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1 Introduction
Talk is a useful way to communicate private information in strategic situations, as for-
malized by Crawford and Sobel [10] and Green and Stokey [17]. These early papers
recognized, however, that their equilibrium analysis is generally indeterminate. Models
of cheap-talk communication typically have multiple equilibrium outcomes, including an
uninformative one in which no information is transmitted. A central concern in the lit-
erature has been finding conditions under which communication is effective, that is in
which the predicted outcome involves non-trivial information transmission. We hope this
paper advances the literature on effective communication.

We develop arguments that lead to equilibrium selection in the Crawford and So-
bel [10] (hereafter CS) model. We establish that iterated deletion of interim weakly
dominated strategies selects an outcome with effective communication when such an
outcome exists, for example, when the regularity condition of CS holds. We also show
that best-response dynamics lead to the same selection. These arguments are subtle be-
cause they require a reformulation of the strategic situation in order to work. The paper
presents two different ways to think about the reformulation: one reformulation studies
a game in which the players are restricted to monotonic strategies; the other looks at
learning processes. In the first case, our solution concept involves iterated deletion of
weakly dominated strategies. In the second case, it involves best-response dynamics.

The CS model that underlies our analysis has an informed Sender sending a message
to an uninformed Receiver. The Receiver responds to the message by making a decision
that is payoff relevant to both players. Talk is cheap because the payoffs of the players
do not depend directly on the Sender’s message. CS characterize the set of equilibrium
outcomes in a one-dimensional environment with an “upward bias” conflict of interest:
the Sender prefers higher decisions that the Receiver. CS demonstrate that there is a
finite upper bound, N∗, to the number of distinct actions that the Receiver takes in
equilibrium, and that for each N = 1, . . . , N∗, there is an equilibrium in which the
Receiver takes N actions. In addition, when a technical regularity condition holds, CS
demonstrate that for all N = 1, . . . , N∗, there is a unique equilibrium outcome in which
the Receiver takes N distinct actions, and the ex-ante expected payoff for both Sender
and Receiver is strictly increasing in N . The outcome with N∗ actions is often selected
in applications.

The multiple-equilibria problem arises in three different ways in cheap-talk games.
Typically, some messages are not used in equilibrium. There will often be multiple ways
to specify the Receiver’s behavior off the path of play. This first kind of multiplicity, off-
path indeterminacy, is familiar in games with incomplete information and is generally not
essential. The second kind of multiplicity, message indeterminacy, is that the meaning
of messages is arbitrary. Given any equilibrium, one can generate another equilibrium
by changing the use and interpretation of messages. This kind of problem identifies a
way in which language is arbitrary. The word used to describe the color of a white
house in Paris is blanche and in Warsaw is biały. Predictions are still possible with this
kind of indeterminacy when the different equilibria induce the same relationship between
types and actions. What matters is that French speakers and Polish speakers classify
the same set of houses as “white” (and their audiences understand that) rather than

1



the particular word they use to describe the color. The third type of multiplicity, type-
action indeterminacy, is fundamental. Cheap-talk games typically have an uninformative
equilibrium1 and may have qualitatively different equilibria in which the Receiver takes
at least two different actions with positive probability. It is this type of multiplicity that
we wish to examine, but our approach shows how eliminating the problem of message
indeterminacy can resolve type-action indeterminacy.

Our approach relies on a restriction to monotonic strategies. We assume that there is
an exogenous order on messages and restrict players to strategies that are monotonic with
respect to this order. We view this as a way to incorporate “exogenous meaning” into
communication: players enter the strategic setting with a shared ordering of messages
and it is common knowledge that they will behave in a way that is consistent with this
ordering. The resulting monotonic cheap-talk game has all three kinds of multiplicity,
but monotonic strategies eliminate some message indeterminacy. Our main result is
that combining our monotonicity assumption with an equilibrium refinement solves the
problem of type-action indeterminacy. Under the CS regularity condition, we select the
outcome with the maximum number of actions. As a bonus, we also obtain a selection
of the messages used in equilibrium. That is, our approach also eliminates message
indeterminacy. Only the highest messages are used in the selected equilibrium. We find
it intuitive that the Sender’s upward bias leads to exaggeration.

Key to our analysis is identifying two sequences of strategy profiles. The sequences
are defined by specifying an initial condition and then iterating best responses. One
sequence starts with the highest strategy profile; the other starts with the lowest.2 We
show that these sequences are monotonic in a suitable sense and converge to equilibria.
Furthermore, under the CS regularity condition, the two sequences have a common limit
whose outcome is the CS equilibrium outcome with the maximum number of actions. Our
results on limits of best-response dynamics follow because any sequence of best responses
must be sandwiched between the highest and lowest sequence. Our results on iterated
deletion follow because we can show that strategies larger than the higher limit or lower
that the lower limit must eventually be deleted.

This paper collects the main ideas common to earlier working papers by various
subsets of the authors, namely, Gordon [15], Gordon [16], Kartik and Sobel [20], Lo and
Olszewski [23], Lo [24], and Lo [25]. The working papers contain analyses for other
structures of conflict of interest, and other results that are more general, or simply
different, in certain directions than those presented here. This paper concentrates on
what we view as the most significant findings from the working papers.

The paper proceeds as follows. Section 2 introduces the basic cheap-talk game. Sec-
tion 3 contains a simple example that illustrates how the combination of a restriction to
monotonic strategies and removal of weakly dominated strategies has the power to select
an equilibrium. Section 4 contains some preliminary results for our general analysis, and
Section 5 the main results. Section 6 presents an example that illustrates the proof tech-
nique. Section 7 interprets the main result and connects it to the literature. The proofs

1To be precise, they have many uninformative equilibria when one takes into account the first two
kinds of multiplicity.

2Strategies can be partially ordered under our monotonic strategies restriction.
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are in the appendices.3

2 The Basic Cheap-Talk Model

2.1 The cheap-talk game

We study the following basic cheap-talk game, as in CS. There are two players: the
Sender (S) and the Receiver (R). They respectively have utility functions uS(a, t) and
uR(a, t), where a ∈ R is an action taken by the Receiver and t ∈ [0, 1] is the Sender’s type.
We assume that for j = S,R, uj : R × [0, 1] → R is twice continuously differentiable,
strictly concave in its first argument, and has strictly positive mixed partial derivative.
The Sender’s type is drawn from a strictly positive, continuous density f on [0, 1].

For j = S,R, we assume that maxa∈R uj(a, t) exists and let aj(t) be the unique
maximizer. For t′ < t′′, let

aR(t′, t′′) = arg max
a∈R

∫ t′′

t′
uR(a, t)f(t)dt

and let aR(t, t) = aR(t). We assume that there is an upward bias: aR(t) < aS( t) for all
t. We normalize preferences so that aR(0) = 0 and aR(1) = 1. With this normalization,
actions outside of the unit interval are dominated for R and would not be part of any
equilibrium outcome. We therefore restrict the action set to be [0, 1].

The timing is that the Sender privately learns the type t, sends the Receiver a message
m, and the Receiver then takes an action a. More precisely, let M be a finite set of
available messages. A (pure) strategy for S is a mapping s : [0, 1] → M that associates
with every type t the message s(t). A pure strategy for R is a mapping a : M → R
that associates with every message m an action a(m). Given a strategy profile (s, a) the
payoff of player j is

∫ 1

0
uj(a(s(t)), t)f(t)dt. We denote R’s (pure) strategy set by A and

S’s (pure) strategy set by S.
We impose the following monotonicity restriction. Let N be the number of available

messages, and let the messages be ordered as m1 < · · · < mN . Assume M is linearly
ordered, and denote the order by ≤. A strategy a(·) for R is monotonic if m < m′ implies
that a(m) ≤ a(m′), and a strategy s(·) for S ismonotonic if t < t′ implies that s(t) ≤ s(t′).
The monotonicity restriction permits us to describe strategies in a convenient way. Every
monotonic strategy of the Receiver can be uniquely represented by actions a1 ≤ · · · ≤ aN
such that ai for i = 1, . . . , N is induced by message mi. We will identify a monotonic
strategy of the Sender with cutoffs t0 ≤ t1 ≤ · · · ≤ tN such that t0 = 0 and tN = 1, with
the interpretation that types in the interval (ti−1, ti) send the message mi.

There is a natural partial order on monotonic strategies. For R, (a1, . . . , aN) ≤
(a′1, . . . , a

′
N) if and only if ai ≤ a′i for all i. For S, when strategies are represented by

3Appendix A contains details of the main argument. Appendix B presents an example that demon-
strates that hthe limit of best-response dynamics may depend on the initial condition if our regularity
condition fails. Supplementary Appendix C (not for publication) contains a spreadsheet associated with
an example in Section 6.

3



cutoffs, (t0, . . . , tN) ≤ (t′0, . . . , t
′
N) if and only if ti ≤ t′i for all i. Although these are partial

orders, there exists a largest and smallest strategy for both S and R.
Given a strategy profile (s, a), the associated type-action mapping γ is defined by

γ(t) = a(s(t)). Every monotonic strategy profile uniquely determines the associated
type-action mapping up to the actions induced by the cutoffs.

A monotonic cheap-talk game is derived from the basic cheap-talk game by assum-
ing that players are allowed to play only monotonic strategies. We denote R’s (pure)
monotonic strategy set by A0 and S’s (pure) monotonic strategy set by S0.

The monotonicity assumption is restrictive in the trivial sense that non-monotonic
strategies exist. It is also restrictive in the stronger sense that non-monotonic strategies
may be best responses even if the opponent is restricted to playing monotonic strategies.
Finally, if we allowed for playing mixed strategies, then there would also exist mixtures
of monotonic pure strategies with only non-monotonic best responses. However, the
Sender’s best response to any strictly monotonic strategy of the Receiver must be mono-
tonic, and the Sender always has a monotonic best response to a monotonic strategy
of the Receiver. Similarly, if the Sender plays a monotonic strategy, then the Receiver
has a monotonic best response. In addition, any best response of the Receiver must be
monotonic on the path, but the Receiver may also have a non-monotonic best response
off the path.

Any equilibrium type-action mapping for the original game can be derived from mono-
tonic strategies. To see this, use the result (described in Section 2.2) that any equilibrium
involves a finite partition of the Sender’s types into adjacent intervals. Construct a strat-
egy for the Sender in which the types from higher partition elements send higher messages.
Any best response to this strategy will be monotonic on the equilibrium path. One can
define specific off-the-path actions to preserve monotonicity and support the equilibrium.

2.2 The structure of equilibria

CS demonstrate that there exists a positive integer N∗ such that for every integer 1 ≤
N ≤ N∗, there exists at least one equilibrium in which there are N induced actions,
and moreover, there is no equilibrium that induces strictly more than N∗ actions. Any
equilibrium can be characterized by cutoffs 0 = t0 < t1 < · · · < tN = 1, and actions
a1 ≤ · · · ≤ aN such that

uS(ai+1, ti)− uS(ai, ti) = 0 (1)

for i = 1, . . . , N − 1, and
ai = aR(ti−1, ti) (2)

for i = 1, . . . , N . In such an equilibrium, adjacent types pool and send a common
message. Condition (1) states that the cutoff types are indifferent between pooling with
types immediately below or immediately above. Condition (2) states that R best responds
to the information in S’s message. Except for the specification of the Sender’s behavior at
cutpoints, Conditions (1) and (2) uniquely describe an equilibrium relationship between
types and actions.

CS introduce a regularity assumption that permits them to strengthen the character-
ization of equilibria. For ti−1 ≤ ti ≤ ti+1, let
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V (ti−1, ti, ti+1) = uS(aR(ti, ti+1), ti)− uS(aR(ti−1, ti), ti).

A (forward) solution to (1) of length L is a sequence t0, . . . , tL such that V (ti−1, ti, ti+1) =
0 for 0 < i < L and t0 < t1.

Definition 1 (Regularity Condition). The cheap-talk game satisfies the Regularity Con-
dition (RC) if for any two solutions to (1) of length L, (t0, . . . , tL) and (t′0, . . . , t

′
L) with

t0 = t′0 and t1 < t′1, we have that ti < t′i for all i ≥ 2.

(RC) is satisfied by the leading “uniform-quadratic” example in CS, which has been
the focus of many applications. CS prove that if (RC) holds, then there is exactly one
equilibrium type-action mapping (up to the Sender’s cutoffs) for each N = 1, . . . , N∗,
and the ex-ante equilibrium expected utility for both S and R is increasing in N . These
results provide an argument for the salience of the N∗ equilibrium.

Another argument in support of this equilibrium outcome requires a definition.

Definition 2 (NITS). An equilibrium (a∗, s∗) satisfies the No Incentive to Separate
(NITS) Condition if uS(a∗(m1), 0) ≥ uS(aR(0), 0).

NITS states that the lowest type of the Sender prefers her equilibrium payoff to the
payoff she would receive if the Receiver knew her type (and responded optimally). Chen,
Kartik, and Sobel [8] show that only the (essentially unique) equilibrium type-action
mapping with N∗ actions induced satisfies NITS when (RC) holds. Uniqueness fails only
because type ti is indifferent between messages i and i + 1 for i = 1, . . . , N − 1. From
now on, we drop the word “essentially,” and call such mappings unique.

3 Coordination Game Example
Although our main results concern the basic cheap-talk model, our first example is a
coordination game. This will enable us to present the main ideas in the simplest manner.
Examples in Section 6 are conducted within the basic cheap-talk model, but are more
involved.

There are two types (high and low), two actions (high and low), and two messages
(high and low). The types are equally likely. The Sender and Receiver have common
interests. The players receive a payoff of two if the action matches the type and a payoff
of zero otherwise. The strategic form of the game is given in the following table, where
rows (columns) correspond to Sender (Receiver) strategies.

(H,H) (L,H) (H,L) (L,L)
(h,h) 1, 1 1, 1 1, 1 1, 1
(h,l) 1, 1 0, 0 2, 2 1, 1
(l,h) 1, 1 2, 2 0, 0 1, 1
(l,l) 1, 1 1, 1 1, 1 1, 1
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A strategy for the Sender is a pair (i, j) where the Sender sends message i when her
type is low and j when her type is high. Similarly, the first component in the Receiver’s
strategy is his response to a low message and the second is his response to a high messages.
Hence (l, h) is the Sender strategy that reports a message that matches the state, (h, l)
is the strategy that sends the high message when the state is low and the low message
when the state is high. Similarly, (H,L) is the strategy of the Receiver that responds to
the low message with the high action and the high message with the low action.

The game has an uninformative and ex-ante Pareto inefficient equilibrium in which S
mixes equally between (h, l) and (l, h) and R mixes equally between (H,L) and (L,H).
(There are also inefficient pure-strategy equilibria and other inefficient mixed equilibria.)
There are also two efficient equilibria in which the Sender distinguishes between the states
and the Receiver correctly interprets this information. The mixed-strategy equilibrium
satisfies standard refinements from perfection to strategic stability, although it may seem
intuitively implausible. Our approach is to replace the original game by a game in which
non-monotonic strategies (with respect to the natural ordering on messages, types, and
actions) are not available. The strategic form of the monotonic game is given in the
following table.

(H,H) (L,H) (L,L)
(h,h) 1, 1 1, 1 1, 1
(l,h) 1, 1 2, 2 1, 1
(l,l) 1, 1 1, 1 1, 1

Deleting non-monotonic strategies eliminates some inefficient equilibria, but it does
not eliminate any equilibrium payoffs. However, weak dominance in the monotonic game
selects the (l, h), (L,H) equilibrium, which is efficient. We emphasize that the example
demonstrates why our approach requires both a restriction to monotonic strategies and
an equilibrium refinement. On one hand, weak dominance arguments in the original
game have no power. On the other hand, the monotonic game still has multiple (Nash)
equilibria.

Our subsequent analysis of the basic cheap-talk model has nuances in how weak dom-
inance is applied, but the current example captures an essential idea. Namely, restricting
attention to monotonic strategies eliminates some coordination problems. Without the
restriction, every informative equilibrium type-action distribution can be supported in
multiple ways by permuting the assignment of types to messages. Imposing an order on
messages removes this indeterminacy.

Turning to dynamics, we note that the best-response dynamic does not converge to the
efficient equilibrium for the initial conditions (h, h), (H,H) or (l, l), (L,L). However, the
best-response dynamic converges to the efficient equilibrium for any initial conditions if
we restrict attention to what we call robust best responses: a player’s strategy is a robust
best response to a strategy of the opponent if the player has close best responses to close
strategies of the opponent.

Balkenborg, Hofbauer, and Kuzmics [2, Section 6] and Myerson and Weibull [28,
Example 6] use this coordination example to illustrate the power of refinement arguments.
Both of these papers select an efficient outcome. Balkenborg, Hofbauer, and Kuzmics
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eliminate the Sender’s strategies (h, h) and (l, l) as “weakly inferior” (they are equivalent
to a equal mixture of the other two strategies) and point out the efficient outcomes are the
only locally stable equilibria of a refined best-reply dynamic that avoids these strategies.
Myerson and Weibull show that only the efficient equilibria are settled.4

4 Concepts
Our main results are in Section 5. The first result, Theorem 1, describes the limiting
behavior of certain sequences of best responses. It enables us to provide conditions under
which these sequences converge to an equilibrium in which communication is effective.
The second result, Theorem 2, describes the strategies that survive a procedure of iterated
deletion of weakly dominated strategies. This section develops ideas needed to state and
prove these results.

There are two subtleties with how we apply weak dominance compared to the example
in Section 3. First, we need an iterative procedure, which is described in Section 4.2.
Second, at times we require a modification of weak dominance that we impose at the
interim stage. Section 4.3 introduces the concept of interim weak dominance.

If we start at an equilibrium, then the sequence of best replies remains constant. We
argue, however, that best-reply sequences can be used to select equilibria. To do so, we
must refine the best-reply correspondence. Section 4.1 introduces a refinement that we
use in the proof of Theorem 1. The proof of our dynamic result relies on the observation
that a sequence of strategies generated by taking “refined best replies” is bounded by a
pair of sequences of strategies that we can describe explicitly. We will show that the
same sequence provides bounds for strategies that survive an iterative process of deleting
weakly dominated strategies. Section 4.4 describes the bounding sequences.

4.1 Robust best responses

In our discussion on learning, we will refer to the concept of robust best response. A
strategy s of the Sender is a robust best response to a strategy a of the Receiver if for
every strategy a′ close to a, there is a best response s′ to a′ which is close to s. More
precisely, for every ε > 0 there is a δ > 0 such that if a′ is such that |a′i − ai| < δ for
i = 1, ..., N , then there is a best response s′ to a′ such that |s′i − si| < ε for i = 0, ..., N .
A robust best response a of the Receiver to a strategy s of the Sender is defined similarly.

For example, there are many best responses to the Sender’s strategy (0, 1/2, 1/2, 1),
because message m2 is used with probability 0, and the best response to this message
is not uniquely determined. However, the unique robust best response must prescribe
action aR(1/2) in response to m2, because the best responses to strategies (0, t1, t2, 1) for
t1 < t2 close to 1/2 must prescribe actions close to aR(1/2). More generally, there is a
unique best response of the Receiver to any strategy t0 < t1 < ... < tN . Because the
best response varies continuously with t, there is a unique robust best response of the
Receiver to any strategy of the Sender.

4Settled equilibria are a refinement of the set of (Kalai-Samet [18]) proper equilibria.
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Similarly, any strategy of the Sender is a best response to the Receiver’s strategy
(1/2, 1/2, 1/2). However, the unique robust best response prescribes messagem1 for types
from [0, t1), message m2 for type from t1, and message m3 for types from (t1, 1], where t1
is the type of the Sender for whom 1/2 is the most preferred action. More generally, there
is a unique best response of the Sender to any strategy a1 < a2 < · · · < aN . Because the
best response varies continuously with a, there is a unique robust best response of the
Sender to any strategy of the Receiver.

4.2 Iterated deletion of weakly dominated strategies

Let U j(s, a) for j =S, R be the payoff of player j given the strategy profile (s, a). Con-
sider a game with strategy sets S̃ ⊂ S for S and Ã ⊂ A for R. A strategy s ∈ S̃
weakly dominates a strategy s′ ∈ S̃ if US(s, a) ≥ US(s′, a) for every strategy a ∈ Ã and
US(s, ã) > US(s′, ã) for some strategy ã ∈ Ã; a strategy a ∈ Ã weakly dominates a
strategy a′ ∈ Ã if UR(s, a) ≥ UR(s, a′) for every strategy s ∈ S̃ and UR(s̃, a) > UR(s̃, a′)
for some strategy s̃ ∈ S̃. A general procedure of iterated deletion of weakly dominated
strategies (IDWDS) produces a sequence of sets S̃k and Ãk such that:

1. S̃0 = S0, Ã0 = A0;

2. S̃k is a subset of S̃k−1 obtained by deleting a (possibly empty) subset of S’s weakly
dominated strategies in the game with strategy sets (S̃k−1, Ãk−1);

3. Ãk is a subset of Ãk−1 obtained by deleting a (possibly empty) subset of R’s weakly
dominated strategies in the game with strategy sets (S̃k−1, Ãk−1);

4. The sets S̃∗ =
∞⋂
k=0

S̃k and Ã∗ =
∞⋂
k=0

Ãk are non-empty.

5. There are no weakly dominated strategies in either S̃∗ or Ã∗ in the game with
strategy sets (S̃∗, Ã∗).

The second and third conditions permit the deletion of only some weakly dominated
strategies (and for deletions to be simultaneous). The fourth condition guarantees that
the limit of the process exists. The fifth condition guarantees that the process continues
as long as weakly dominated strategies remain. In general games (beyond our setting),
there may exist no procedure satisfying our conditions (see Lipman [22]), and (S̃∗, Ã∗)
may depend on the order of deletion (see Dufwenberg and Stegeman [12]).

Our extension of IDWDS to games with infinite sets of strategies coincides with that of
Dufwenberg and Stegeman [12]. Alternatively, one may consider procedures that produce
transfinite sequences of sets S̃κ and Ãκ (κ stands here for an ordinal number), or define
sets S̃∗ or Ã∗ in terms of stable sets (see Chen, Long, and Luo [6]).
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4.3 Interim dominance

Our results on iterative deletion of dominated strategies can be formulated by referring
to a different notion of dominance.

Consider a game with strategy sets S̃ ⊂ S for S and Ã ⊂ A for R. A strategy a ∈ Ã
interim weakly dominates a strategy a′ ∈ Ã if for every strategy s ∈ S̃ and message m
used by s with positive probability, strategy a yields a weakly higher payoff than that of
strategy a′, both contingent on the Sender’s types sending message m; in addition, the
payoff of a is strictly higher than that of a′ for at least one strategy of the Sender in S̃
and at least one message m. For the Sender, a strategy s interim dominates a strategy s′
if every type of the Sender weakly prefers s to s′ for every strategy of the Receiver, and
some type strictly prefers s to s′ for some strategy of the Receiver.

For the Receiver interim dominance implies dominance. For the Sender, a strategy
may interim dominate another strategy without weakly dominating the other strategy.
This possibility arises if the interim domination is the result of strictly better perfor-
mance of types whose probability is zero. A strategy may weakly dominate another
strategy without dominating it in the interim sense. This possibility arises if the weakly
dominating strategy fails to respond optimally on a set of types with probability zero.
In addition, weak dominance (for both players) allows for compensating for an inferior
response to one message or of some types by a superior response to another message or
of some other types.

We can modify the definition of IDWDS by replacing weakly dominated by interim
weakly dominated to obtain the concept of IDIWDS.

4.4 Equilibrium Bounds

Our construction uses two sequences of strategy profiles. The sequences consist of best
responses to an initial specification of strategies for S and R. One specification begins
with the lowest possible strategies; the other specification begins with the highest possible
strategies. Given initial conditions, the best response property does not uniquely define
the sequences because best responses need not be unique. We will show, however, that
there is a way to select best responses that guarantee that the lower sequence is increasing
and converges to an equilibrium and the upper sequence is decreasing and converges to
an equilibrium. Furthermore, when (RC) holds, the limit of the lower sequence is equal
to the limit of the upper sequence. To show convergence of the best-response dynamic we
show that any sequence of strategy profiles generated by interim best responses remains
sandwiched between the lower and upper sequence. Hence, whenever the lower and upper
sequences have a common limit, any sequence converges to the same limit. To show that
iterated deletion of strategies selects a particular outcome, we show that strategies that
are less than the lower limit and strategies that are greater than the upper limit are
eventually deleted.

We now describe the lower and upper sequences consistent with the best-response
dynamic. Let

0 = t00 = · · · = t0N−1 < t0N = 1 and 0 = t
0
0 < t

0
1 = · · · = t

0
N = 1,

a01 = · · · = a0N = 0 and a01 = · · · = a0N = 1.
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By induction, let (ak+1
1 , . . . , ak+1

N ) be defined as the interim best response of the Receiver
to strategy (tk0, t

k
1, . . . , t

k
N) of the Sender, and let (ak+1

1 , . . . , ak+1
N ) be the interim best

response of the Receiver to strategy (t
k
0, t

k
1, . . . , t

k
N) of the Sender. These best responses

specify optimal actions contingent on all messages, even the messages that correspond to
degenerate intervals of the Sender’s strategy. Because the interim best responses of the
Receiver are unique, actions (ak+1

1 , . . . , ak+1
N ) and (ak+1

1 , . . . , ak+1
N ) are uniquely defined.

Let (tk+1
0 , tk+1

1 , . . . , tk+1
N ) be a best response of the Sender to strategy (ak1, . . . , a

k
N) of

the Receiver, and let (t
k+1
0 , t

k+1
1 , . . . , t

k+1
N ) be a best response of the Sender to strategy

(ak1, . . . , a
k
N) of the Receiver. Because the Sender has more than one best response to any

strategy of the Receiver such that ai = ai+1 for some i, we must pick among them. For
(tk+1

0 , tk+1
1 , . . . , tk+1

N ), we pick the smallest best response to (ak1, . . . , a
k
N), that is, the best

response such that if (t0, t1, . . . , tN) is another best response of the Sender to (ak1, . . . , a
k
N),

then ti ≥ tk+1
i for i = 0, 1, . . . , N . The smallest best response exists. We pick for tk+1

i the
lowest type that weakly prefers ai to all strictly lower actions in the profile (ak1, . . . , a

k
N).

For (t
k+1
0 , t

k+1
1 , . . . , t

k+1
N ), we pick greatest best response, that is, the best response such

that if (t0, t1, . . . , tN) is another best response of the Sender to (ak1, . . . , a
k
N), then ti ≤ t

k+1
i

for i = 0, . . . , N , except for all i such that ai = ai+1 = 0 when we pick ti = 0. This
requires picking for tk+1

i the highest type that weakly prefers ai to all strictly higher
actions in the profile (ak1, . . . , a

k
N).

We now describe the construction of the sequence of upper bounds in more detail.
First, notice that a11 < 1 and a12 = · · · = a1N = 1; in turn,

t
1
i = t

0
i = 1 (3)

for i = 1, . . . , N and therefore

a2i = a1i (4)

for i = 1, . . . , N . Continuing, t21 is the type that is indifferent between actions a11 and
a12 (t21 = 0 if no such type exists), and t

2
2 = · · · = t

2
N = 1. If all types prefer a12 to a11,

then t21 = 0. Further, a31 < a32 < a33 = · · · = a3N = 1, and t41 is the type that is indifferent
between actions a31 and a32, t

4
2 is the type that is indifferent between actions a32 and a33,

and t43 = · · · = t
4
N = 1. If all types prefer a32 to a31, then t

4
1 = 0. And if all types prefer

a33 to a32, then also t42 = 0. We continue in this fashion. Note that equations (3) and (4)
imply that tk+1

i = t
k
i when k is even and ak+1

i = aki when k is odd. After N − 1 changes
to R’s strategy, we reach a stage k∗ such that the strategy (ak

∗
1 , . . . , a

k∗
N ) has all positive

actions different, and from that moment (that is, for k ≥ k∗ = 2N−3), the Sender’s best
responses to (ak1, . . . , a

k
N) with the property that ti = 0 when ai = ai+1 = 0 are unique.5

Thus, sequences (tki )
∞
k=1, (t

k
i )
∞
k=1, (aki )

∞
k=1 and (aki )

∞
k=1 are well-defined by induction.

Recall now two properties of the basic cheap-talk model:
(i) the Receiver’s optimal action aR(tl, th) given the belief that the Sender’s types

belong to an interval [tl, th] strictly increases in tl and in th;

5Because we assume upward bias, tkN−1 < tkN = 1 and t
k
N−1 < t

k
N = 1 for k > k∗. Therefore, positive

actions will be distinct.
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(ii) for each pair of actions al ≤ ah, if there is a type that is indifferent between
actions al and ah,6 then this type strictly increases in al and in ah.

An inductive proof referring to (i) and (ii) shows that sequences (tki )
∞
k=1, (t

k
i )
∞
k=1,

(aki )
∞
k=1 and (aki )

∞
k=1 are monotonic:

tki ≤ tk+1
i and tki ≥ t

k+1
i

and
aki ≤ ak+1

i and aki ≥ ak+1
i

for all i and k.7 Monotonicity implies convergence, so tki →k t
∗
i , t

k
i →k t

∗
i , aki →k a

∗
i and

aki →k a
∗
i . The limit actions and cutoff strategies are an equilibrium.

5 Results
We now state the two main results of our paper.

5.1 Convergence of best-response sequences

Definition 3. Sequences of strategies (tk)∞k=0 and (ak)∞k=0, where tk = (tk0, . . . , t
k
N) and

ak = (ak1, . . . , a
k
N), are called (interim, robust) best-response sequences if for k = 0, 1, . . .,

strategy ak+1 is the Receiver’s (interim, robust) best response to the strategy tk of the
Sender, and strategy tk+1 is the Sender’s (interim, robust) best response, to the strategy
ak of the Receiver.

The sequence of robust best responses (tki )
∞
k=0 and (aki )

∞
k=0 starting from any initial

conditions (t01, . . . , t
0
N) and (a01, . . . , a

0
N) is sandwiched between (tki )

∞
k=0 and (t

k
i )
∞
k=0, and

(aki )
∞
k=0 and (aki )

∞
k=0, respectively. That is,

tki ≤ tki ≤ t
k
i and aki ≤ aki ≤ aki

for all k and i. These inequalities follow by induction from the monotonicity of the
greatest best responses and the smallest best responses with respect to the opponent’s
strategy. This yields the following result.

Theorem 1. For any robust best-response sequences (tk)∞k=0 and (ak)∞k=0 we have that

t∗i ≤ lim inf
k
tki ≤ lim sup

k
tki ≤ t

∗
i

for i = 1, . . . , N − 1, and

a∗i ≤ lim inf
k
aki ≤ lim sup

k
aki ≤ a∗i

for i = 1, . . . , N .
6For al = ah, we take this to be the type for whom al = ah is the most-preferred action.
7Actually, they are eventually strictly monotonic, except at the lower end, but we will not need this

property.
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In Appendix A, we show that Theorem 1 implies the following corollary.

Corollary 1. Assume N ≥ N∗. If there exists a unique equilibrium type-action mapping
that satisfies NITS, then any robust best-response sequence converges to an equilibrium
with this type-action mapping.

In follows from Claim 2 in Appendix A that the limit equilibrium uses robust best
responses. In addition, any equilibrium using robust best responses in a monotonic cheap-
talk game must satisfy NITS if there are at least N∗ messages. (See Appendix B for the
proof.)

Appendix B also contains an example in which there exist two equilibrium type-
action mappings that satisfy NITS. The example illustrates a general property. When
there are multiple type-action distributions that satisfy NITS, then the limit of a robust
best-response sequence will depend on the initial condition. In particular, if the initial
conditions specify that the highest messages induce the on-path actions of a NITS equi-
librium and all lower messages induce the action 0, then the sequence of robust best
responses is constant.

5.2 Characterization of Iterated Undominated Strategies

We present results parallel to those from the previous section for iterated deletion of
weakly dominated strategies.

Theorem 2. There exists a procedure of iterated deletion of interim weakly dominated
strategies such that the sets S̃∗ and Ã∗ consist of the strategies (t0, . . . , tN) and (a1, . . . , aN)
such that

t∗i ≤ ti ≤ t
∗
i for i = 0, . . . , N and a∗i ≤ ai ≤ a∗i for i = 1, . . . , N . (5)

In every round of deletion in the procedure we use to prove Theorem 2 we eliminate
strategies that are weakly dominated and interim weakly dominated. However, there
may be weakly dominated strategies that satisfy condition (5). Therefore, Theorem 2
does not imply that there exists a procedure of deleting weakly dominated strategies in
which (S̃∗, Ã∗) is (5). Therefore, we do not offer an analogue of Theorem 2 for weakly
dominated strategies. However, the following corollary holds true for both interim dom-
inance and dominance if there exists a unique equilibrium type-action mapping that
satisfies NITS. The corollary follows from Theorem 2 because the uniqueness of NITS
type-action mapping implies that t∗i = t

∗
i for i = 0, . . . , N and a∗i = a∗i for i = 1, . . . , N .

Corollary 2. Assume N ≥ N∗. If there exists a unique equilibrium type-action mapping
that satisfies NITS, then there is a procedure of iterated deletion of weakly dominated and
interim weakly dominated strategies that retains only this type-action mapping. Further-
more, the surviving strategy uses only the highest N∗ messages with positive probability.

Corollary 2 states that IDWDS selects a unique type-action mapping when there
is a unique equilibrium type-action mapping that satisfies NITS. In this mapping, the
Sender “exaggerates” by using only the highest messages. Consequently the combination
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of restriction to the monotonic cheap-talk game and elimination of weakly dominated
strategies resolves message indeterminacy in addition to type-action indeterminacy.

We conjecture, but we have not managed to prove that a result similar to Corollary 2
holds for general IDWDS procedures. It is difficult to show that an arbitrary procedure
eliminates some strategies such that some actions coincide or such that some cutoffs
coincide. An inspection of the proof of Corollary 2 shows that the cases in which agents
have multiple best responses are the only obstacles to obtaining an analogous result for
general IDWDS.

6 Examples

6.1 Convergence of Best-Response Dynamic

The proof of Theorem 1 and Corollary 1 involves constructing sequences of best responses
starting from two extreme initial conditions. If the initial condition is high, then the
resulting sequence monotonically decreases to an outcome that satisfies NITS. If the
initial condition is low, then the resulting sequence monotonically increases to an outcome
that satisfies NITS. In the example, there is only one equilibrium that satisfies NITS.
Hence the two sequences have a common limit. Our result follows because the sequence of
robust best responses starting from an arbitrary initial condition is sandwiched between
the two extreme sequences. However, to illustrate our results we directly analyze in this
subsection the sequences of robust best responses in an example.

Suppose that the Sender’s type is distributed uniformly on interval [0, 1], and the
players’ utilities are: uS(a, t) = −(a− t− b)2 and uR(a, t) = −(a− t)2, where b > 0. In
this case, there is an N∗ ≥ 1 such that for every N ≤ N∗ there exists a unique equilibrium
type-action mapping with N partition intervals (i.e., with N equilibrium actions). There
exist no other equilibrium type-action mapping. For b = 0.05, we have that N∗ = 3, i.e.,
the game has three equilibrium type-action mappings. In the largest of them, the types
from [t∗0, t

∗
1) = [0, 4/30) induce action a∗1 = 2/30, the types from (t∗1, t

∗
2) = (4/30, 14/30)

induce action a∗2 = 9/30, and the types from (t∗2, t
∗
3] = (14/30, 1] induce action a∗3 = 22/30.

Assume the message space consists of three messages, m1 < m2 < m3. Let 0 = t00 ≤
t01 ≤ t02 ≤ t03 = 1 denote the cutoffs of a strategy of the Sender in period 0. That is,
the types from interval (t0i−1, t

0
i ) send message mi in period 0. Let (a01, a

0
2, a

0
3) denote a

strategy of the Receiver in period 0. Suppose that the Sender’s cutoffs and the Receiver’s
actions in period k + 1 are determined by the following equations:

tk+1
i + 0.05− aki = aki+1 − tk+1

i − 0.05, i.e., tk+1
i =

aki+1 + aki
2

− 0.05, (6)

for i = 1, 2,8 and

ak+1
i =

tki−1 + tki
2

, (7)

for i = 1, 2, 3. Recall that we always fix tk0 at 0 and tk3 at 1.

8If aki+1+aki < .1 so that the equation defining tk+1
i has no solution in [0, 1], we set tk+1

i = 0, i = 1, 2.
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Formulas (6)–(7) define best-responses of the players to the strategies of their op-
ponents from period k. The best responses of the Sender are defined by imposing
a specific tie-breaking rule. This guarantees that they are robust. For example, if
ak1 = ak2 = ak3 = 0.5, then any strategy of the Sender is a best response. Our formu-
las imply that the Sender chooses the strategy tk+1

1 = tk+1
2 = 0.45, which is the robust

rest-response. In particular, the type-action mapping of babbling equilibria is the limit
of a constant best-response sequence, but this sequence is not a robust best-responses
sequence.

We show that (tk1)∞k=0 and (tk2)∞k=0 converge by considering two specific initial condi-
tions: (i) t01 = t02 = 0 and a01 = a02 = a03 = 0; (ii) t01 = t02 = 1 and a01 = a02 = a03 = 1. Note
these are not the bounding sequences we defined in Section 4.4. The bounding sequences
must be defined more carefully, taking into account the multiplicity of the Sender’s best
responses when the Receiver’s responses to some messages coincide. However, to obtain
convergence of sequences defined by formulas (6)–(7), it is enough to consider bounding
sequences that are also defined by these formulas. In case (i), since t0i and a0i take the
lowest possible values, so t0i ≤ t1i for i = 1, 2 and a0i ≤ a1i for i = 1, 2, 3. This implies that
the sequences (tk1)∞k=0 and (tk2)∞k=0 and (aki )

∞
k=0 for i = 1, 2, 3 are increasing. We obtain this

from (6)–(7) by induction. So, (tk1)∞k=0 and (tk2)∞k=0 must converge to some t∗1 and t∗2, and
the sequences (aki )

∞
k=0, i = 1, 2, 3, must converge to some a∗i . In addition, tk+1

1 = tk1 = t∗1,
tk+1
2 = tk2 = t∗2, and ak+1

i = aki = a∗i , i = 1, 2, 3, must satisfy (6)–(7). It follows that
t∗1 = 4/30, t∗2 = 14/30, a∗1 = 2/30, a∗2 = 9/30, and a∗3 = 22/30.

In case (ii), the sequences (tk1)∞k=0 and (tk2)∞k=0 and (aki )
∞
k=0 for i = 1, 2, 3 are decreasing,

but they also converge to t∗1 = 4/30, t∗2 = 14/30, a∗1 = 2/30, a∗2 = 9/30, and a∗3 =
22/30. Therefore, (tk1)∞k=0 and (tk2)∞k=0 for arbitrary initial conditions (t01, t02) and (a01, a

0
2, a

0
3)

converge to t∗1 = 4/30, t∗2 = 14/30, a∗1 = 2/30, a∗2 = 9/30, and a∗3 = 22/30, because they
are “sandwiched” between the sequences from case (i) and case (ii). The sequences (tk1)∞k=0

and (tk2)∞k=0 may not be monotonic in general. For example, if t01 = 0.25 and t02 = 0.75, and
(a01, a

0
2, a

0
3) is the Receiver’s best response to this strategy of the Sender, then t01 < t11 but

t11 > t21 > t31 > · · · , while t02 > t12 > t22 > t32 > · · · . Therefore, showing their convergence
requires our slightly more subtle argument.

For the general case with possibly type-dependent biases, sequences (tk1)∞k=0, (tk2)∞k=0,
and (aki )

∞
k=0 defined as in cases (i) and (ii) are monotonic, and their limits induce equi-

librium type-action mappings. Also, the sandwich argument applies. This does not
guarantee the convergence of sequences (tk1)∞k=0, (tk2)∞k=0, and (aki )

∞
k=0 for arbitrary initial

conditions, because the two limit equilibrium type-action mappings: that from case (i)
and that from case (ii), may not coincide.9 However, if the number of available messages
is N∗ or higher, and there is only one equilibrium type-action mapping that satisfies
NITS (e.g., (RC) is satisfied),10 then these limit mappings must coincide, and so (tk1)∞k=0,
(tk2)∞k=0, and (aki )

∞
k=0 for arbitrary initial conditions converge to the cutoffs and actions of

9Olszewski [30] shows that (tk1)
∞
k=0, (t

k
2)
∞
k=0, and (aki )

∞
k=0 actually converge for an arbitrary set of

initial conditions. However, the initial conditions may affect the limit equilibrium type-action mapping.
10These conditions are satisfied in the present example.
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this equilibrium.11, 12

6.2 Iterated Deletion of Weakly Dominated Strategies

We will now use the uniform-quadratic example to illustrate the proofs of Theorem 2 and
Corollary 2. The central idea is that the strategies such that the cutoff ti is smaller than
tki or such that the cutoff ti is greater than t

k
i defined in Section 4.4 are weakly dominated

and are eventually deleted. So are the strategies such that some actions are smaller than
aki or such that some actions are greater than aki . In the example, all strategies that we
delete will be interim weakly dominated and weakly dominated. For simplicity, we will
refer to them as dominated.

The cutoffs t00 = t01 = t02 = 0 and t03 = 1 determine a monotonic strategy of the Sender.
The strategy that responds with actions a11 = a12 = 0 and a13 = 0.5 is a best response
of the Receiver to this strategy of the Sender. Any strategy such that a3 < 0.5 = a13
is weakly dominated by the strategy (a1, a2, a13). This follows because no matter what
the strategy (t0, t1, t2, t3) of the Sender, the Receiver weakly prefers playing action 0.5
to playing any action a < 0.5 in response to message m3 (i.e., the message sent by the
types from (t2, t3] = (t2, 1]), and she strictly prefers playing 0.5 to any a < 0.5 if t2 < 1.
Denote the set of dominated strategies described in this paragraph as DR

1 .
The cutoffs t01 = 0 and t

0
1 = t

0
2 = t

0
3 = 1 also determine a monotonic strategy of

the Sender. The strategy that responds with actions a11 = 0.5 and a12 = a13 = 1 is a
best response of the Receiver to this strategy of the Sender. Any strategy such that
a1 > 0.5 = a11 is weakly dominated by the strategy (a11, a2, a3). Indeed, no matter what
the strategy (t0, t1, t2, t3) of the Sender, the Receiver weakly prefers playing action 0.5 to
playing any action a > 0.5 in response to message m1, and she strictly prefers playing
0.5 to any a > 0.5 if t1 > 0. Denote the set of dominated strategies described in this
paragraph as DR

1 . Note that there may exist other strategies of the Receiver (i.e., not
belonging to DR

1 ∪D
R

1 ) that are weakly dominated, about which we make no claim.13

At this point, we have illustrated how IDWDS may remove strategies of the Receiver.
We have established a non-trivial lower bound (a11, a12, a13) and a non-trivial upper bound
(a11, a12, a13) on the retained strategies of the Receiver. It is plausible to conjecture that
iterating the process will eliminate more strategies. In fact, we use the fact that we
have deleted some of the Receiver’s strategies to impose non-trivial lower and upper
bounds on the Sender’s strategies. Specifically, we can delete (as weakly dominated) all
strategies of the Sender with some coordinate lower than the corresponding coordinate
of (t20, t21, t22, t23) or some coordinate higher than the corresponding coordinate of (t

2
0, t

2
1,

t
2
2, t

2
3). That is, we can delete any strategy of the Sender with a coordinate that is lower

(respectively, higher) that the corresponding coordinate of the best response to the lower
(respectively, upper) bound on the Receiver’s strategies. These bounds on the Sender’s

11In Appendix B, we give an example in which two equilibria satisfy NITS, and our result no longer
holds true.

12By Proposition 1 in Chen et al. (2008), all equilibria with N∗-interval partition satisfy NITS, but
there may exist more than one such equilibrium.

13Indeed, it can be checked that a1 = a2 = 0, a3 = 1 is dominated by a1 = a2 = 0.1, a3 = 0.9.
However, the argument is not as obvious as for the strategies such that a3 < 0.5 or a1 > 0.5.
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strategies make tighter bounds on the Receiver’s strategies. We can delete (as weakly
dominated) all strategies of the Receiver with a coordinate that specifies an action less
than the best response to (t20, t21, t22, t23) or with a coordinate that specifies an action
greater than the best response to (t

2
0, t

2
1, t

2
2, t

2
3). And we can continue in this fashion to

obtain tighter and tighter bounds.
Formally, t21 = 0 and t22 = 0.2 (with t20 = 0 and t23 = 1) is a best response of the Sender

to a11 = a12 = 0 and a13 = 0.5, and if the Receiver plays only strategies (a1, a2, a3) from
the complement of DR

1 , any strategy (t0, t1, t2, t3) such that t2 < t22 is weakly dominated
by the strategy (t0, t1, t

2
2, t3). This follows because types t < 0.2 weakly prefer actions a2

to a3 ≥ max{0.5, a2}, and strictly so if a2 < 0.5. Thus, types t < 0.2 will never induce
action a3. Denote the set of dominated strategies described in this paragraph as DS

2 .
Similarly, t21 = 0.7 and t

2
2 = 1 is a best response of the Sender to a11 = 0.5 and

a12 = a13 = 1, and if the Receiver plays only strategies (a1, a2, a3) from the complement
of DR

1 , any strategy (t0, t1, t2, t3) such that t1 > t
2
1 is weakly dominated by the strategy

(t0, t
2
1, t2, t3). Denote the set of dominated strategies described in this paragraph as DS

2 .
Again, there are other weakly dominated strategies of the Sender (which are not in
DS

2 ∪D
S

2 ) about which we make no claim.
We can generalize this argument to obtain ascending sequences of dominated strate-

gies DR
k and DR

k for odd k and DS
k and DS

k for even k.14 The argument uses the equi-
librium bounds (aki )

∞
k=0, (aki )

∞
k=0, i = 1, 2, 3, and (tki )

∞
k=0, (t

k
i )
∞
k=0, i = 1, 2 constructed in

Section 4.4.
At stage k of the process, (i) every strategy (a1, a2, a3) such that ai < aki for at least one

i is weakly dominated by the strategy (max{a1, ak1}, max{a2, ak2}, max{a3, ak3}), provided
that the Sender is restricted to playing strategies such that ti ≥ tk−1i for all i.15 Similarly,
(ii) every strategy (a1, a2, a3) such that ai > aki for at least one i is weakly dominated
by the strategy (min{a1, ak1},min{a2, ak2}, min{a3, ak3}),16 provided that the Sender is
restricted to playing strategies such that ti ≤ t

k−1
i for all i. The inductive argument is

analogous to that for k = 1. Denote the set of strategies described in (i) and (ii) as DR
k

and DR

k , respectively. Note that D
R
k−2 ⊂ DR

k and DR

k−2 ⊂ D
R

k , because sequences (aki )
∞
k=1,

i = 1, 2, 3, are increasing, and sequences (aki )
∞
k=1, i = 1, 2, 3, are decreasing.

The strategy of the Sender given by tk1 and tk2 is a best response of the Sender to
(ak−11 , ak−12 , ak−13 ), and if the Receiver plays only strategies (a1, a2, a3) from the comple-
ment of DR

k−1, every strategy (t0, t1, t2, t3) such that ti < tki for at least one i is weakly
dominated by the strategy given by (t0, max{t1, tk1}, max{t2, tk2}, t3). Similarly, the strat-
egy of the Sender given by tk1 and tk2 is a best response of the Sender to (ak−11 , ak−12 , ak−13 ),
and if the Receiver plays only strategies (a1, a2, a3) from the complement of DR

k−1, every
strategy (t0, t1, t2, t3) such that ti > t

k
i for at least one i is weakly dominated by the

strategy (t0, min{t1, t
k
1}, min{t2, t

k
2}, t3). The inductive argument is analogous to that

for k = 2. Denote the set of dominated strategies described in this paragraph as DS
k and

14Recall that t
k+1
i = t

k
i and tk+1

i = tki when k is even and ak+1
i = aki and ak+1

i = akiwhen k is odd.
Hence we do not delete R’s strategies when k is even or S’s strategies when k is odd.

15Note that (max{a1, ak1}, max{a2, ak2}, max{a3, ak3}) /∈ DR
k−2 ∪D

R

k−2.
16Note that (min{a1, ak1},min{a2, ak2},min{a3, ak3}) /∈ DR

k−2 ∪D
R

k−2.
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D
S

k . Again, DS
k−2 ⊂ DS

k and DS

k−2 ⊂ D
S

k by the monotonicity of sequences (tki )
∞
k=1 and

(t
k
i )
∞
k=1.
Because (tki )

∞
k=0 and (t

k
i )
∞
k=0 converge to t∗i , and (aki )

∞
k=0 and (aki )

∞
k=0 converge to

a∗i for i = 1, 2, 3, only the largest equilibrium belongs to the complement of the sets⋃
k odd

(DR
k ∪ D

R

k ) and
⋃

k even
(DS

k ∪ D
S

k ). The largest equilibrium cannot be deleted under

this or any other procedure of iterated deletion of weakly dominated strategies, because
each equilibrium action a∗i , i = 1, 2, 3, is the Receiver’s unique best response to message
mi given the Sender’s equilibrium strategy, and the Sender’s equilibrium strategy is the
unique best response to the Receiver’s equilibrium strategy.

The discussion thus far leaves several issues unresolved. What forces lead the one- and
two-interval equilibria to be deleted when there are three messages? What happens when
there are more than three messages? What happens when there are only two messages?
(How) do the arguments depend on the order of deletion of weakly dominated strategies?

Continue to think in terms of the deletion process that we have outlined. Assume that
there are more than three messages. Arguments analogous to those for three messages
imply that the only type-action mapping left under our IDWDS procedure would have
a∗i = 0 and t∗i = 0 except the three highest i’s. No type of the Sender would choose a
message that induces action 0, because the three-interval equilibrium satisfies the NITS
condition. In contrast, the one- and two-interval equilibria do not satisfy NITS. In
particular, if a two-interval equilibrium were to survive with three (or more) available
messages, then the Receiver’s equilibrium responses would have to be 0, 2/10 and 7/10.
Because NITS fails for the two-interval equilibrium, type 0 prefers action 0 to action
0.2. This property is key to our argument. We can show that if there is an unused
message, then all lower messages are unused. But then any surviving equilibrium must
satisfy NITS. Therefore, provided that there are at least N∗ messages, only equilibria
that satisfy NITS can survive.

Naturally, the process could not converge to the largest equilibrium if N < N∗. In
this case, we can show that when the (RC) holds, the only type-action mapping left under
our IDWDS procedure would be the (unique) equilibrium type-action mapping with N
distinct actions.

The question of how the arguments depend on the order of deletion seems more
involved. We will address this question in a companion paper.

7 Discussion
The literature contains different theoretical arguments that suggest why, under upward
bias, the equilibrium with N∗ actions is salient. Under their regularity condition, CS
demonstrate that there is an essentially unique equilibrium type-action mapping with
N∗ actions and that, under some conditions, this equilibrium is ex ante preferred to all
other equilibria by both the Sender and the Receiver.

Mensch [26] notes that monotonicity restrictions in cheap-talk games can lead to
the kind of selection that we describe. Rather than impose monotonicity of strategies,
Mensch imposes a monotonicity condition on off-path beliefs. This condition directly
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implies that the Receiver must respond to unsent messages with actions strictly lower
than those on equilibrium path.

Milgrom and Roberts [27] and Vives [34] study the class of supermodular games
introduced by Topkis [32]. In a supermodular game, each player’s strategy set is partially
ordered and there are strategic complementarities that cause a player’s best response
to be increasing in opponents’ strategies. Milgrom and Roberts [27] demonstrate that
supermodular games have a largest and smallest equilibrium and that these extreme
equilibria can be obtained by iterating the best-response correspondence. Our argument
uses similar techniques. There are two differences. Our game is not a supermodular
game. In particular, it does not satisfy the increasing difference condition of Milgrom
and Roberts. In addition, Milgrom and Roberts study the implications of deletion of
strictly dominated strategies. Our analysis uses weak dominance. Sobel [31] shows how
Milgrom and Roberts’s general arguments extend to a broader class of games and a more
restrictive solution concept. He points out that the monotonic cheap-talk game satisfies
a weak form of supermodularity that makes it possible to bound the set of strategies that
survive deletion of weakly dominated strategies using arguments similar to ours. Sobel
does not provide conditions under which the process leads to a unique prediction.

Words have commonly accepted meanings. When there are no conflicts of interest,
it is natural to assume that agents will use words in conventional ways. In strategic
situations, however, sophisticated agents will not take words at face value. Standard
models of cheap talk abstract from the conventional meaning of words in order to focus
on strategic problems. A limitation of this approach is that meaning is determined
completely endogenously. An equilibrium type-action mapping determines the minimum
number of distinct messages that the Sender must use, but does not specify which message
is associated with which action. If there is to be a connection between the equilibrium
use of messages and exogenous meaning, then we must impose additional assumptions.
The literature has approached this issue in several ways.

Farrell [13] introduced the first attempt to refine the equilibrium set in cheap-talk
games. Farrell’s notion of neologism-proof equilibrium models the idea that messages
have commonly accepted meanings and that players are able to use these statements
provided that they were consistent with strategy constraints. This general idea does
refine the set of equilibria in cheap-talk games, but lacks general existence properties.17

Chen [7] and Kartik [19] assume that the message space is equal to the type space,
which suggests a natural correspondence between types and messages. They make this
connection operational by modifying the game. Chen assumes that with positive prob-
ability the Sender sends a message equal to her type (and with positive probability the
Receiver interprets the message literally). Kartik assumes that the Sender has a cost of
“lying.” These perturbations create an exogenous meaning for messages. In these models,
the limits of equilibria in monotonic strategies as the perturbations vanish converge to
an equilibrium that satisfies NITS.18 Furthermore, the limit equilibrium involves the use
of “inflated” messages. Hence these arguments are alternative ways to make the same
selection that we make. Our result imposes the monotonicity condition directly on the

17In particular, typically no equilibrium is neologism-proof in the uniform-quadratic special case of
the CS model.

18Chen, Kartik, and Sobel [8] introduce the NITS criterion, which we described in Section 2.
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game and makes a selection without perturbations.
Dilmé [11] also provides an argument that selects equilibrium outcomes with com-

munication. Dilmé studies cheap-talk games in which payoffs are perturbed. He then
looks for equilibria of the underlying game that are robust, where a robust equilibrium is
close to some equilibrium in every nearby game. He shows that in games with a upward
bias satisfying the standard regularity condition, only the equilibrium with the maximal
number of actions induced is robust. He extends this result to more general cheap-talk
games. Dilmé’s selection generally coincides with the outcomes we select.19 His ap-
proach has a superficial similarity to Chen, Kartik, and Sobel [8, Section 4.4], in that
both operate by perturbing payoffs. Chen, Kartik, and Sobel study a particular kind of
signaling cost introduced in Kartik [19] and impose an equilibrium refinement (restric-
tion to monotonic strategies), while Dilmé uses the freedom to specify signaling costs to
attain a selection result. Dilmé approach is also related to solution concepts like strategic
stability (Kohlberg and Mertens [21]) or truly perfect equilibria (Van Damme [33]) that
require robustness with respect to a large family of perturbations. In addition to reach-
ing similar conclusions, the source of Dilmé’s results is similar to ours. Both approaches
exploit the fact that there are a limited number of specifications of off-path behavior that
are consistent with equilibrium. For example, in a cheap-talk model in which the Sender
is upward biased, equilibrium requires that off-path actions either agree with on-path
actions or are strictly lower than the lowest on-path action. Furthermore, when a regu-
larity condition holds, only the equilibrium with the maximal number of actions induced
can be supported using low off-path responses. Dilmé’s argument, like ours, operates by
showing that some messages must lead to low off-path actions.

Forges and Sémirat [14] study a finite cheap talk game with upward bias. They
examine general versions of the following procedure: Start with the finest partition.
Let Receiver best reply. Find the highest type, if any, that prefers the action of a
higher partition element to the action of its own partition element. Move this type
to the next highest partition. Continue. They show that the limit is an undefeated
equilibrium in the sense of Matthews, Okuno-Fujiwara, and Postlewaite. Similar to us,
the authors present an adjustment process that converges to the “largest” equilibrium for
some initial condition. The studies differ because they make different assumptions about
the cardinality of the type space. Restricting to a finite type space allows Forges and
Sémirat to start with an initial condition that is fully revealing. Forges and Sémirat focus
on adjustment processes in which some types change to better replies (but adjustments
are typically not best replies to the opponent’s previous strategy). The processes in Forges
and Sémirat start with a particular initial condition and always converge to the largest
equilibrium. In our model, the largest equilibrium always survives iterated deletion of
weakly dominated strategies and is the limit of best response dynamic from some initial
conditions.

In the context of CS games where the sender has an upward bias, Gordon [16] studies
a selection from the composed best response dynamics, defined directly on the set of
interval partitions outcomes with any finite number of intervals, without keeping track
of messages. Under regularity conditions, the only equilibrium that is stable for this

19Dilmé does not resolve message indeterminacy.
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dynamics is the one with the maximal number of intervals. Theorem 1 and Corollary
1 generalize this result by showing that convergence is in fact global. Gordon [16] also
obtains results on local stability of equilibria for other biases.

Antić and Persico [1] study a game in which the players make a costly investment that
can alter ideal points prior to playing a cheap-talk game. They study equilibria of the
two-stage game that satisfy a forward-induction refinement. A fixed cheap-talk game can
be viewed as a two-stage game in which players face infinite costs associated with chang-
ing their biases. Antić and Persico identify conditions on the underlying cheap-talk game
and the investment-cost function that imply that only an outcome that satisfies NITS
is the limit of refined equilibria of the two-stage game as the investment costs grow to
infinity. This argument selects the same type-action mapping as Chen [7] and Kartik [19]
by examining limits of equilibria, but the logic of the arguments appears to be differ-
ent. Chen and Kartik perturb payoffs, while Antić and Persico perturb strategy spaces.
Furthermore, Chen and Kartik’s selection, like ours, resolves the message-indeterminacy
problem while Antić and Persico do not.

Clark and Fudenberg [9] introduce an equilibrium refinement (justified communication
equilibrium) for signaling games with both cheap and costly signals. Justified commu-
nication equilibria are stable outcomes of learning processes. Assuming that Receivers
trust cheap-talk messages initially, they show that these messages must satisfy off-path
credibility conditions in stable outcomes. They provide conditions under which cheap-
talk messages influence equilibrium outcomes in interesting classes of signaling games.
Justified communication equilibria coincide with perfect Bayesian equilibria in cheap-talk
games.

Blume [3] and [4] propose refinements for finite cheap-talk games based on Kalai and
Samet’s [18] concept of persistent equilibrium. In particular, Blume [4] demonstrates
that these perturbations to the Sender’s messages determine the relationship between
types and messages in the equilibria selected by his refinement. These perturbations,
like the initial conditions in our dynamic arguments, solve the message-indeterminacy
problem and select informative equilibria in games with partial common interest.

Blume [5] introduces a concept of “language equilibrium” in cheap-talk games. He
takes as given a distinguished Receiver strategy, called a pre-existing language. Given a
cheap-talk game and a pre-existing language, he constructs games that use a subset
of the strategy set of the original game by iterating best replies to the pre-existing
language and then judiciously adding certain strategies to the resulting limit. He calls
equilibria of these games language equilibria and establishes their existence. Similar to
our approach, language equilibria resolve message indeterminacy. Blume also shows that
in finite versions of the CS setting, language equilibria feature language inflation.

Olszewski [29] investigates the stability of equilibria in cheap-talk game with respect
to the introduction of new messages and shows through examples that this idea desta-
bilizes “implausible” equilibria. The initial conditions of our adaptive processes act like
new messages do in Olszewski’s paper. Hence the approaches share the feature of in-
vestigating conditions under which the introduction of novel interpretations of messages
(either through the addition of new message that the Receiver interprets randomly as in
Olszewski or a rich initial condition that the Receiver responds to optimally as in our
paper) and adaptive dynamics can select equilibria.
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Lo [24] imposes restrictions on the set of strategies available to agents in a discrete
cheap-talk game and then studies the outcomes that survive deletion of weakly dominated
strategies.20 Like Lo, we impose restrictions on strategies and study the implications
of IDWDS. Our results differ from hers because we impose only the restrictions that
messages are linearly ordered, that higher sender types send weakly higher signals and
that the receiver takes weakly higher actions for higher signals. These restrictions do not
eliminate any equilibrium outcomes of the original game. Lo makes further restrictions
on the strategy space and shows that these can actually lead to outcomes that are not
equilibria of the original game.

There are several criticisms of IDWDS. It is well known that, unlike deletion of
strongly dominated strategies, the order of deletion may matter. In some games with
large strategy spaces, equilibrium may fail to exist in weakly undominated strategies.21

The process of eliminating weakly dominated strategies may introduce new equilibria. It
also leads to strong predictions that are not behaviorally accurate in common settings
(like the centipede game).

Some of the technical problems with IDWDS may hold in our setting, but we con-
jecture a selection result independent of the order of deleting strategies that are interim
weakly dominated.

Appendix A (Proofs)
Corollary 1. Assume N ≥ N∗. If there exists a unique equilibrium type-action mapping
that satisfies NITS, then any robust best-response sequence converges to an equilibrium
with this type-action mapping.

Proof. We first state a property of the limit equilibria (a∗, t∗) and (a∗, t
∗
) that were

defined in Section 4.4.

Claim 1. No two messages induce the same action a > 0 in equilibrium (a∗, t∗), and no
two messages induce the same action a > 0 in equilibrium (a∗, t

∗
).22

Proof. We prove the result for (ā∗, t
∗
). The same argument applies to (a∗, t∗). Suppose

that action āi > 0. Because āki ≥ āi for all k and āki = aR(t
k−1
i , t

k
i ), there exists a δ > 0

such that tki > δ for all k. By construction, uS(āki , t
k+1
i ) = uS(āki+1, t

k+1
i ). It follows that

aS(t
k+1
i ) ∈ (āki , ā

k
i+1). Furthermore,

āki = aR(t
k
i−1, t

k
i ) ≤ aR(t

k
i ) ≤ aR(t

k
i , t

k
i+1) ≤ āki+1.

Because aS(t) > aR(t) for all t, there exists an ε > 0 such that uS(t)− uR(t) > ε for all
t ∈ [0, 1]. It follows that if aR(t

k
i ) ∈ [āki , ā

k
i+1] and aS(t

k+1
i ) ∈ (āki , ā

k
i+1), for all k and the

20Lo [25] applies similar arguments to study cheap-talk extensions of games with complete information.
21A simple example is a first-price auction in which two surplus-maximizing agents bid for an item

with known, common value. The only equilibrium of the game involves both players bidding the common
value, but this strategy is weakly dominated by bidding less.

22If N > N∗, then there exist multiple messages that induce action a = 0. No message can induce the
action a = 1 because we assume an upward bias.
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sequence (āk, t
k
) converges, then there exists K such that āki+1 − āki > ε/2 for k ≥ K.

Because ε is independent of k, ā∗i+1 > ā∗i . �

WhenN ≥ N∗, Claim 1 implies that the equilibria t∗ = (t∗0, . . . , t
∗
N), a∗ = (a∗1, . . . , a

∗
N),

and t∗ = (t
∗
0, . . . , t

∗
N), a∗ = (a∗1, . . . , a

∗
N) must satisfy NITS. This is so because either some

messages induce action zero, or all messages induce positive actions. In the former case,
NITS is satisfied because the Sender has the option of inducing action zero, but no type
of the Sender chooses this option. In the latter case, N = N∗ and NITS is satisfied by
Proposition 1 in Chen, Kartik, and Sobel [8].

Thus, if there is a unique equilibrium that satisfies NITS, then t∗ = t
∗ and a∗ = a∗.

This yields Corollary 1 by Theorem 1, because the sequences of best responses (tki )
∞
k=0 and

(aki )
∞
k=0 starting from any initial conditions (t00, . . . , t

0
N) and (a01, . . . , a

0
N) are sandwiched

between (tki )
∞
k=0 and (t

k
i )
∞
k=0, and (aki )

∞
k=0 and (aki )

∞
k=0, respectively. �

We note a consequence of Claim 1 that we use in the proof of Corollary 2.

Claim 2. If i ≤ N −N∗, then t∗i = t∗i = 0.

Proof. If R plays strategy a in an equilibrium that satisfies NITS, upward bias implies
that either ai is equal to an action that is induced with positive probability or is strictly
less than all actions induced with positive probability. We know that a∗ and a∗ are actions
from equilibria that satisfy NITS. Furthermore, no two messages induce the same positive
action in equilibrium. Also at most N∗ actions are induced. The remaining messages
must therefore induce actions lower than the action induced with positive probability.
By monotonicity, the lowest N −N∗ actions are induced with probability zero. �

Theorem 2. There exists a procedure of iterated deletion of interim weakly dominated
strategies such that the sets S̃∗ and Ã∗ consist of the strategies (t0, . . . , tN) and (a1, . . . , aN)
such that

t∗i ≤ ti ≤ t
∗
i for i = 0, . . . , N and a∗i ≤ ai ≤ a∗i for i = 1, . . . , N . (5)

Proof. We need to describe a procedure that in every round eliminates interim weakly
dominated strategies and retains only the strategies between the equilibrium bounds
defined in Section 4.4. Our procedure will eliminate all strategies other than the strategies
such that:

ti ≤ t
∗
i and ai ≤ a∗i , i = 1, . . . , N. (8)

An analogous procedure eliminates all strategies other than the strategies such that:

ti ≥ t∗i and ai ≥ a∗i , i = 1, . . . , N. (9)

By applying the two procedures simultaneously, we obtain a procedure that retains
only the strategies between the equilibrium bounds.

We will first describe a procedure that eliminates some strategies that may not weakly
dominated. For these strategies there will exist strategies which yield a weakly higher
payoff against any strategy of the opponent, but which not necessarily yield a strictly
higher payoff against some strategy of the opponent. We will point out the place in which
strategies that are not weakly dominated are eliminated, and then we will describe a more
involved procedure that in every round eliminates interim weakly dominated strategies,
and retains only the strategies between the equilibrium bounds defined in Section 4.4.
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Lemma 1. No strategy of the Sender that satisfies the first parts of (8) and (9), and
no strategy of the Receiver that satisfies the second parts of (8) and (9) can be interim
dominated when the opponent can use all strategies satisfying these two conditions.

This will show that the strategies satisfying (8) and (9) are the only elements of sets
S̃∗ and Ã∗ for our IDIWDS procedure.

Proof. We will prove Lemma 1 for the Sender’s strategies; the argument is analogous
for the Receiver’s strategies. Take any (t0, . . . , tN) that satisfies the first parts of (8)
and (9). If t∗i > 0 for some i, then ti is indifferent between actions ai < ai+1 for some
(a1, . . . , aN) that satisfies the second parts of (8) and (9). Indeed, t∗i ≤ ti weakly prefers
a∗i+1 to a∗i ,23 and t∗i is indifferent between a∗i and a∗i+1. Because uS(·) has strictly positive
mixed partial, this implies that ti weakly prefers a∗i+1 to a∗i and a∗i to a∗i+1. Thus, by the
intermediate value theorem, there exist a convex combination of

(
a∗i , a

∗
i+1

)
and

(
a∗i , a

∗
i+1

)
,

denoted by (ai, ai+1) such that ti is indifferent between ai and ai+1. Thus, if (t′0, . . . , t
′
N)

weakly interim dominates (t0, . . . , tN), then t′i = ti for any i such that t∗i > 0. If t∗i = 0,
then t′i = ti = 0 as well for any (t′0, . . . , t

′
N) that satisfies the first parts of (8) and (9).

Thus t′i = ti for all i, and (t′0, . . . , t
′
N) satisfying these two conditions cannot weakly

interim dominate (t0, . . . , tN). �

The procedure that achieves (8) deletes in rounds 2k − 1 and 2k the strategies of
the Receiver such that ai > aki for some i = 1, . . . , N , and deletes the strategies of the
Sender such that ti > t

k
i for some i = 1, . . . , N . This procedure retains only the strategies

satisfying (8), because tki →k t
∗
i and aki →k a

∗
i for all i. It remains to show that in each

round we eliminate interim weakly dominated strategies, provided that players can use
in that round only the strategies not eliminated in the previous rounds. We will show
this by induction.

For k = 1, it can be that ai > aki only when i = 1, because aki = 1 for i > 1.
Any strategy (a1, a2, . . . , aN) with a1 > a11 is interim weakly dominated by the strat-
egy (a11, a2, . . . , aN). Indeed, the comparison of the two strategies reduces to the payoff
generated by the lowest action against the lowest interval [0, t1] of the Sender’s strategy
(t0, t1, . . . , tN). This payoff is strictly greater for the latter strategy than for the former
strategy when t1 > 0, because the Receiver’s best response to [0, t1] is always no higher
than a11, which is the Receiver’s best response to [0, 1]. When t1 = 0, the payoffs are
equal.

No strategy of the Sender is deleted for k = 1. This completes the first inductive step.
However, to present our arguments for the Sender’s strategies in the simplest non-trivial
case, consider k = 2. It can be that ti > t

2
i only when i = 1, because t2i = 1 for i > 1. The

comparison of strategies (t0, t1, . . . , tN) and (t0, t
2
1, . . . , tN) reduces to comparing which

cutoff t1 or t
2
1 is better against the Receiver’s strategies (a1, a2, . . . , aN) not eliminated in

the first round. Because a1 ≤ a11 and type t21 is by definition indifferent between a11 and
1, cutoff t1 > t

2
1 is always worse than cutoff t21.

The inductive steps are similar. Consider a k ≥ 1, and a strategy (a1, . . . , aN) such
that ai ≤ aki for all i and ai > ak+1

i for some i. Because ak+1
i = 1 for i > k + 1,

23t∗i > 0 is indifferent between a∗i to a∗i+1.
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ai > ak+1
i implies i ≤ k + 1. Let i∗ be the lowest index for which ai∗ > ak+1

i∗ . Define
a strategy (b1, . . . , bN) by letting bi∗ = ak+1

i∗ , and bj = aj for j 6= i∗. Then, bj ≤ akj for
all j, because aj ≤ akj for all j and ak+1

i∗ ≤ aki∗ . The strategy (b1, . . . , bN) is monotonic.
Indeed, bi∗−1 ≤ bi∗ (when i∗ > 1), because bi∗−1 = ai∗−1 ≤ ak+1

i∗−1 and bi∗ = ak+1
i∗ ;

bi∗ ≤ bi∗+1, because bi∗ = ak+1
i∗ < ai∗ ≤ ai∗+1 = bi∗+1; and bj ≤ bj+1 for all other j, because

aj ≤ aj+1. The comparison of the Receiver’s payoffs from playing strategies (a1, . . . , aN)
and (b1, . . . , bN) reduces to the comparison of the payoffs of actions ai∗ and ak+1

i∗ against
intervals [ti∗−1, ti∗ ] of the Sender’s strategies (t0, t1, . . . , tN) such that ti∗−1 ≤ t

k
i∗−1 and

ti∗ ≤ t
k
i∗ . Because (ak+1

1 , . . . , ak+1
N ) is the Receiver’s best response to (t

k
0, t

k
1, . . . , t

k
N), ak+1

i∗

is weakly preferred to ai∗ against any such (t0, t1, . . . , tN). Furthermore, it is strictly
preferred against (t0, t1, . . . , tN) when tki∗−1 < tki∗ . It can happen that tki∗−1 is equal to tki∗
for all strategies (t0, t1, . . . , tN) such that ti ≤ t

k
i only when tki∗−1 = t

k
i∗ = 0. In this case,

ak+1
i∗ is strictly interim preferred to ai∗ , but ak+1

i∗ is not strictly preferred to ai∗ . This
problem requires modifying our procedure. At the end of the proof, we will modify the
procedure so that eliminated strategies are both weakly dominated and interim weakly
dominated.

Consider now a strategy (t0, . . . , tN) such that ti ≤ t
k
i for all i and ti > t

k+1
i for

some i. Let i∗ be the lowest index for which ti∗ > t
k+1
i∗ . Define a strategy (s0, . . . , sN)

by letting si∗ = t
k+1
i∗ , and sj = tj for j 6= i∗. Then, sj ≤ t

k
j for all j, because tj ≤ t

k
j

for all j and t
k+1
i∗ ≤ t

k
i∗ . To show the strategy (s0, . . . , sN) is monotonic, observe that

0 = s0 ≤ s1 and if i∗ > 1, then si∗−1 ≤ si∗ because si∗−1 = ti∗−1 ≤ t
k+1
i∗−1 and si∗ = t

k+1
i∗ .

Furthermore, si∗ ≤ si∗+1, because si∗ = t
k+1
i∗ < ti∗ ≤ ti∗+1 = si∗+1. Finally sj ≤ sj+1

for all other j, because tj ≤ tj+1. The comparison of the Sender’s payoffs from playing
strategies (t0, . . . , tN) and (s0, . . . , sN) reduces to the comparison of the payoffs from
locating the i∗-th cutoff at ti∗ and si∗ against the Receiver’s strategies (a1, . . . , aN) such
that ai∗ ≤ aki∗ . Because ai∗ ≤ aki∗ , si∗ = t

k+1
i∗ yields a payoff higher than ti∗ > t

k+1
i∗ against

(a1, . . . , aN). This payoff is strictly higher for (ak1, . . . , a
k
N), because (i) (t

k+1
1 , . . . , t

k+1
N ) is

a best response to (ak1, . . . , a
k
N) and (ii) aki∗ > 0, which implies that aki∗ < aki∗+1. To see

aki∗ > 0, observe that 0 ≤ t
k+1
i∗ < ti∗ ≤ t

k
i∗ , which implies that 0 < t

k
i∗ = t

k−1
i∗ , which in

turn implies that aki∗ > 0.
We will now describe a modified procedure. Given ε > 0, define (t

k
0(ε), t

k
1(ε), . . . , t

k
N(ε))

and (ak1(ε), . . . , akN(ε)), for k = 0, 1, . . . , as in Section 4.4, except that tki (ε) 6= 0 for i > 0;
instead it will be placed within ε of 0. This is possible if ε is sufficiently small. We
construct the sequences inductively.

Let
0 = t

0
0(ε) < t

0
1(ε) = · · · = t

0
N(ε) = 1 and a01(ε) = · · · = a0N(ε) = 1.

Let (ak+1
1 (ε), . . . , ak+1

N (ε)) be the interim best response of the Receiver to the strategy
(t
k
0(ε), t

k
1(ε), . . . , t

k
N(ε)) of the Sender.

Define jk to be N if uS(ak+1
j (ε), 0) ≥ uS(akj (ε), 0) for all j and

min{j : uS(ak+1
j (ε), 0) < uS(akj (ε), 0)}

otherwise. Define tk+1
jk (ε) = 1 if jk = N and otherwise to be the type indifferent between
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ak+1
j (ε) and akj (ε). Hence t

k+1
jk (ε) > 0. For i = jk − 1, jk − 2, . . . , 1, let

t
k+1
i (ε) ∈ (0,min{ε, tki (ε)/2, t

k+1
i+1 (ε)}).

This is possible because ε, tki (ε)/2, and t
k+1
i+1 (ε) > 0. If type 0 prefers aki+1(ε) to aki (ε)

for some k, then this is so for all greater k when ε is small enough. Indeed, either
ak+1
i (ε) = aki (ε) (for odd k) or ak+1

i (ε) < aki (ε) for all i. Hence jk is non-decreasing.
Consequently, tki (ε) are strictly positive, strictly increasing in i, decreasing in k, and
limk→∞ t

k
i (ε) = 0 if i ≤ limk→∞ j

k.
By construction, this modified procedure satisfies condition (8) and avoids the prob-

lem described in the first paragraph of the inductive steps for the original procedure.
The only argument (for the original procedure) that requires a change concerns why
si∗ = t

k+1
i∗ (ε) yields a payoff higher than ti∗ > t

k+1
i∗ (ε) against all (a1, . . . , aN) such that

ai∗ ≤ aki∗(ε), and this payoff is strictly higher for some such strategies. If uS(aki (ε), 0) >
uS(aki+1(ε), 0), the argument requires no change; and if uS(aki (ε), 0) ≤ uS(aki+1(ε), 0),
then uS(aki (ε), t

k+1
i∗ (ε)) < uS(aki+1(ε), t

k+1
i∗ (ε)), and so si∗ yields higher payoffs than any

ti∗ > t
k+1
i∗ (ε). �

Corollary 2. Assume N ≥ N∗. If there exists a unique equilibrium type-action mapping
that satisfies NITS, then there is a procedure of iterated deletion of weakly dominated and
interim weakly dominated strategies that retains only this type-action mapping. Further-
more, the surviving strategy uses only the highest N∗ messages with positive probability.

Proof. The first part of Corollary 2 follows from Theorem 2. The second part follows
from Claim 2. �

Appendix B
We will first prove that any equilibrium using robust best responses must satisfy NITS if
there are at leastN∗ messages. If exactlyN∗ actions are induced with positive probability,
then the equilibrium must satisfy NITS. So, suppose that fewer actions are induced with
positive probability. In an equilibrium of a monotonic game, two messages used with
positive probability cannot induce the same action. So, there is a message used with
probability zero. Let mj be the smallest message used with positive probability. If a
message mi where i < j is used with probability zero, and induces an action smaller than
that induced by message mj, then NITS must be satisfied. If NITS were violated and
the action ai played in response to mi where i < j were equal to the action induced by
mj, then the Sender’s best response to an action profile obtained from the equilibrium
action profile by slightly decreasing ai would have an interval of types of length bounded
away from zero sending mi. This would violate robustness. If i > j, then the Sender’s
best response to an action profile obtained from the equilibrium action profile by slightly
increasing ai would have an interval of types of length bounded away from zero sending
mi. This would again violate robustness.

We present now an example of the basic cheap-talk game which has two equilibria
that satisfy NITS. Whenever there exist multiple equilibria satisfying NITS, type-action
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mappings in the best-response dynamics can converge to the type-action mapping induced
by either of them. Indeed, the type-action mapping induced by an NITS equilibrium
(with off-path messages inducing the best response to the lowest type) is a constant best-
response sequence. An additional feature that our example illustrates is that the number
of partition intervals in different NITS equilibria can be different.

Suppose the distribution of the Sender’s types is uniform, and the utilities of the
Sender and the Receiver are uS(a, t) = −(a− t− c(t))2 and uR(a, t) = −(a− t)2, where
c(t) > 0 for all t. So, the only departure from the uniform-quadratic example is that the
bias c(t) depends on t. Assume that the bias satisfies the following properties:

c(0) = 7/96; c(8/96) = 2/96; c(16/96) = 8/96; c(20/96) = 14/96; c(24/96) = 14/96.

When c(·) satisfies these conditions, aS(t) = t+ c(t) restricted to t ∈ {0, 8/96, 16/96,
20/96, 24/96} is strictly increasing. Hence it is possible to extend the definition of c(t)
so that aS(t) = t+ c(t) is strictly increasing for all t ∈ [0, 1].

This game has an equilibrium in which the types from [0, 20/96) induce action a∗2 =
10/96, and the types from (20/96, 1] induce action a∗3 = 58/96. If there are three messages
m1 < m2 < m3, then m1 is an off-path message which induces action a∗1 = 0, and mi

induces action a∗i for i = 2, 3.
The game also has an equilibrium, in which the types from [0, 8/96) induce action

a∗1 = 4/96, the types from (8/96, 24/96) induce action a∗2 = 16/96, and the types from
(24/96, 1] induce action a∗3 = 60/96. Both equilibria satisfy NITS because both a∗2 and
a∗1 are closer to aS(0) = c(0) than 0.
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