effect of M
on Y would be studied without adjusting for X in instances
when the assumption of complete mediation (i.e.,
X → M → Y ) is warranted. From this perspective, Step 3
would be modified if there is evidence that c� (tested in Step
5) is zero. We agree that if the complete mediation model
can be established definitively then the test of effect b will
be more powerful in a structural model that does not include
c�. As Kenny et al. (1998) have discussed, this increase in
power will be especially apparent when the effect of X on M
is large. However, we resist endorsing a general recommen-
dation that M → Y be tested without adjusting for X, be-
cause this test can be seriously biased whenever partial me-
diation is plausible, whether or not c� is statistically
significant. For example, suppose that in the population
both X and M have medium effects of .30 on Y, but X has a
strong effect of .90 on M. The partial mediation model
would reveal that slightly less than half of the variation goes
through the indirect effect. Assuming complete mediation
would be clearly incorrect, and the biased estimate of the
M → Y effect would be around .57 rather than .30. How-
ever, there would be insufficient power (< 90%) to detect
the X → Y direct effect with these effect sizes unless the
sample size exceeded 400. In this example, investigators
with samples in the 100–200 range would be at risk of
committing a Type II error if they tested the X → Y direct
effect and failing to find significance, dropped the path from
the model. Their conclusion of complete mediation would
be incorrect, and their estimate of the M → Y path would be
strikingly biased. The guidelines in Figure 8 guard against
this error.
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proposed mediator can lead to spurious inferences of
partial mediation, this extension is of great practical
importance. Although these more complex models
may raise additional issues about model fit and con-
vergence, the software discussed in Appendix B can
be readily used to estimate them.

The methods we discuss also generalize to other
structural models besides those shown in Figure 1.
For example, if complete mediation is assumed rather
than tested, one would estimate a model that con-
strains c� in Figure 1 to be zero. Bootstrap methods
can still be used to study the distribution of â × b̂ from
this constrained model. The same methods can also be
used with models in which there are multiple media-
tors. For instance, placement of children in foster care
systems may lead to patterns of adolescent behavior
problems through multiple mediating paths. The cal-
culation of the size of the indirect effect in these cases
is more complicated, and it involves the sum of alter-
native indirect pathways (see Bollen, 1989, pp. 376–
389). Nonetheless, the bootstrap distributions of the
indirect pathways can be calculated just as before.22

The issue of suppression may be more complicated in
a multiple-mediator model, because each mediated ef-
fect is adjusted for the other effects, and these medi-
ating processes may be correlated. Care should be
taken when interpreting the ratio of the total effect
that is mediated if suppression effects are present.

The use of the bootstrap to estimate and to test
direct and indirect effects can help with mediation
problems in which the mediator and outcome vari-
ables are not normally distributed. The two examples
we studied satisfied the usual assumptions that error
distributions are normal, and we noted that the nor-
mal-theory results and the bootstrap gave virtually the
same results for tests of direct effects. If we were
studying mediator variables that were binary or ordi-
nal, then the normal-theory and bootstrap results
might begin to diverge. In these cases, the bootstrap
results are likely to yield more accurate probability
estimates. In the future, we expect that bootstrap
methods will become widely available in general-
purpose statistical software as well as in software for
structural equation models.

The wide applicability of bootstrap methods to
models involving variables that are not normally dis-
tributed does not mitigate the need to justify the speci-
fication of the mediation model. We have assumed
simple linear regression models in our discussion, but
more complicated nonlinear alternatives should be
considered for binary variables (Collins et al., 1998;

Kraemer, Stice, Kazdin, Offord, & Kupfer, 2001).
Bootstrap methods can be used with nonlinear models
as well as the linear models we have considered in our
illustrations.

Because bootstrap methods have many desirable
features, we have argued that they are particularly
useful in studying indirect effects in mediation mod-
els. The improvement of bootstrap-based inference
over normal-theory approximations is most obvious
when one is interested in rejecting the null hypothesis
of no indirect effect. Substantive researchers are not
generally aware that mediated associations can be
shown to be reliable when the simple bivariate corre-
lation is not significant. One reason this fact might not
be widely known is that standard tests, such as So-
bel’s (1982) test, do not fully capitalize on the power
afforded by the intervening variable. By taking into
account the skewed shape of the sampling distribu-
tions of indirect effects, investigators’ use of boot-
strap-based tests is better able to advance a goal of
psychological research, testing theories of mediating
processes.

22 All structural equation programs calculate indirect ef-
fects and large-sample standard errors, and AMOS 4.0 re-
ports the bootstrap distributions of the indirect effects. To
study the bootstrap distribution of indirect effects from mul-
tiple mediator models using EQS, one must compute the
indirect effect estimates in a separate step, such as the SPSS
step shown in Appendix B.

References

Arbuckle, J. L. (1999). AMOS 4 [Computer software]. Chi-
cago: Smallwaters Corp.

Baron, R. M., & Kenny, D. A. (1986). The moderator–
mediator variable distinction in social psychological re-
search: Conceptual, strategic, and statistical consider-
ations. Journal of Personality and Social Psychology, 51,
1173–1182.

Bentler, P. (1997). EQS for Windows (Version 5.6) [Com-
puter software]. Los Angeles: Multivariate Software, Inc.

Bolger, N., Zuckerman, A., & Kessler, R. C. (2000). Invis-
ible support and adjustment to stress. Journal of Person-
ality and Social Psychology, 79, 953–961.

Bollen, K. A. (1987). Total direct and indirect effects in
structural equation models. In C. C. Clogg (Ed.), Socio-
logical methodology (pp. 37–69). Washington, DC:
American Sociological Association.

Bollen, K. A. (1989). Structural equations with latent vari-
ables. New York: Wiley.

SHROUT AND BOLGER440



Bollen, K. A., & Stine, R. (1990). Direct and indirect
effects: Classical and bootstrap estimates of variability.
Sociological Methodology, 20, 115–140.

Carver, R. P. (1978). The case against statistical signifi-
cance testing. Harvard Educational Review, 48, 378–399.

Carver, R. P. (1993). The case against statistical signifi-
cance testing, revisited. Journal of Experimental Educa-
tion, 61, 287–292.

Chan, W., Ho, R. M., Leung, K., Chan, D. K.-S., & Yung,
Y.-F. (1999). An alternative method for evaluating con-
gruence coefficients with Procrustes rotation: A bootstrap
procedure. Psychological Methods, 4, 378–402.

Chen, M., & Bargh, J. A. (1997). Nonconscious behavioral
confirmation processes: The self-fulfilling consequences
of automatic stereotype activation. Journal of Experimen-
tal Social Psychology, 33, 541–560.

Cohen, J. (1988). Statistical power analysis for the behav-
ioral sciences. Hillsdale, NJ: Erlbaum.

Cohen, J. (1994). The earth is round (p < .05). American
Psychologist, 49, 997–1003.

Cohen, J., & Cohen, P. (1983). Applied multiple regression/
correlation analysis for the behavioral sciences (2nd ed.).
Hillsdale, NJ: Erlbaum.

Collins, L. M., Graham, J. W., & Flaherty, B. P. (1998). An
alternative framework for defining mediation. Multivari-
ate Behavioral Research, 33, 295–312.

Conger, R. D., Elder, G. H., Jr., Lorenz, F. O., Conger,
K. J., Simons, R. L., Whitbeck, L. B., et al. (1990). Link-
ing economic hardship to marital quality and instability.
Journal of Marriage and the Family, 52, 643–656.

Davis, J. A. (1985). The logic of causal order. Thousand
Oaks, CA: Sage.

Draper, N. R., & Smith, H. (1998). Applied regression
analysis (3rd ed.). New York: Wiley.

Eagly, A. H., & Chaiken, S. (1993). The psychology of at-
titudes. Fort Worth, TX: Harcourt Brace Jovanovich.

Efron, B. (1988). Bootstrap confidence intervals: Good or
bad. Psychological Bulletin, 104, 293–296.

Efron, B., & Tibshirani, R. (1993). An introduction to the
bootstrap. New York: Chapman & Hall/CRC.

Holland, P. (1986). Statistics and causal inference (with
discussion). Journal of the American Statistical Associa-
tion, 81, 945–970.

Horst, P. (1941). The role of predictor variables which are
independent of the criterion. Social Science Research
Council Bulletin, 48, 431–436.

James, L. R., & Brett, J. M. (1984). Mediators, moderators,
and tests for mediation. Journal of Applied Psychology,
69, 307–321.
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Appendix A

Notes on the Bootstrap Method

Efron and Tibshirani (1993) described the bootstrap as “a
computer-based method for assigning measures of accuracy
to statistical estimates” (p. 10). The usual measure of accu-
racy for statistical quantities such as means, regression co-
efficients, and correlations is the standard error. A standard
error is the expected standard deviation of the estimate if the
estimation study had been repeated a large number of times.
Usually a standard error is estimated from equations that are
derived from a series of assumptions and mathematical op-
erations. The bootstrap can be used to estimate the standard
error using an empirical approach, rather than an explicit
application of a formula.

The bootstrap method involves having a computer pro-
gram generate a series of data sets that are designed to
resemble the ones that would be observed if the estimation
study were repeated many times. Each bootstrap data set is
obtained by sampling (with replacement) from the original
data. Call these data sets bootstrap samples.

For example, suppose N � 8 and the following heights in
inches are observed: original sample: (68, 69, 69, 70, 71, 72,
72, 74). We use this small example to make the steps in-
volved in using bootstrap methods very clear. The statistical
validity of the bootstrap method is best when the sample
size is 20 or more (Polansky, 1999).

Here are 5 bootstrap samples that were created by ran-
domly sampling with replacement from the original sample:

Bootstrap Sample 1: (69, 69, 71, 72, 72, 73, 73, 74)
Bootstrap Sample 2: (68, 68, 69, 69, 70, 70, 71, 72)
Bootstrap Sample 3: (68, 68, 68, 69, 71, 72, 73, 74)
Bootstrap Sample 4: (69, 69, 70, 72, 72, 72, 73, 73)
Bootstrap Sample 5: (69, 70, 71, 72, 72, 72, 73, 74).

Note that the original sample has two instances each of
69- and 72-in. subjects, and the values are more likely than
any other to occur more than once in the bootstrap samples.
However, this tendency is not a certainty. In Sample 3, by
chance the value 68 was chosen three times, and the values

69 and 72 were each chosen once. Note also that the original
sample does not contain someone 73 in. tall, and thus none
of the bootstrap samples have a person of that height.

The mean of the original sample is 70.63, and the estimated
standard error of the mean is 0.706. The means of the bootstrap
samples are 71.63, 69.63, 70.38, 71.25, and 71.63. The stan-
dard deviation of these five values is 0.88, and this is the
bootstrap-estimated standard error, although we would never
use a bootstrap estimate based on only 5 bootstrap samples.

The usual estimate of the confidence interval for the
mean is 70.63 ± (0.71) × (2.37), leading to the bounds
(68.96, 72.29), where 2.37 is the t value corresponding to a
tail area 0.975 and 7 degrees of freedom. As we expect, all
five bootstrap-sample means fall within this range. If we
had constructed 100 bootstrap samples, however, we would
have expected about five sample means to be either less
than 68.98 or greater than 72.29, because it is well-known
that the sample mean is approximately normally distributed.

If we had created 1,000 bootstrap samples, then we could
have inferred the confidence region on the mean without
calculating the standard error and assuming a normal dis-
tribution for the estimate. A percentile estimate of the 95%
confidence interval is computed by ordering the 1,000 boot-
strap-sample means from lowest to highest and marking the
25th out of 1,000 as the lower bound and the 975th out of
1,000 as the upper bound. Formally we call the ith-ordered
estimate �(i), and we choose the confidence bounds to be
�(�) and �(1−�), where � is chosen so that total coverage is
1 − 2�. For the 95% confidence interval, � is .025.

Although the percentile estimates are easy to calculate, it
is known that they tend to be too narrow. Efron and Tib-
shirani (1993, pp. 184–186) described bias-corrected inter-
vals that use bounds (�(�1), �(�2)) instead of the percentile
bounds (�(�), �(1−�)). The values �1 and �2 are defined in a
way that takes into account asymmetry in the distribution of
bootstrap estimates. When the distribution of the bootstrap
estimates is normal, the bias-corrected interval and the per-
centile intervals are virtually the same.

(Appendixes continue)
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Appendix B

Using EQS and AMOS Software to Implement Bootstrap Analyses

To use EQS to carry out the bootstrap analysis, first open the data set in an EQS window, and save it with the *.ESS extension.
Next, run PROGRAM 1 in EQS, such as the one shown below. This program saves 1,000 sets of parameter estimates from
the bootstrap samples in the new file called “M3BOOT.txt”. Finally, the new file is read into an SPSS program (PROGRAM
2), which computes the indirect effect and effect ratio and allows these to be plotted.

Program 1 (EQS)
/TITLE
Bootstrapped analysis of simulated data, OLS
! Comments can be inserted following exclamation points
and ending in semicolons;

/SPECIFICATIONS
DATA = ‘MEDSIM1.ESS’;
VARIABLES = 3; CASES = 80;
METHODS = ls; !Least squares converges more regularly than ML;
MATRIX = RAW;

/EQUATIONS
V2 = + .331*V1 + E2;
V3 = + −.03*V1 + .275*V2 + E3;
!The above equations specify starting values from the full sample.
These speed up the processing time;

/VARIANCES
V1 = .68*;
E2 = 1.1*;
E3 = .93*;
/COVARIANCES
/PRINT
effect = yes;
digit = 3;
linesize = 80;

/SIMULATION
SEED = 6062000;
REPLICATIONS = 1000;
BOOTSTRAP = 80;

! The 4 lines above control the bootstrap. Seed is an arbitrary number that starts the
random number generation. Replications are how many bootstrap samples you want, while
Bootstrap = specifies the size of each bootstrap sample;

/OUTPUT ;
PARM; SE;
DATA = ‘M3BOOT.TXT’;

/END

Program 2 (SPSS)

COMMENT this program reads as input bootstrapped distributions from EQS from ml
estimation of complete mediation simulation example.
COMMENT The estimated coefficients are called Ba, Bb and bc.
data list file = ‘C:\ M3boot.TXT’ fixed records = 5
/1 cndcode 6-9(F) convge 10-13(F)
/2 VarV1 1-16(F) VarE2 17-32(F) VarE3 33-48(F)
Ba 49-64(F) bc 65-80(F) Bb 81-96(F).

compute indir = ba*bb.
compute ratio = indir/(indir+bc).
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COMMENT assuming no true suppression, we define sampling suppression to be instances of
complete mediation.
if (bcprime le 0) ratio = 1.0.
execute.
COMMENT sometimes EQS fails to converge in a bootstrap sample—such instances are set
aside by the following line.
Select if (cndcode le 0).
DESCRIPTIVES
VARIABLES = ba bb bc indir
/STATISTICS = MEAN STDDEV VARIANCE MIN MAX KURTOSIS SKEWNESS .

GRAPH /HISTOGRAM(NORMAL) = indir .
SORT CASES BY indir (A) .
FREQUENCIES
VARIABLES = indir /FORMAT = NOTABLE
/NTILES = 4 /PERCENTILES = 2.5 5 95 97.5
/STATISTICS = ALL /ORDER ANALYSIS .

GRAPH /HISTOGRAM = ratio .
SORT CASES BY ratio (A) .
FREQUENCIES
VARIABLES = ratio /FORMAT = NOTABLE
/NTILES = 4 /PERCENTILES = 2.5 5 95 97.5
/STATISTICS = ALL /ORDER ANALYSIS .

To use AMOS 4.0, first open the data set in an SPSS
window. Choose AMOS from the Analyze menu, and draw
the desired path model. Select “Analysis properties” from
the View/Set menu. Find the “Output” tab, and click on the
box for “Indirect, direct and total effects.” Find the “Boot-
strap” tab, and click on the box for “Perform bootstrap.”
Enter the number of replications (1,000 or more for confi-
dence intervals). Click on the box requesting confidence

intervals. AMOS will provide information about the boot-
strap distribution for all the effects.
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