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1 Introduction

In an important paper on signaling with multiple instruments, Austen-Smith and Banks
(2000, hereafter ASB) augment the seminal cheap talk model of Crawford and Sobel (1982,
hereafter CS) by allowing the Sender to send not only costless messages, but also choose
from a set of purely dissipative signals, i.e. “burn money”. By definition, money burning
is non-discriminatory in the sense that its cost does not vary with the Sender’s private
information or type; this is in contrast to discriminatory signaling following Spence (1973).
Nonetheless, it is well-known that money burning can be used to credibly signal private
information in various situations.1 ASB’s contribution is twofold: first, to show that
money burning by itself can be effective in the CS setting; second, to study how money
burning can interact with and influence the informativeness of cheap talk messages.

This paper has four objectives:

1. Section 3 identifies an error in Theorem 1 of ASB that asserts the existence of partic-
ular equilibria with money burning in relation to equilibria of CS. I provide a variant
of the Theorem, which preserves some of the main implications, but not all of them.

2. Suppose the maximal amount of available burned money is some b ≥ 0. If b = 0,
we are back in the CS setting. Throughout their paper, ASB work with the case
of b = ∞ (or sufficiently large). However, ASB (p. 15) conclude with a conjecture
that the “qualitative properties of the equilibrium set are close to those of the CS
model” when b ≈ 0; to my knowledge, this has remained an open question. In
Section 4, I give a proof establishing the conjecture and thereby a continuity result on
the equilibrium correspondence at b = 0. Lower hemi-continuity is straightforward
since, as ASB noted, every pure cheap talk equilibrium outcome is an equilibrium
outcome for any b > 0 where no Sender type actually burns any money in equilibrium.2

The substantive contribution here is to prove upper hemi-continuity, viz. that every
convergent sequence of sequential equilibrium outcomes in ASB converges to a CS
equilibrium outcome as b → 0.

3. In models with burned money — indeed, costly signaling in general — it is typical
to invoke a forward-induction refinement to restrict the set of sequential equilibria
considered “plausible”.3 Although ASB do not pursue this approach, given that
there are a plethora of equilibria in their model, a natural question is whether and

1See for example Milgrom and Roberts (1986) and Bagwell and Bernheim (1996).
2By outcome, I refer to an equilibrium mapping from Sender types to Receiver actions, or equivalently,

the joint distribution on type-action space.
3This is true for example in the aforementioned papers of Milgrom and Roberts (1986) and Bagwell and

Bernheim (1996). More generally, refinement criteria for signaling games are developed systematically in
Banks and Sobel (1987) and Cho and Kreps (1987); see also Mailath, Okuno-Fujiwara, and Postlewaite
(1993).
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which refinements can help restrict the set. Section 5 demonstrates that perhaps
surprisingly, the commonly used D1 criterion (Cho and Kreps, 1987) has no bite.
However, a stronger refinement, the monotonic D1 (mD1) criterion (Bernheim and
Severinov, 2003) is an effective tool; I obtain a tight characterization of mD1 equilibria
for any b > 0.

4. Finally, given the power of the mD1 criterion, it is natural to assess the lower hemi-
continuity of the refined equilibrium set as the maximal available amount of burned
money, b, shrinks to 0. That is, which CS equilibria do sequences of mD1 equilibria
converge to as b → 0? I show in Section 5 that under a standard regularity condition
on preferences (Condition M in CS), any convergent sequence of mD1 equilibria con-
verges uniquely to the most-informative equilibrium of CS. This can be thought of
as a selection criteria amongst the pure cheap talk equilibria.4 The selection works
in three steps: first, augment the cheap talk game with burned money as done by
ASB. Second, refine the equilibria in the augmented game using forward-induction,
in particular mD1. Third, take the limit of these equilibria as the availability of
burned money vanishes. Let me emphasize that the refinement criterion of mD1 is
quite strong in the context of the model here, and accordingly using the three-step
procedure as a refinement criterion amongst pure cheap talk equilibria should be in-
terpreted with caution. The merit, however, is its power in refining the set of CS
equilibria.

Aside from ASB and CS, the two most closely related papers to this one are Gersbach
(2004) and Kartik (2005).5 Gersbach (2004) proposes a “money-burning refinement” for
general signaling games, by augmenting a signaling game with money burning and then
applying forward-induction in the augmented game. An important difference with the the
refinement approach here is that he looks for equilibria of the original game that survive as
forward-induction equilibria in the augmented game. In the current context, CS augmented
with money burning is of course just ASB. However, unless the upper bound on burned
money is sufficiently small, none of the CS equilibria will survive the application of mD1
on ASB. This is why the third step of taking limits as b → 0 is necessary.

In Kartik (2005), I develop a model of information transmission where there are
[possibly small] costs of lying. The important difference with respect to this paper is that
costly lying is a form of discriminatory signaling (in that the cost of a signal varies with the
Sender’s type), whereas money burning is non-discriminatory. See Section 5 for a further
discussion.

4Costly signaling games refinement criteria such as [m]D1 have no bite in cheap talk games because they
operate on unused signals in equilibrium, whereas every pure cheap talk outcome can be supported such
that all signals are used in equilibrium.

5I thank Joel Watson for bringing Gersbach (2004) to my attention.
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2 Model and Preliminaries

To preserve continuity of exposition, I follow ASB’s notation closely. A Sender, S, is
privately informed about a variable, t ∈ [0, 1] (his type) which is drawn from a distribution
with density h, h(t) > 0 for all t. S sends a signal to the Receiver, R, who observes the
signal and then takes an action a ∈ R. Let σ : [0, 1] → M × R+ be the Sender’s (pure)
strategy that consists of a cheap talk message m ∈ M , where M is any uncountable space,
and a burned money component b ∈ R+, for every type t ∈ [0, 1]. Let α : M×R+ → R+ be
the Receiver’s (pure) strategy that consists of an action a ∈ R for every (m, b) pair observed.
Furthermore, the Receiver’s beliefs are denoted by the cdf G(·|r,m). Over triplets (a, b, t),
the Receiver’s preferences are uR(a, t) and the Sender’s preferences are uS(a, t)−b where uS

and uR satisfy the CS assumptions.6 The utility maximizing actions given t are denoted
yi(t) ≡ arg maxa ui(a, t) for each i ∈ {S, R}; it is assumed that for all t, yR(t) < yS(t). For
any t ≤ t′, define

y(t, t′) ≡
{

arg maxa

∫ t′
t uR (a, τ)h(τ)dτ if t′ > t

yR (t) if t′ = t

As shorthand, let y(t) ≡ y(t, t).
In what follows, I use two concepts from CS. First, recall the idea of a forward

solution to the standard arbitrage condition.

Definition 1. A sequence 〈s0, s1, . . . , sN 〉 such that

∀i = 1, . . . , N − 1, uS(y(si−1, si), si, x) = uS(y(si, si+1), si, x) (A)

is a forward solution [to (A)] if s1 ≥ s0.

Next, CS (p. 1444) introduced a condition (they call it Condition M) on the product
space of preferences and distribution of private information that ensures the difference
equation solutions to the above arbitrage condition satisfy a “regularity” property.

Regularity Condition. For any two increasing sequences, 〈t0, t1, ..., tK〉 and 〈t̃0, t̃1, ..., t̃K〉,
that are both forward solutions to (A), if t1 > t̃1 > t0 = t̃0, then tj > t̃j for all j ∈
{1, . . . , K}.

What this says is that if we start at a given point, the solutions to (A) must all move
up or down together. The only result in this paper that uses this Regularity Condition is
Corollary 3.

Throughout, the term equilibrium refers to a sequential equilibrium, which is equiv-
alent to perfect Bayesian equilibrium in signaling games such as this one.

6That is, for each i ∈ {S, R}, ui(·, ·) is twice-differentiable, ui
11(·, ·) < 0, and ui

12(·, ·) > 0. Note that to
ease notation, I have suppressed the bias parameter, x, used by ASB.
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3 An Error and a Partial Fix

ASB (Theorem 1, p. 7) assert the following.

ASB Theorem. Let (σ, α) be a CS equilibrium with supporting partition 〈t0 ≡ 0, t1, . . . , tN ≡ 1〉.
Then for all t̂ ≤ t1, there exists a partition 〈s0 ≡ 0, s1 ≡ t̂, . . . , sN , sN+1 ≡ 1〉 supporting an
equilibrium (σ, α)(t̂) such that

∀i = 0 . . . , N − 1, ∀t ∈ [si, si+1), σ(t) = (mi, 0), mi 6= mj ∀i 6= j;

∀t ∈ [sN , 1], σ(t) = (m◦, b(t)),

where b(t) is a strictly increasing function.7

3.1 The Problem

ASB’s proof proceeds in two steps. In the first, they start by picking any t̂ < t1 (the case
of t̂ = t1 can be dealt with easily), and consider a forward solution to (A) starting with
s0 ≡ 0 and s1 ≡ t̂. This, they claim, provides a sequence 〈s0 ≡ 0, s1 ≡ t̂, . . . , sN 〉 such that
sn < tn for all n ∈ {1, . . . , N}. Their justification of this claim contains the error. The
second part of the proof is to construct the strictly increasing function b(t) such that it is
optimal for all types t ∈ [sN , 1] to reveal themselves by burning b(t).

I note that if the above claim were true, that would make the Regularity Condition
always true, since the monotonicity of forward solutions is precisely what it assumes. The
specific error leading to ASB’s assertion is the following. On p. 8, they define for any
s′, s, and t, the function

V (s′, s, t) = uS(y(s′, s), s)− uS(y(s, t), s)

ASB claim that fixing s′ and setting V ≡ 0 yields their equation (6) through implicit
differentiation:

dt

ds

∣∣∣∣
s′

=
uS

2 (y(s′, s), s)− uS
2 (y(s, t), s)

uS
1 (y(s, t), s)y2(s, t)

(6)

But this is wrong: it ignores the indirect effect of s on V through the change of
y(s′, s) and y(s, t). To see this, observe that totally differentiating V with respect to s and
t (holding s′ fixed) yields

dV =
[
uS

1 (y(s′, s), s)y2(s′, s) + uS
2 (y(s′, s), s)− uS

1 (y(s, t), s)y1(s, t)− uS
2 (y(s, t), s)

]
ds

− [
uS

1 (y(s, t), s)y2(s, t)
]
dt

7ASB also pin down the function b(t), which I do not include here for brevity.
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and therefore the correct formula is

dt

ds

∣∣∣∣
s′

=
uS

2 (y(s′, s), s)− uS
2 (y(s, t), s)

uS
1 (y(s, t), s)y2(s, t)

+
uS

1 (y(s′, s), s)y2(s′, s)− uS
1 (y(s, t), s)y1(s, t)

uS
1 (y(s, t), s)y2(s, t)

(6*)

For ASB’s claim to go through, it would have to be that the RHS of (6*) is positive.
As they argue, the first term indeed is (denominator negative and numerator negative).
However, the second term (which is missing in (6)) is negative. To see this, first note
that the denominator is negative, just as in the first term. In the numerator: y1(·, ·) > 0
and y2(·, ·) > 0, but uS

1 (y(s′, s), s) > 0 whereas uS
1 (y(s, t), s) < 0. Hence the numerator is

positive, whereby the whole second term is negative. Accordingly, one cannot in general
sign the RHS of (6*), breaking down the argument of ASB.

3.2 Implications

There are some explicit conclusions that ASB draw from their Theorem that may not be
correct. In particular:

1. On p. 11, ASB say that “Theorem 1 implies that a sufficient condition for there to
exist equilibria exhibiting both influential cheap talk and influential costly signals is
that there exist influential CS equilibria.” Given the error, it is an open question
whether this is true when the Regularity Condition does not hold. A Corollary to
Theorem 1 below is that a sufficient condition is that there exists a CS equilibrium
with three influential messages.

2. Consequently, the part of their Theorem 2 that relies on the above assertion is un-
substantiated. That is, whether it is true that “there exists a left-pooling influential
equilibrium if ... there exists an influential CS equilibrium” when the Regularity
Condition fails is an open question. As before, it is certainly true if there is a CS
equilibrium with three influential messages.

3.3 A Correct Variant

There are a few ways one might alter ASB’s Theorem without simply imposing the Regular-
ity Condition. I provide one which arguably preserves their main points. As I understand
it, ASB’s primary goal was to show that “we can squeeze in separating segments at the
far end of any CS partition.” (p. 7, their emphasis) Their Theorem however claimed
more: not only can we squeeze in a separating segment at the far end of a CS partition, but
moreover, we can squeeze it in while maintaining the same number of influential cheap talk
messages. It is here that one runs into difficulty. Instead, if we are satisfied with squeezing
in separation at the cost of reducing the number of influential cheap talk messages by one,
this can be done. Formally,
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Theorem 1. Let there be a CS equilibrium with supporting partition 〈t0 ≡ 0, t1, . . . , tN ≡ 1〉.
Then there exists an equilibrium (σ, α) such that

∀i = 0 . . . , N − 2, ∀t ∈ [ti, ti+1), σ(t) = (mi, 0), mi 6= mj ∀i 6= j;

∀t ∈ [tN−1, 1], σ(t) = (m◦, b(t)),

where b(t) is a strictly increasing function.

Proof. Construct the equilibrium as follows. Pick a set of N distinct messages, {m1, . . . ,mN}.
For all t ∈ [0, tN−1) define σ(t) as follows: t ∈ [ti−1, ti) (i ∈ {1, . . . , N − 1}) plays
σ(t) = (mi, 0). For type tN−1, set m(tN−1) = mN and b(tN−1) = C(tN−1) where

C(tN−1) ≡
{

uS(y(tN−1), tN−1)− uS(y(tN−2, tN−1), tN−1) if N > 1
0 if N = 1

That is, if N > 1, b(tN−1) is the amount of burned money that would make tN−1 indifferent
between eliciting action y(tN−1) (i.e. revealing itself) by burning b(tN−1) and eliciting
y(tN−2, tN−1) with no burned money.8 If N = 1, then there are no types below tN−1 ≡ 0,
hence b(tN−1) is set to 0.

For all types t ∈ (tN−1, 1], set m(t) = mN and b(t) following ASB to keep each type
just indifferent between revealing itself and mimicking a marginally higher type, i.e.

b(t) =
∫ t

tN−1

uS
1 (y(s), s)y′(s)ds + C(tN−1)

The Receiver’s response for any signal on the equilibrium path is given by α(mi, 0) =
y(ti−1, ti) for all i ∈ {1, . . . , N − 1} and α(mN , b̂) = y

(
b−1(b̂)

)
for all b̂ ∈ [b(tN−1), b(1)].

For signals off the equilibrium path, proceed thus: define a0 ≡ α(σ(0));9 for all signals
(m, b) such that there is no t with (m, b) = σ(t), set α(m, b) = a0.

It is straightforward to verify that these strategies constitutes an equilibrium where
b(·) is strictly increasing on [tN−1, 1]. ¤

This modification of the ASB Theorem preserves the essence of their result. In
particular, it immediately implies that full revelation is an equilibrium outcome.

Corollary 1. There is an equilibrium (σ, α) such that for all t, α(σ(t)) = y(t).

Proof. Apply Theorem 1 to a CS “babbling” equilibrium, i.e. a CS equilibrium with sup-
porting partition 〈t0 ≡ 0, t1 ≡ 1〉. ¤

8This follows the approach of ASB.
9Note that that α(σ(0)) has already been defined since σ(0) is an on-the-equilibrium-path signal.
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Note that this Corollary is weaker than ASB’s Corollary 1 (p. 11), which is correct
despite the error in their Theorem.

4 Continuity of the Equilibrium Correspondence

At the end of their paper, ASB (p. 15) write:

“if the costly signaling literally involves money ... imposing a budget constraint might
be appropriate. A referee conjectures that for arbitrarily small budget constraints, the
qualitative properties of the equilibrium set are close to those of the Crawford-Sobel
model. This conjecture has strong intuition ... However, a general argument has proved
elusive.”

This is a statement about continuity of the equilibrium outcome correspondence.
Lower hemi-continuity is easy: any CS equilibrium partition supports an equilibrium when
burned money is available, where no type actually burns any positive amounts of money. So
the real issue is that of upper hemi-continuity, i.e. as the budget of burned money shrinks,
are all equilibria “close” to CS equilibria? The answer is yes, as conjectured, and the goal
of this section is to formally state and prove it.

Let b > 0 denote the maximal amount of burned money available to the Sender.
That is, the Sender’s strategy is henceforth σ : [0, 1] → M × [0, b]. ASB (Lemma 1 and
subsequent discussion) have proven that every equilibrium with burned money is partitional;
the only difference with CS being that all types within an element of the partition may be
completely separating rather than pooling with each other. In particular, higher Sender
types elicit weakly higher actions from the Receiver.

The key step in analyzing equilibria as b → 0 is the following result which severely
restricts the set of separating types for small b.

Lemma 1. For any ε > 0, there exists δ > 0 such that for all b < δ, the only separating
types lie in [0, ε].

Proof. Pick any type t̂ > 0 and suppose it is separating. I argue to a contradiction for b

small enough. Denote by t̃ the type such that yS(t̃) = y(t̂) if it exists, or else let t̃ = 0.
Note that t̃ is strictly smaller than t̂ (since yS(t) > yR(t) for all t) and does not vary with
b. Since t̂ is separating by hypothesis, α(σ(t̃)) ≤ y(t̃, t̂). For type t̃ not to imitate (i.e.
pool with) t̂ requires uS(y(t̂), t̃)− uS(y(t̃, t̂), t̃) ≤ b(t̂)− b(t̃). However, the RHS is bounded
above by b whereas the LHS is a positive constant; hence the inequality fails for all b smaller
than some positive threshold. ¤

The Lemma says that as b gets small, the measure of separating types in any equi-
librium is converging to 0, and moreover, all separation occurs in a neighborhood of type
0. Accordingly, henceforth, given an equilibrium, (σ, α)(b), with supporting partition
〈s0 ≡ 0, s1, . . . , sN ≡ 1〉(b), let s(b) ≥ 0 be the lowest type such that there are no separating
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types (of positive measure) above s(b).10 Clearly, s(b) → 0 as b → 0. With some abuse
of terminology, for the rest of this section I will refer to the supporting partition of an
equilibrium as 〈s0 ≡ s, s1, . . . , sN ≡ 1〉(b).
Theorem 2. For any ε > 0, there exists δ > 0 such that when b < δ, for any equi-
librium supported by 〈s0 ≡ s, s1, . . . , sN ≡ 1〉(b), there is a CS equilibrium supported by
〈t0 ≡ 0, t1, . . . , tN ≡ 1〉 such that |sj − tj | < ε for all j ∈ {0, 1, . . . , N}.
Proof. By Lemma 1, for any ε > 0, there is a δ > 0 such that for all b < δ, in any
equilibrium partition 〈s0 ≡ s, s1, . . . , sN ≡ 1〉(b), s0 < ε and there are only pools above s0.
For any pooling interval (sj−1, sj), denote the amount of burned money by all types in
this pool as bj . The incentive compatibility conditions for equilibrium require that for all
j ∈ {1, . . . , N − 1}

uS(y(sj−1, sj), sj)− uS(y(sj , sj+1), sj) = bj − bj+1 (IC)

As b → 0, the RHS of equation (IC) converges to 0. It follows from equations (IC)
and (A) that if for all b sufficiently small, every equilibrium partition has s1(b) arbitrarily
close to some CS partition first segment boundary t1, the Theorem is true.

So suppose towards contradiction that this is not the case. Then there exists a
sequence {bi}∞i=1 → 0 and an equilibrium partition for each bi such that s1(bi) converges
(in subsequence) to some s that is not a CS partition first segment boundary. Consider
a forward solution to the difference equation (A) starting with τ0 = 0 and τ1 = s. Since
s is not the first segment boundary of a CS partition, there is a θ > 0 such that no τj

(j = 0, 1, . . .) lies in (1 − θ, 1]. Noting that for sufficiently small bi, s0(bi) ≡ s(bi) and
s1(bi) are arbitrarily close to τ0 ≡ 0 and τ1 ≡ s respectively, it follows from equation (IC)
that each sj(bi) is arbitrarily close to some τj (j = 0, 1, . . .). Thus, for small enough bi,
there is no j such that sj(bi) = 1. But this is a contradiction with the requirement for an
equilibrium partition. ¤

5 Equilibrium Refinement

For any b > 0, and especially so when b is large, there are typically many equilibria.
Accordingly, one would like to know whether well-developed refinement criteria for signaling
games can help restrict the set of equilibria. There are two related but distinct reasons
why this is an interesting line to pursue: first, to sharpen predictions for an arbitrary
set of available burned money; second, to use the limit of refined equilibria as the upper
bound on burned money b → 0 as a theoretical tool to refine the set of pure cheap talk

10There are two details to note. First, supporting partitions are always defined so that adjacent to any
segment of separation are segments of pooling; i.e. each segment of full separation is “maximal”. Second,
unlike in CS, the partition supporting an equilibrium with b > 0 may have (countably) infinite elements.
However, above s, there are are only a finite number of elements.
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equilibria of CS. As ASB (p. 1) noted, “in many cases cheap talk is not the only means of
communication. In particular, informed parties typically have the opportunity to impose
costs on themselves.” Nonetheless, the analysis of a pure cheap talk model may be justified
in such cases if the opportunity to imposes costs is limited, in precisely the sense that b ≈ 0.
If so, the focus should be on those pure cheap talk equilibria that are “close” to the most
“reasonable” equilibria with small amounts of burned money available.

With this discussion in mind, I now tackle the issue of using signaling game refine-
ments on ASB’s model. Throughout, the reader should keep in mind that the focus will
ultimately turn towards predictions as b → 0.

Arguably the most commonly used refinement is the D1 criterion of Cho and Kreps
(1987), or the similar notion of divinity in Banks and Sobel (1987).11 Although the authors
define the criteria for finite games, a natural extension for the current model is as follows.

Definition 2. An equilibrium, (σ, α), satisfies the D1 criterion if for any off-the-equilibrium
signal (b̃, m̃):

If there is a nonempty set Ω ⊆ [0, 1] such that for each t /∈ Ω, there exists some
t′ ∈ Ω such that for all a ∈ [y(0), y(1)],

uS (a, t)− b̃ ≥ uS (α (m(t), b(t)) , t)− b(t)

⇓
uS

(
a, t′

)− b̃ > uS
(
α

(
m

(
t′
)
, b(t′)

)
, t′

)− b(t′)

Then Supp G
(
t | b̃, m̃

)
⊆ Ω.

The reader is referred to the excellent discussion in Cho and Kreps (1987) for the
justification behind the criterion; here let me just say that the underlying idea is that upon
observing any out-of-equilibrium signal, beliefs should be concentrated on those types that
have the “largest” incentive to deviate. In certain cases, the D1 criterion can indeed restrict
the set of equilibria in ASB. Recall that any CS partition can be supported as an equilibrium
(for any b > 0) where in equilibrium, no type actually burns any money. In particular,
taking any m0 ∈ M , there is an equilibrium (σ, α) such that for all t, σ(t) = (m0, 0). The
following Remark shows that this is not sustainable as a D1 equilibrium if preferences are
sufficiently dissonant.

Remark 1. Assume yS(0) ≥ y(0, 1). There is no D1 equilibrium where for all t, σ(t) =
(m0, 0) for any m0 ∈ M .

11There are of course other well-known refinement criteria, such as the concepts of undefeated equilibrium
in Mailath, Okuno-Fujiwara, and Postlewaite (1993) and perfect sequential equilibrium in Grossman and
Perry (1986), to name just two. I focus on D1 not only because of its prevalence in the literature, but also
because it is more hostile to pooling than undefeated equilibrium; yet it is not so strong as to suffer from
the non-existence problems that perfect sequential equilibrium does.
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Proof. Pick any t 6= 1. Since yS(t) ≥ y(0, 1), for it to be the case that uS(a, t) − b ≥
uS(y(0, 1), t), it must be that a > y(0, 1). Doing some calculus,

uS(a, 1)− b− uS(y(0, 1), 1)− [uS(a, t)− b− uS(y(0, 1), t)]

=
∫ a

y(0,1)

∫ 1

t
uS

12(γ, τ)dτdγ

> 0

because uS
12(·, ·) > 0. Hence, if type t has a weak incentive to deviate to some out-of-

equilibrium b, then type 1 has a strict incentive to do so. The D1 criterion thus requires
that α(m, b) = y(1) for any b 6= 0 and m ∈ M . But then, type 1 has a profitable deviation
to some b = ε for small enough ε > 0. ¤

Unfortunately, the above preference dissonance condition generally rules out the
interesting parameter configurations: when yS(0) > y(0, 1), the unique CS equilibrium
partition is the degenerate one (supporting the babbling equilibrium), under the Regularity
Condition.12 As is next shown, when preferences are not so dissonant, the D1 criterion has
little bite, at least when b is sufficiently small.

Proposition 1. Assume yS(0) < y(0, 1). For all b sufficiently small, every CS equilibrium
partition supports a D1 equilibrium where for all t, b(t) = 0.

Proof. Let 〈t0 ≡ 0, t1, . . . , tN ≡ 1〉 be the CS equilibrium partition. I will show that there is
a D1 equilibrium where all types play b(t) = 0, segment according to the CS partition using
cheap-talk messages; and this is supported by responses α(m, b) = y(tN−1, 1) for any out-of-
equilibrium signal (m, b). To prove that such an equilibrium exists, it suffices to show that
the D1 criterion cannot rule out playing y(tN−1, 1) in response to out-of-equilibrium (m, b).
It is trivial that this is the case when b = 0; so we only need consider b > 0 henceforth.

Define the set A(b) as

A(b) ≡ {a : a < y(tN−1, 1) and uS(a, 0)− b > uS(y(tN−1, 1), 0)}

If N = 1 then, the hypothesis that yS(0) < y(0, 1) ensures that for small b > 0,
A(b) is non-empty. If N > 1, then the CS equilibrium condition uS(y(tN−2, tN−1), tN−1) =
uS(y(tN−1, 1), tN−1) combined with the supermodularity of uS implies that uS(y(tN−2, tN−1), 0) >

uS(y(tN−1, 1), 0), hence again, for small b > 0, A(b) is non-empty. Thus, for small enough
b, for all b ∈ (0, b], the set A(b) is non-empty.

12See CS p. 1440 for a proof.
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For all b > 0, t > 0, and a ∈ A(b),

uS(a, 0)− b− uS(y(tN−1, 1), 0)− [uS(a, t)− b− uS(y(tN−1, 1), t)]

= uS(y(tN−1, 1), t)− uS(a, t)− [uS(y(tN−1, 1), 0)− uS(a, 0)]

=
∫ y(tN−1,1)

a

∫ t

0
uS

12(γ, τ)dτdγ

> 0

by the supermodularity of uS . Hence, the D1 criterion cannot rule out R placing probability
on t = 0 when she observes an out-of-equilibrium b > 0. A similar argument establishes
that t = 1 cannot be ruled out either by considering for any b > 0, the non-empty set of
actions

Ã(b) ≡ {a : a > y(tN−1, 1) and uS(a, 1)− b > uS(y(tN−1, 1), 1)}
It follows that by using belief mixtures over the extremum types, any action a ∈ [y(0), y(1)]
in response to any b > 0 cannot be ruled out by the D1 criterion. ¤

This Proposition says that the D1 criterion may be quite ineffective in restricting
equilibria that replicate CS equilibrium partitions. To what extent other, non-CS, equi-
librium partitions are restricted by the D1 refinement seems to be a relatively untractable
problem at any level of generality, stemming from the difficulty in giving a tight charac-
terization of all equilibria. Nonetheless, the Proposition does show that generally a wide
variety of outcomes can be supported as D1 equilibria, especially so the more congruent
preferences are between the Sender and Receiver. This stands in contrast to the sharp
restrictions on D1 equilibria obtained in “monotonic” signaling games by Cho and Sobel
(1990).

The logic underlying Proposition 1 stems from the fact that the “perception-bliss
function”, y−1(yS(t)), is increasing, rather than constant as in for example Spence (1973)
and Cho and Sobel (1990), where the D1 criterion is effective.13 In particular, this causes
a failure of the usual Spence-Mirlees single-crossing property in (a, b)-space.14

5.1 mD1 Equilibria

A stronger refinement criterion is needed to prune the set of equilibria. I adopt the
monotonic D1 (mD1) criterion, introduced by Bernheim and Severinov (2003) in the context

13Stamland (1999) has also observed that D1 equilibria can support a variety of outcomes when the
perception-bliss function is not constant (though he does not phrase it in this way). A difference however
is that in his model, the non-constancy is due to the Receiver’s optimal action not necessarily increasing
in the Sender’s type; on the other hand, here, the reason is that the Sender’s most-preferred action is not
constant in his type.

14Failure of single-crossing is not by itself sufficient, however, to render the D1 criterion ineffective; cf.
the analysis in Banks (1990) and Bernheim (1994).
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of a different model that also lacks a constant perception-bliss function. As the name
suggests, the mD1 criterion consists is made up of two parts: a monotonicity condition, and
the D1 condition.

Definition 3. An equilibrium (σ, α) with beliefs G is monotone if

1. (Signal monotonicity) b (t) is weakly increasing;

2. (Belief monotonicity) For all m,m′, t, and b > b′, G (t | m, b) ≤ G (t | b′,m′).

Signal monotonicity requires higher types to burn weakly more money, and belief
monotonicity requires the Receiver to infer a weakly higher type conditional on seeing
more burnt money, in the sense of first order stochastic dominance (FOSD). Note that
signal monotonicity implies that belief are monotone on the equilibrium path, but the
belief monotonicity condition is a further restriction off the equilibrium path.

By itself, imposing monotonicity alone on equilibrium is not very restrictive, as the
following Proposition shows.

Proposition 2. Every CS equilibrium partition can be supported in a monotone equilibrium
(for any b > 0) where all types play b(t) = 0.

Proof. Let 〈t0 ≡ 0, t1, . . . , tN ≡ 1〉 be the CS equilibrium partition. Construct the equi-
librium as follows: types segment using cheap talk messages according to the CS partition,
and all play b(t) = 0. For any out-of- equilibrium b > 0, assign the same beliefs as the
highest beliefs (in the sense of FOSD) induced on the equilibrium path with b = 0. Opti-
mality then requires α(m, b) = y(tN−1, 1) for any m and b > 0. It is clear that this is an
equilibrium; signal monotonicity holds trivially because all types are using the same level
of money; belief monotonicity holds because all b > 0 induce the same belief as the highest
one with b = 0. ¤

It is worth discussing the relationship with Kartik (2005) in a bit of detail at this
point. Rather than signaling through burned money, the model there has signaling through
costly lying, i.e. the Sender sends a “report”, r ∈ [0, 1], with an associated cost C(r, t).
The critical feature is that for any t, arg minr C(r, t) = t and C(·, t) is convex in the first
argument. This captures the idea that it is cheap to tell the truth and increasing costly
to lie.15 The formulation implies that the “signal-bliss function” is strictly increasing in
type, i.e. the cost-minimizing signals are increasing in type. In the current model, on the
other hand, the “signal-bliss function” is constant at 0, i.e. for all types, costs of signaling
are minimized at b = 0. On the one hand, the costly lying model is more complicated to
analyze; on the other hand, it is more powerful in the sense that imposing monotonicity
alone on equilibria yields a characterization that refines the pure cheap talk equilibria of CS

15That model is actually more general and permits various other interpretations that I cannot delve into
here.
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in the limit as the costs of lying converge to 0 (the analog of b → 0 in the current model).
As Proposition 2 indicates, imposing monotonicity on equilibrium in the current model does
nothing to restrict the set of CS outcomes that can be approached as b → 0.

I should note that imposing monotonicity as a restriction is more appealing in
the context of Kartik’s (2005) model, because signal non-monotonicity is more implausible
when higher types intrinsically have a preference for higher signals.16 The justification
for belief monotonicity is that since signal monotonicity implies that beliefs are monotone
on the equilibrium path, it would be “perverse” to then have non-monotone beliefs off the
equilibrium path. Clearly, the precondition for this appeal is signal monotonicity.

Notwithstanding, monotonicity is an appealing feature of equilibrium. Moreover,
monotonicity combined with D1 turns out to be a useful tool in refining equilibria in the
current model. To state the refinement formally, one more piece of notation is needed.
Given a pair of strategies (σ, α), let

ξl(b̂) ≡




sup
t:b(t)<b̂

α (m(t), b(t)) if ∃t s.t. b (t) < b̂

y (0) otherwise

ξh(b̂) ≡




inf
t:b(t)>b̂

α (m (t) , b(t)) if ∃t s.t. b (t) > b̂

y (1) otherwise

For an out-of-equilibrium burned money signal b̂ such that some b < b̂ (resp. b > b̂)
is sent in equilibrium, ξl(b̂) (resp. ξh(b̂)) gives the highest (resp. lowest) action taken by
the Receiver in response to an equilibrium burned money signal lower (resp. higher) than
b̂.

Definition 4. An equilibrium, (σ, α), satisfies the monotonic D1 (mD1) criterion if

1. It is monotone.

2. For any off-the-equilibrium signal (b̃, m̃), if there is a nonempty set Ω ⊆ [0, 1] such
that for each t /∈ Ω, there exists some t′ ∈ Ω such that for all a ∈ [ξl(b̃), ξh(b̃)],

uS (a, t)− b̃ ≥ uS (α (σ(t)) , t)− b(t)

⇓
uS

(
a, t′

)− b̃ > uS
(
α

(
σ(t′)

)
, t′

)− b(t′)

Then Support[G(· | b̃, m̃)] ⊆ Ω.

16In the current model, higher signals — i.e. higher level of burned money — are equally undesirable to
all types.
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The idea underlying the mD1 criterion is analogous to the D1 criterion, with the
added presumption that both players are aware that beliefs and signals are monotone.
Hence, when considering which types have the greatest incentive to deviate to an out-of-
equilibrium burned money signal, b̃, the Receiver only considers responses that lie within
[ξl(b̃), ξh(b̃)], rather than the range [y(0), y(1)] as required by the D1 criterion.

The set of mD1 equilibria can be characterized very tightly, which is the subject of
the next Theorem. To state it, define a “separating” function

b∗(t) ≡
∫ t

0
uS

1 (y(s), s)y′(s)ds (1)

and let t be defined by b∗(t) = b if such a t exists; otherwise set t = 1.

Theorem 3. In any mD1 equilibrium, (σ, α), there exists some t ∈ [
0, t

]
and a partition

of [t, 1] given by 〈t0 ≡ t, t1, ..., tJ ≡ 1〉 (J ≥ 1) such that

i. 〈t0, . . . , tJ〉 is a forward solution to (A)

ii. If t ∈ (0, 1) then
uS(y(t), t)− b∗(t) = uS(y(t, t1), t)− b (CIN)

iii. If t = 0 then
uS(y(0), 0) ≤ uS(y(0, t1), 0)− b (ZWP)

and (σ, α) is such that

a. ∀t < t, b(t) = b∗(t); ∀t ∈ (t, 1], b(t) = b; b(t) ∈ {b∗(t), b}; if t = 0 and (ZWP) holds
with strict inequality then b(0) = b

b. ∀j = 1, ..., J ,

(b.1) ∀t ∈ (tj−1, tj), m(t) = mj (mj 6= mk ∀k 6= j)

(b.2) α(mj , b) = y(tj−1, tj)

c. ∀t < t, α(σ(t)) = y(t)

Conversely, for any t ∈ [
0, t

]
and a finite partition of [t, 1] given by 〈t0 ≡ t, t1, ..., tJ−1, tJ ≡ 1〉

that satisfy (i)-(iii) above, there is an mD1 equilibrium, (σ, α), such that (a)-(c) hold.
Moreover, an mD1 equilibrium exists for all b.

Proof. See Appendix A. ¤

Any mD1 equilibrium has a set of of separating types at the bottom end of the type
space, [0, t), who separate using burned money levels b∗(t). (It may be that t = 0, in which
case there is no separation; or t = 1, in which case all types separate.) Thereafter, all
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Figure 1: mD1 Equilibrium Structure

types t > t burn the maximal level of money by playing b(t) = b, but may further segment
themselves into a partial partition 〈t0 ≡ t, t1, ..., tJ−1, tJ ≡ 1〉 using cheap talk, just as in
CS. A critical restriction of the mD1 criterion is that for all b ∈ [b∗(t), b) and any m ∈ M ,
α(m, b) = y(t). That is, upon seeing any out-of-equilibrium level of burned money, the
Receiver must infer it is type t. In the statement of the Theorem, the cutoff indifference
condition (CIN) says that if type t is interior, then it must be indifferent between separating
by playing b∗(t) and pooling with the first interval of pooling types immediately above it.
On the other hand, the zero weak preference condition (ZWP) says that if t = 0, then it
suffices that type 0 has a weak preference for pooling with first interval of types above it
than separate by playing b∗(0) = 0.

Figure 1 illustrates the structure of an mD1 equilibrium. It is drawn for a case
where b∗(t) is linear, which is true for example in the commonly applied formulation with
a uniform prior and quadratic loss utility functions.

Remark 2. Recall the example used by ASB at the end of their paper with quadratic
preferences, uS(a, t) = −(a − t − x)2 and uR(a, t) = −(a − t)2, and a β distribution on
types with parameters (µ, ν). ASB computed an equilibrium for the parametrization
(x = 0.1157, µ = 10, ν = 2) that they illustrated in their Figure 2, with a supporting par-
tition 〈t0 ≡ 0, t1 = 0.15, t2 = 0.2, t3 ≡ 1〉, with b(t) = 2xt for all t < t1 and b(t) = 0.0397
for all t ≥ t1. That Figure looks similar to the illustration of an mD1 equilibrium in
Figure 1 in this paper. This is because their equilibrium is an mD1 equilibrium if (and
only if) b = 0.0397. (One can check by solving the integral equation (1) that b∗(t) = 2xt,
as required.) A restriction implied by mD1 in this example is that α(m, b) = 0.15 for any
m ∈ M and b ∈ [0.03471, 0.0397).
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5.2 Convergence of mD1 Equilibria as b → 0

For this section, to avoid certain degenerate cases that complicate the phrasing of results,
I assume that primitives are such that the following property holds:

Assumption 1. There is no CS equilibrium partition, 〈t0 ≡ 0, t1, . . . , tN ≡ 1〉, such that
uS(y(0, t1), 0) = uS(y(0), 0).

That is, there is no CS equilibrium where the lowest type is exactly indifferent
between the action it elicits in equilibrium, y(0, t1), and what it would get under complete-
information, y(0). Intuitively, this is “generic” because any slight perturbation of prefer-
ences (or the prior) from a case where there is a CS equilibrium with the above property
will result in the assumption being satisfied.

Definition 5. A CS equilibrium with supporting partition, 〈t0 ≡ 0, t1, . . . , tN ≡ 1〉, is the
limit of mD1 equilibria if for all ε > 0, there exists δ > 0 such that for all b < δ, there is
an mD1 equilibrium with supporting partition 〈s0 ≡ s, s1, . . . , sN ≡ 1〉(b) such that for all
j ∈ {0, 1, . . . , N}, ∣∣sj(b)− tj

∣∣ < ε.

Thus, we say that a CS equilibrium is the limit of mD1 equilibria if there are mD1
equilbrium partitions that converge to the CS equilibrium partition as the maximal available
amount of burned money shrinks to 0. It turns out that a very simple condition determines
whether or not a CS equilibrium is a limit point in this sense.

Theorem 4. A CS equilibrium with supporting partition, 〈t0 ≡ 0, t1, . . . , tN ≡ 1〉, is the
limit of mD1 equilibria if and only if uS(y(0, t1), 0) > uS(y(0), 0).

Proof. See Appendix B. ¤

Here is the intuition behind the “only if” part of the Theorem. Take a CS equilib-
rium with partition, 〈t00 = 0, t01, . . . , t

0
N = 1〉, such that uS(y(0), 0) > uS(y(0, t1), 0). This

means that if type 0 could separate himself at a small enough cost, it would do that rather
than be pooled with the types in (ε, t1− ε) for any ε ≥ 0; by continuity, so would a positive
measure of types near 0. In a CS equilibrium, however, this ability does not exist, since
any out-of-equilibrium message can be interpreted the same as any in-equilibrium message.
With burned money available, according to the mD1 characterization in Theorem 3, type 0
can always separate itself at 0 cost, for any level of b > 0. Hence there cannot be an mD1
equilibrium partition that is arbitrarily close to the CS partition, because at some point, a
set of types near 0 will deviate out of the pool they are supposed to be in and instead play
the separating signal of type 0.

The “if” part of the Theorem is straightforward: fix a CS equilibrium with partition,
〈t0 ≡ 0, t1, . . . , tN ≡ 1〉, such that uS(y(0), 0) < uS(y(0, t1), 0). Consider strategies such
that b(t) = b for all t, and types segment using N distinct cheap talk messages into the
partition 〈t0 ≡ 0, t1, . . . , tN ≡ 1〉. The Receiver plays the necessary responses to any on-the-
equilibrium-path signals; off the equilibrium path, set α(m, b) = y(0, t1) and α(m, b) = y(0)
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for any m and b < b. It is easy to check that this is an equilibrium for small enough b, and
moreover, it satisfies the mD1 criterion by by Theorem 3.

The remaining issue, then, is how restrictive the selection criterion identified in
Theorem 4 is. The following result from Kartik (2005) provides the answer.

Lemma 2. At least one CS equilibrium has a supporting partition, 〈t0 ≡ 0, t1, . . . , tN ≡ 1〉,
such that uS(y(0, t1), 0) > uS(y(0), 0). Moreover, if the Regularity Condition holds, there
is only one such CS equilibrium.

Proof. See Kartik (2005, Lemma 8); reproduced in Appendix B for completeness. ¤

The Lemma has two implications. The first is that the selection criterion identified
in Theorem 4 yields a non-empty set of CS equilibria.17

Corollary 2. At least one CS equilibrium is the limit of mD1 equilibria.

Proof. Immediate consequence of Theorem 4 and Lemma 6. ¤

CS (Theorems 4 and 5) have shown that under the Regularity Condition, all pure
cheap talk equilibria can be ex-ante Pareto ranked in terms of informativeness. That is,
a more-informative equilibrium partition — one with a shorter first segment — is ex-ante
Pareto preferred by both players to a less-informative one. Under the same Condition,
the foregoing analysis implies there is only one CS equilibrium partition that satisfies the
selection criterion of Theorem 4: the most-informative equilibrium.

Corollary 3. Assume the Regularity Condition. The only CS equilibrium that is the limit
of mD1 equilibria is the most-informative one, viz. the CS partition with the shortest first
segment.

Proof. Immediate consequence of Theorem 4 and Lemma 6. ¤

Applied papers using the CS model almost always use a specification that satisfies
the Regularity Condition, either implicitly or explicitly. In particular, the Condition is
satisfied by the widely-used special case, the “uniform-quadratic” setup where the prior
distribution on types is uniform and preferences are quadratic loss functions.

6 Conclusion

ASB have added a dimension of signaling through burned money to the pure cheap talk
model of CS. Their analysis was on how the two instruments interact with one another
when the set of available burned money is large. This paper has contributed to their study

17This contrasts with other cheap talk refinements such as neologism proofness (Farrell, 1993), which often
eliminate all CS equilibria. Of course, neologism proofness — and related criteria — were developed for a
much larger class of cheap talk games than just CS.
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of this situation, and also when when there is an upper bound on burned money, b, close to
0. A conjecture of ASB on the behavior of the equilibrium set as b → 0 was proved correct:
the equilibrium correspondence is both lower and upper hemi-continuous at b = 0.

For any level of b, a theory of equilibrium refinement has been developed following
the tradition of Cho and Kreps (1987) and Banks and Sobel (1987). I demonstrated that
the standard D1 criterion is generally ineffective when applied to this model. Instead, a
stronger refinement, the monotonic D1 criterion due to Bernheim and Severinov (2003), was
applied and shown to be quite powerful. The lower hemi-continuity of the mD1 equilibrium
correspondence was then analyzed at b = 0. It was shown that under a standard regularity
condition, only the most-informative CS equilibrium is the limit of mD1 equilibria. This
may be interpreted as a selection criterion amongst the set of CS pure cheap talk equilibria
as follows. If (1) CS is best thought of as an approximation to a model where there are
small amounts of burned money available, and (2) mD1 equilibria are the most reasonable
equilibria to focus on with burned money, then the most-informative equilibrium of CS is
the “right” equilibrium to focus on, as is the common practice in the literature. I would like
to emphasize, however, that the mD1 criterion is quite strong, especially in the context of
the ASB model, since the signal monotonicity it imposes may not be entirely compelling as
a restriction when all types have the same preferences over the signal space. Nonetheless,
given the inability of standard criteria to restrict the set of equilibria, it has merit as a useful
tool. At the very least, the analysis shows that the most-informative CS equilibrium is
“extremely robust” in the sense of being a limit of equilibria with very desirable properties;
moreover, no other CS equilibrium is “as robust” (under a regularity condition).

I propose a complimentary theory of CS equilibrium selection in Kartik (2005). The
model there is one of information transmission when lying or misreporting is costly; it relies
on weaker refinements of equilibrium.
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Appendix A: Proof of Theorem 3

Outline
The main part of the proof (termed characterization below) is to show that any mD1

equilibrium must satisfy conditions (a)-(c) of the Theorem, and that there must be a t ∈ [0, t] and
partial partition 〈t0 ≡ t, t1, ..., tJ ≡ 1〉 that satisfy conditions (i)-(iii) of the Theorem. The converse
(that for any t ∈ [0, t] and a partial partition of [t] that satisfy (i)-(iii), there is an mD1 equilibrium
satisfying (a)-(c)) follows from the characterization readily, without further proof. Finally, the
existence part of the proof proves existence of an mD1 equilibrium for all b.

Throughout the proof, given a strategy for the Sender, σ, I will write σm(t) to denote the
message sent by type t and σb(t) to denote the burned money component used by type t. With
respect to a strategy σ, for any b, let tl (b) ≡ inf {t : σb (t) = b} and th (b) ≡ sup {t : σb (t) = b}. If
σ involves pooling on some b, then every type t ∈ (tl (b) , th (b)) plays σb(t) = b. Following ASB, let
T (m, b) ≡ {t : σ(t) = (m, b)}.

Characterization
Two simple observations are worth emphasizing about any mD1 equilibrium. Pick any

level of burned money, b. First, the set of types using b must be convex (this follows from signal
monotonicity alone); second, there must be a finite partition of the set of types using b into connected
non-degenerate intervals, such that all the types in an any element of the partition must use the
same cheap talk message. This latter point is simply the logic of CS holding the level of burned
money, b, fixed. An implication that will be extensively used is that for any (m, b), T (m, b) must
be convex, and moreover |T (m, b)| ∈ {0, 1,∞}. (Note that there is pooling on some b if and only if
|⋃m T (m, b)| > 1; b is unused if and only if |⋃m T (m, b)| > 1; and a type t is separating if and only
if |T (σ(t))| = 1; )

The following Lemma says that if there is pooling on some level of money burning, then
there must be some unused levels immediately above it.

Lemma A.1. In any mD1 equilibrium, (σ, α), if there pooling on some bp < b, then there exists
θ(bp) > 0 such any b ∈ (bp, bp + θ(bp)) is unused.

Proof. Suppose there is pooling on bp < b. As shorthand, denote th(bp) as simply th. If σb (th) > bp,
then by signal monotonicity, we are done, since signals in (bp, σb (th)) are unused. So assume that
σb (th) = bp. Similarly, if th = 1, then we are done, since signals b ∈ (

bp, b
)

are unused. So assume
th < 1 . Let mh ≡ σm (th).

Claim: |T (bp,mh) | > 1.
Proof: If not, then since T (bp, mh) is a connected set, there is no other type t < th playing

(b,mh), whence type th is separating. But then, for small enough ε > 0, some type th − ε would
prefer to mimic type th, contradicting equilibrium. ‖

It follows from the Claim that α (bp,mh) < aR (th). Let b′ ≡ limt↓th
σb (t). (b′ is well-

defined by signal monotonicity, though it may not be played in equilibrium.)
Claim: b′ > bp.
Proof: Suppose not. By signal monotonicity, it must be that b′ = bp = σb (th). Note that

σb is then continuous at th. Since σb (t) > bp for all t > th, it follows that σb is strictly increasing
on (th, th + δ) for some δ > 0. Hence, defining aε ≡ (α ◦ σ)(th + ε), we have aε = aR (th + ε)
for small enough ε > 0. By picking ε > 0 small enough, we can make σb (th + ε) − bp arbitrarily
close to 0, whereas uS (aε, th) − uS (α (bp,mh) , th) is positive and bounded away from 0, because
α (bp,mh) < aR (th) < aε < aS (th). Therefore, for small enough ε > 0, th prefers to imitate th + ε,
contradicting equilibrium. ‖

This completes the proof because signals in (bp, b
′) are unused. ¤
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In the following lemma, for any b < b, let θ(b) denote the θ identified in Lemma A.1. The
content is that all the the unused money levels immediately above a pooling money level, bp < b,
must induce the inference that the Sender is the highest (strictly speaking, the supremum) type
using bp.

Lemma A.2. In any mD1 equilibrium, (σ, α), if there pooling on bp < b, then for all b ∈
(bp, bp + θ(bp)), and any m, α (b, m) = y (th (bp)).

Proof. Suppose not, so that there is pooling on bp < σb (1). Write θ as shorthand for θ(bp), th as
shorthand for th (bp), and tl as shorthand for tl (bp). There are two conceptually different cases:
either th < 1, or th = 1.

Case 1: th < 1
Note that for small enough ε > 0, σb (th − ε) = bp, whereas for all ε > 0, σb (th + ε) > bp.

Clearly, for any m, α (bp,m) ∈ (
aR (tl) , aR (th)

)
. Pick any unused signal b̂ ∈ (bp, bp + θ) (this is well-

defined by Lemma A.1). Signal monotonicity implies that for any m, α (bp + θ, m) ≥ α
(
b̂,m

)
≥

α (bp,m). I will prove that for any m, the mD1 criterion requires α
(
b̂,m

)
= aR (th) via two Claims.

Let at ≡ (α ◦ σ)(t). Let σ+
b ≡ inft>th

σb (t), σ+
m ≡ inft>th

σm (t), and σ−m ≡ supt<th
σm (t) .

Note that all three are well-defined by signal monotonicity and the fact that for any (m, b), T (m, b)
is convex. Obviously, σm (th − ε) = σ−m for small enough ε > 0.

Claim: Type th is indifferent between playing
(
σ+

b , σ+
m

)
, σ(th), and (bp, σ

−
m).

Proof: I first prove indifference between σ(th) and (bp, σ
−
m). Suppose not, by way of

contradiction. Then it must be that

uS (ath
, th)− σb (th) > uS

(
α

(
bp, σ

−
m

)
, th

)− bp

since the reverse inequality is a contradiction with equilibrium. But then, by continuity of uS ,
for small enough ε > 0, a type th − ε would rather play σ(th) than (bp, σ

−
m), which contradicts

equilibrium.
Next, I prove indifference between σ(th) and

(
σ+

b , σ+
m

)
. Suppose not, by way of contradiction

the. Then it must be that

uS (ath
, th)− σb (th) > uS

(
α

(
σ+

b , σ+
m

)
, th

)− σ+
b

since the reverse inequality is a contradiction with equilibrium. Now there are two possibilities:
either types just above th are all separating, or all playing (σ+

m, σ+
b ). In either case, it is straightfor-

ward that by continuity of uS , the previous inequality implies that a type th + ε (for small enough
ε > 0) strictly prefers to play σ(th) over σ(th + ε), a contradiction with equilibrium. ‖

Claim: For all b ∈ (bp, bp + θ) and all m, α (b,m) = aR (th).

Proof: Pick any b̂ ∈ (bp, bp + θ). Note that ξl

(
b̂
)

= α (bp, σ
−
m) and ξh

(
b̂
)

= α
(
σ+

b , σ+
m

)
.

Therefore, we must show that ∀a ∈ [
α (bp, σ

−
m) , α

(
σ+

b , σ+
m

)]
, ∀t 6= th,

uS (a, t)− b̂ ≥ uS (at, t)− σb (t) (A-1)
⇓

uS (a, th)− b̂ > uS (ath
, th)σb (th) (A-2)

Consider first t < th. Equilibrium requires

uS (at, t)− σb (t) ≥ uS
(
α

(
bp, σ

−
m

)
, t

)− bp
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and by the earlier Claim, th is indifferent between σ(th) and (bp, σ
−
m) . So it suffices to show

that

uS (a, t)− b̂ ≥ uS
(
α

(
bp, σ

−
m

)
, t

)− bp

⇓
uS (a, th)− b̂ > uS

(
α

(
bp, σ

−
m

)
, th

)− bp

This is true if

uS (a, th)− b̂− [
uS

(
α

(
bp, σ

−
m

)
, th

)− bp

]
> uS (a, t)− b̂− [

uS
(
α

(
bp, σ

−
m

)
, t

)− bp

]

which is equivalent to
∫ a

α(bp,σ−m)
∫ th

t
uS

12 (x, z) dzdx > 0, an inequality that holds because
u12 > 0.

Now consider the other case, t > th. Equilibrium requires

uS (at, t)− σb (t) ≥ uS
(
α

(
σ+

b , σ+
m

)
, t

)− σ+
b

and by the earlier Claim, th is indifferent between σ(th) and
(
σ+

b , σ+
m

)
. So to show that

(A-2) follows from (A-1), it suffices to show that

uS (a, t)− b̂ ≥ uS
(
α

(
σ+

b , σ+
m

)
, t

)− σ+
b

⇓
uS (a, th)− b̂ > uS

(
α

(
σ+

b , σ+
m

)
, th

)− σ+
b

This is true if

uS (a, th)− b̂− [
uS

(
α

(
σ+

b , σ+
m

)
, th

)− σ+
b

]
> uS (a, t)− b̂− [

uS
(
α

(
σ+

b , σ+
m

)
, t

)− σ+
b

]

which is equivalent to
∫ α(σ+

b ,σ+
m)

a

∫ t

th
uS

12 (x, z) dzdx > 0, an inequality that holds because
uS

12 > 0. ‖
This complete the proof for th < 1.

Case 2: th = 1
If σb (1) > bp, then the same arguments as in Case 1 work, except that one now defines

σ+
b ≡ σb (1), and σ+

m ≡ σm (1). So consider σb (1) = bp < 1. Pick any b̂ > bp. Since ξh

(
b̂
)

= aR (1),

we must show that ∀a ∈ [
α (bp, σm (1)) , aR (1)

]
, ∀t < 1,

uS (a, t)− b̂ ≥ uS (at, t)− σb (t)
⇓

uS (a, 1)− b̂ > uS (a1, 1)− bp

Equilibrium requires that for all t,

uS (at, t)− σb (t) ≥ uS (α (bp, σm (1)) , t)− bp

So it suffices to show that for all t < 1,

uS (a, 1)− b̂− [
uS (α (bp, σm (1)) , 1)− bp

]
> uS (a, t)− b̂− [

uS (α (bp, σm (1)) , t)− bp

]
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This is equivalent to
∫ a

α(bp,σm(1))

∫ 1

t

uS
12 (x, z) dzdx > 0

which is an inequality that holds because uS
12 > 0. ¤

The following Lemma is a counterpart to the previous one: it says that if there are any
unused money levels at the bottom of the money space, the Receiver must infer that it is type 0 if
any such signals are observed.

Lemma A.3. In any mD1 equilibrium, (σ, α), for all (m, b) such that b < σb (0), α (b,m) = y (0).

Proof. Pick any b̂ < σb (0) and any m. I will argue that G(0|b̂,m) = 1, which suffices to prove the
Lemma. For all t, let at ≡ (α ◦ σ)(t). Since ξl

(
b̂
)

= aR (0), and ξh

(
b̂
)

= a0, it suffices to show

that ∀a ∈ [
aR (0) , a0

]
, ∀t > 0,

uS (a, t)− b̂ ≥ uS (at, t)− σb (t)
⇓

uS (a, 0)− b̂ > uS (a0, 0)− σb (0)

Equilibrium requires

uS (at, t)− σb (t) ≥ uS (a0, t)− σb (0)

and hence it suffices to show that

uS (a, 0)− b̂− [
uS (a0, 0)− σb (0)

]
> uS (a, t)− b̂− [

uS (a0, t)− σb (0)
]

This inequality can be rewritten as
∫ a0

a

∫ t

0

uS
12 (x, z) dzdx > 0

which holds because uS
12 > 0. ¤

Proposition A.1. In any mD1 equilibrium, (σ, α), |⋃m T (m, b)| ≤ 1 for all (m, b) where b 6= b.

Proof. Consider a bp < b with |T (m, bp)| > 1 for some m. Lemma A.1 implies that there exist some
unused b immediately above bp, and Lemma A.2 implies that such b would induce aR(th(bp)) from
the Receiver. But then, for small enough ε > 0, δ > 0, a type th (bp)− ε would prefer to send bp + δ
and induce aR (th(bp)) rather than send bp and induce (α ◦ σ)(th − ε) (which is bounded away from
aR (th(rp))), contradicting equilibrium. ¤

Consequently, in an mD1 equilibrium, there can be at most one level of burned money that
has pooling, and it must be b. This reveals the basic structure of any mD1 equilibrium: there must
be some cutoff type t ∈ [0, 1] such that all types below t separate by playing distinct σb(t), and all
types above t play σb(t) = 1. Of course, types above t may further segment themselves using cheap
talk as in CS. It is straightforward that the partial partition of [t, 1] through cheap talk must satisfy
the arbitrage condition (A).

An implication of Lemma A.3 is that if the the lowest type is separating, then it must be
sending b = 0.
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Proposition A.2. In any mD1 equilibrium, (σ, α), if |T (σ(0))| = 1 then σb (0) = 0.

Proof. Suppose not. Then (α ◦ σ)(0) = aR (0) and σb (0) > 0. By Lemma A.3, for all m,
α (m, 0) = aR (0). But then, type 0 strictly prefers to play (m, 0) for any m, rather than σ(0),
contradicting equilibrium. ¤

Next, I provide some conditions that the cutoff type t must satisfy. First, a technical
Lemma about continuity of the money burning component of the Sender’s strategy.

Lemma A.4. In any mD1 equilibrium, (σ, α), with cutoff t, (i) σb is continuous at all t 6= t; and
(ii) if t > 0, then σb is either right- or left-continuous at t.

Proof. (Part i) Trivially, σb is continuous above t, since σb(t) = b for all t > t. Suppose towards a
contradiction that there is a discontinuity at some t′ < t. First assume σb (t′) < limt↓t′ σb (t) ≡ b′.
Since t′ < t, for small enough ε > 0, a type t′ + ε is separating. Continuity of uS implies
uS

(
aR (t′ + ε) , t′ + ε

)− uS
(
aR (t′) , t′ + ε

) → 0. However, σb (t′ + ε)− σb (t′) → b′ − σb (t′) > 0. Hence,
for small enough ε > 0, t′+ ε prefers to imitate t′, contradicting equilibrium. The argument for the
other case where σb (t′) > limt↑t′ σb (t) is analogous, establishing that t′ prefers to imitate t′ − ε for
small enough ε > 0.

(Part ii) Suppose not. Since σb is not right-continuous at t, then by signal monotonicity, t
is separating. Since σb is not left-continuous, signal monotonicity implies σb (t) > limt↑t σb (t) ≡ b′′.
I argue that t prefers to imitate a type t − ε small enough ε > 0, which contradicts t separating.
Suppose not. Then for all ε > 0,

uS
(
aR (t− ε) , t

)− σb (t− ε) ≤ uS
(
aR (t) , t

)− σb (t)

Since limε↓0 σb (t− ε) = b′′, the LHS is converging to uS
(
aR (t) , t

) − b′′. So the above
inequality can hold for all ε > 0 only if b′′ ≥ σb (t), a contradiction. ¤

Consequently, if t ∈ (0, 1), then σb(t) ∈ {limt↑t σb (t) , b}; if t = 1, then σb(t) = limt↑t σb (t).
Note that by Proposition A.2, if t = 0, then σb(t) ∈ {0, b}. The next step is to establish an
indifference condition if t ∈ (0, 1), and a weak preference condition when t = 0. To state these
formally, let µ(t) ≡ limt̃↓t σm

(
t̃
)

and β(t) ≡ limt̃↑t σb

(
t̃
)
.

Proposition A.3. In any mD1 equilibrium, (σ, α), (i) if the cutoff t > 0 and β(t) < b, then t is
indifferent between playing

(
µ(t), b

)
and playing (m,β(t)), for any message m; (ii) if the cutoff t = 0,

then type 0 weakly prefers playing
(
µ(0), b

)
to playing (m, 0) for any m.

Proof. The second part is simpler: if t = 0, then either σb(0) = b, in which case the result must
hold for type 0 to be playing optimally; or σb(0) = 0, in which case if type 0 strictly prefers (m, 0)
(for some m) to

(
µ(0), b

)
, the continuity of uS implies that so does a type close to 0, contradicting

equilibrium.
Now I prove the first part of the Proposition. Assume t > 0 and β(t) < b. By Lemma

A.4, either σb (t) = β(t) or σb (t) = b. So suppose first σb (t) = β(t), in which case t is separating.
Define for ε > 0,

W (ε) ≡ uS
(
aR (t) , t + ε

)− β(t)− [
uS

(
α

(
µ(t), b

)
, t + ε

)− b
]

If the Proposition does not hold, then W (0) > 0 (equilibrium prevents W (0) < 0). But
then, by continuity of W , a type t + ε would prefer to imitate t rather than play its equilibrium
strategy of (µ(t), b), a contradiction.
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It remains to consider σb (t) = b, in which case t is pooling and σ(t) = (µ(t), b). Optimality
of σ(t) implies that for all m, uS ((α ◦ σ)(t), t) ≥ uS

(
α

(
m, b

)
, t

)
. Thus, if the Proposition does not

hold, it must be that for some m′,

uS (α(σ(t)), t)− b > uS (α (m′, β(t)) , t)− β(t) (A-3)

Claim: For all m, α (m, β(t)) = aR (t).
Proof: Suppose not, for some message m. Clearly, α (m,β(t)) ≥ α (m, b) for all b ≤ β(t).

Since all types below t are separating and using reports smaller that β(t), it follows that α (β(m, t)) >
aR (t). But this can only be optimal for the Receiver if she puts positive probability on some type
t > t when seeing β(t). I will argue that this is ruled out by the mD1 criterion. To show this, it
suffices to show that for all a ∈ [

aR (t) , α(σ(t))
]

and t > t,

uS (a, t)− β(t) ≥ uS
(
α

(
σm (t) , b

)
, t

)− b

⇓
uS (a, t)− β(t) ≥ uS (α(σ(t)), t)− b

Since equilibrium requires

uS (α(σ(t)), t)− b ≥ uS (α(σ(t)), t)− b

it is sufficient if the following inequality holds

uS (a, t)− β(t)− [
uS (α (σ(t)) , t)− b

]
> uS (a, t)− β(t)− [

uS (α (σ(t)) , t)− b
]

This can be rewritten as
∫ α(1,µ(t))

a

∫ t

t
uS

12 (x, z) dzdx > 0, which holds because uS
12 > 0. ‖

By the Claim, equation (A-3) simplifies to

uS (α(σ(t)), t)− b > uS
(
aR(t), t

)− β(t)

But then by continuity of uS , for small enough ε > 0,

uS (α (σ(t)) , t− ε)− b > uS
(
aR (t) , t

)− β(t)

Also, continuity of uS and limt↑t σb (t) = β(t), implies that as ε ↘ 0,

uS
(
aR (t− ε) , t− ε

)− σb (t− ε) → uS
(
aR (t) , t

)− β(t)

Therefore, for small enough ε > 0,

uS (α (σ(t)) , t− ε)− b > uS
(
aR (t− ε) , t− ε

)− σb (t− ε)

which implies that some type t−ε prefers mimicking t by playing σ(t) rather than separating,
contradicting equilibrium. ¤

It remains to analyze the separating portion of the type space, [0, t). Since σb must be
strictly increasing in this region, σ−1

b is well-defined, and optimality requires

σb (t) ∈ arg max
b∈[0,b]

uS
(
aR

(
σ−1

b (b)
)
, t

)− b

25



The arguments of Mailath (1987) can be used to show that σb is everywhere differentiable
on (0, t),18 and hence must satisfy the following first order condition for all t ∈ (0, t):

uS
1

(
aR (t) , t

)
aR
1 (t)

1
σ′b (t)

− σb (t) = 0

This is an ordinary non-linear differential equation, whose initial condition is σb (0) = 0 by
Proposition A.2. It is routine to derive that the unique solution is

σb(t) = b∗(t) ≡
∫ t

0

uS
1 (y(s), s)y′(s)ds

which is equation (1) of the main text. It is also readily verified that this integral function solves
the second order condition for optimality, and hence is indeed the unique strategy that permits
separation over [0, t]. Let t be defined by b∗(t) = b if such a type exists (obviously, it is unique if it
exists), and t = 1 otherwise; it follows that t ≤ t (otherwise, separation is impossible on [0, t]).

This concludes the characterization part of the proof.

Existence
For convenience, let σ∗b be the separating function identified in the characterization part of

the proof. (That is, σ∗b ≡ b∗, where b∗ is defined by equation (1).)
Step 0: Preliminaries
Start by defining the function

φ (t) ≡ uS
(
aS (t) , t

)− b− [
uS

(
aR (t) , t

)− σ∗b (t)
]

φ (t) is the gain for type t from burning b and receiving his ideal action over separating
himself (thus inducing aR(t)) with signal σ∗b (t). Note that in equilibrium, the gain from pooling
over separating can be no more than φ (t), and will generally be strictly less. Clearly φ is continuous,
and φ

(
t
)

> 0. There are two conceptually distinct cases: one where φ (t) = 0 for some t ≤ t, and
the other where φ (t) > 0 for all t ≤ t. Define

t0 ≡
{

0 if φ (t) > 0 for all t ≤ t
supt∈[0,t]{t : φ (t) = 0} otherwise

Note that a necessary condition for t0 = 0 is that φ(0) ≥ 0. In everything that follows, we
are mainly concerned with t ∈ [

t0, t
]
. So statements such as “for all t” are to be read as “for all

t ∈ [t0, t]” and so forth unless explicitly specified otherwise. Note that for all t ∈ (
t0, t

]
, φ(t) > 0.

Step 1: Constructing the necessary sequences.
Initialize pl

0 (t) = pr
0 (t) = t, and al

0 (t) = ar
0 (t) = aR (t). Define

∆ (a, t) ≡ uS (a, t)− b− [
uS (ar (t) , t)− σ∗b (t)

]

Clearly, ∆ is continuous in both arguments, and strictly concave in a with a maximum at
aS (t). Since ∆ (ar (t) , t) ≤ 0 ≤ ∆

(
aS (t) , t

)
for all t ∈ [

t0, t
]
, it follows for any relevant t, in the

domain a ∈ [
ar (t) , aS (t)

]
there exists a unique solution to ∆ (a, t) = 0. Call this al

1 (t). Similarly,
on the domain a ∈ [

aS (t) ,∞)
, there exists a unique solution to ∆ (a, t) = 0. Call this ar

1 (t). Note
that by continuity of ∆, al

1 and ar
1 are continuous, al

1

(
t
)

= ar
0

(
t
)
, and ar

1

(
t0

)
= al

1

(
t0

)
= aS

(
t0

)

18Differentiability almost-everywhere is immediate from monotonicity.
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if t0 > 0. Since the function a (t1, t2) is strictly increasing in both arguments for t1, t2 ∈ [0, 1]
and constant outside [0, 1], given t there is either no or a unique t′ that solves a (t, t′) = aq

1 (t) for
q ∈ {l, r}. If there is a solution, call it pq

1 (t), otherwise set pq
1(t) = 1 (for each q ∈ {l, r}). It follows

that that pl
1 and pr

1 are continuous functions, pl
1 (t) ≥ pl

0 (t) with equality if and only if t = t, and
pr
1 (t) > pr

0 (t). Note that pr
1 (t) ≥ pl

1 (t), and pl
1

(
t0

)
= pr

1

(
t0

)
if t0 > 0.

For j ≥ 2 and q ∈ {l, r} , recursively define pq
j (t) as the solution to

uS
(
a

(
pq

j−1 (t) , pq
j (t)

)
, pq

j−1 (t)
)− uS

(
a

(
pq

j−2 (t) , pq
j−1 (t)

)
, pq

j−1 (t)
)

= 0

if a solution exists that is strictly greater than pq
j−1(t), and otherwise set pq

j (t) = 1. By the
monotonicity (constancy) of a in (outside) the type space, and concavity of uS in the first argument,
pq

j (t) is well-defined and unique. Define aq
j (t) ≡ a

(
pq

j−1 (t) , pq
j (t)

)
. Note that for all j ≥ 2,

pq
j (t) > pq

j−1 (t) and aq
j (t) > aq

j−1 (t) if and only if pq
j−1(t) < 1. For all j and q ∈ {l, r}, pq

j (t) is
continuous, pr

j (t) ≥ pl
j (t) for all t, pl

j (t) = pr
j (t) if t > 0, and pl

j+1

(
t
)

= pr
j

(
t
)

(these follow easily
by induction, given that we noted all these properties for j = 1).

Step 2: The critical segment M
I now argue that exists M ≥ 1 such that pr

M−1

(
t
)

< 1 = pr
M

(
t
)
. (Obviously, if it exists, it is

unique.) To prove this, first note that by definition, pr
0

(
t
)

= t < 1. Let K = inf{K : pr
K(t) = 1}.19

It is sufficient to show that ∃ε > 0 such that for any j ∈ {0, . . . , K − 1},
∣∣ar

j+1

(
t
)− ar

j

(
t
)∣∣ ≥ ε.

For any j ∈ {0, . . . , K − 1}, type pr
j

(
t
)

is indifferent between ar
j

(
t
)

and ar
j+1

(
t
)
, by construction.

Since ar
j

(
t
)

< ar
j+1

(
t
)
, it must be that ar

j

(
t
)

< aS
(
pr

j

(
t
))

< ar
j+1

(
t
)
. On the other hand, by their

definitions, we also have ar
j

(
t
) ≤ ar

(
pr

j

(
t
)) ≤ ar

j+1

(
t
)
. Since there is a uniform lower bound λ > 0

on
∣∣aS (t)− aR (t)

∣∣, it follows that
∣∣ar

j+1

(
t
)− ar

j

(
t
)∣∣ ≥ λ > 0 for all j ∈ {0, . . . , K − 1}.

Step 3: Existence when t0 > 0.
Consider the functions pl

M and pr
M . These are continuous, and pl

M

(
t
)

= pr
M−1

(
t
)

< 1 =
pr

M

(
t
)
. Moreover, pl

M (t) = pr
M (t); hence either pr

M (t0) < 1 or pl
M (t0) = 1. It follows that there is

some type t ∈ [t0, t] such that either (i) pl
M (t) = 1 and pl

M (t) < 1 for all t > t; or (ii) pr
M (t) = 1 and

pr
M (t) < 1 for all t < t. By construction, there is an mD1 equilibrium where all types t ∈ [0, t) play

σ∗b (t), and all types t ∈ [t, 1] play σb (t) = 1, and further segment themselves using the cheap-talk
messages into the partial partition 〈t, pq

1 (t) , . . . , pq
M (t)〉.

Step 4: Existence when t0 = 0.
By the continuity of pl

M and pr
M , the logic in Step 3 can fail when t0 = 0 only if pl

M (0) <
1 = pr

M (0). So suppose this is the case. Note that this requires pl
1 (0) < pr

1 (0). For any
t ∈ [

pl
1 (0) , pr

1 (0)
]
,

uS (a (0, t) , 0)− kC
(
b, 0

)− [
uS (ar (0) , 0)− kC (0, 0)

] ≥ 0

with strict inequality for interior t. In words, when t ∈ [
pl
1 (0) , pr

1 (0)
]
, type 0 weakly prefers

(indifference at the endpoints and strict preference for interior t) inducing a (0, t) by burning b over
inducing ar (0) by burning 0. This follows from the construction of pl

1 and pr
1. Given any t ∈ [0, 1],

define τ0 (t) = 0, τ1 (t) = t, and recursively, for j ≥ 2, τj (t) as the solution to

uS (a (τj−1 (t) , τj (t)) , τj−1 (t))− uS (a (τj−2 (t) , τj−1 (t)) , τj−1 (t)) = 0

if a solution exists that is strictly greater than τj−1(t), and otherwise set τj (t) = 1. By the
monotonicity (constancy) of a in (outside) the type space, and concavity of uS in the first argument,

19Recall that the infimum of an empty set is +∞.
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τj (t) is well-defined and unique for all j. It is straightforward that for all j ≥ 0, τj (t) is continuous
in t. Since

τM

(
pl
1 (0)

)
= pl

M (0) < 1 = pr
M (0) = τM (pr

1 (0))

it follows that
t̃ = min

t∈[pl
1(0),p

r
1(0)]

{t : τM (t) = 1}

is well-defined and lies in
(
pl
1 (0) , pr

1 (0)
]
. By construction, there is an mD1 equilibrium where all

types play b, and segment themselves using cheap talk messages into the partition 〈0 = τ0

(
t̃
)
, τ1

(
t̃
)
, . . . , τM

(
t̃
)

= 1〉.
This completes the existence part of the proof.

Appendix B: Other Proofs

Proof of Theorem 4. Fix a CS equilibrium with supporting partition 〈t0 ≡ 0, t1, . . . , tN ≡ 1〉.
For sufficiency, simply note that if uS(y(0, t1), 0) > uS(y(0), 0), then there is an mD1 equi-

librium with supporting partition 〈0 = s0 ≡ s, s1 = t1, . . . , sN = tN ≡ 1〉(b) for all b small enough.
This is because given the preference condition of type 0, once b is sufficiently small, it is an mD1
equilibrium for all types to burn b and segment using cheap talk according to the CS partition. (An
equilibrium strategy for the Receiver is obvious.)

For necessity, suppose the statement is false. Then uS(y(0, t1), 0) < uS(y(0), 0) and yet
there is a sequence of equilibria as k → 0 with cutoff types sk and partitions 〈sk

0 ≡ s, sk
1 , ..., sk

N ≡ 1〉
such that for every δ > 0, there exists an ε > 0 such that if k < ε,

∣∣sk
1 − t1

∣∣ < δ. I now argue to
a contradiction. For small enough k, sk and sk

1 are arbitrarily close to 0 and t1 respectively, and
hence by continuity of y(·, ·) and uS , for small enough k,

uS
(
y

(
sk

)
, sk

)
> uS

(
y

(
sk, tk1

)
, sk

)

Since b > b∗
(
sk

)
for small enough k, it follows that for small enough k,

uS
(
y

(
sk

)
, sk

)− b∗
(
sk

)
> uS

(
y

(
sk, sk

1

)
, sk

)− b

which means that type sk strictly prefers to separate by playing b∗(sk) rather than pool with(
sk, tk1

]
by playing b (and sending the appropriate cheap talk message), contradicting equilibrium

(Theorem 3 (ii,iii)). ¤

Proof of Lemma . Let t∗ be defined by uS(y(0, t∗), 0) = uS(y(0), 0) if such a t∗ exists; otherwise let
t∗ = 1.

Existence: If uS(y(0, 1), 0) > uS(y(0), 0), then the partition of the babbling equilibrium
(which always exists) satisfies the desired condition, and we are done. So assume henceforth
uS(y(0, 1), 0) < uS(y(0), 0).20 Equivalently, t∗ < 1.

For t ∈ [0, t∗], let p0 (t) = 0, p1 (t) = t, and a1 (t) = y (0, t). For j ≥ 2, recursively define
pj (t) as the solution to

uS (y (pj−1 (t) , pj (t)) , pj−1 (t))− uS (y (pj−2 (t) , pj−1 (t)) , pj−1 (t)) = 0

if a solution exists that is strictly greater than pj−1(t), and otherwise set pj (t) = 1. By the
monotonicity (constancy) of y(·, ·) in (outside) the type space, and concavity of uS in the first
argument, pj (t) is well-defined and unique for all j. Define for all j ≥ 1, aj (t) ≡ y (pj−1 (t) , pj (t)).

20Equality is ruled out by Assumption 1.
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One can show by induction that pj is continuous for all j ≥ 1. Since p2 (0) = t∗, induction also
yields that pj (0) = pj−1 (t∗) for all j ≥ 1.

It can be shown that there exists an M ≥ 1 such that pM−1 (t∗) < 1 = pM (t∗). (Obviously,
given that it exists, it is unique.) The proof is analogous to Step 2 in the Existence portion of the
proof of Theorem 3. This implies that pM (0) = pM−1(t∗) < 1 = pM (t∗). Since pM is continuous,
it follows that t̃ = mint∈[0,t∗]{t : pM (t) = 1} is well-defined and lies in (0, t∗]. By construction,
the partition 〈0 = p0

(
t̃
)
, t̃ = p1

(
t̃
)
, . . . , pM

(
t̃
)

= 1〉 is a CS equilibrium partition where t̃ ≤ t∗. By
Assumption 1, t̃ 6= t∗; hence in fact t̃ < t∗. Applying the definition of t∗, we have uS(y(0, t̃), 0) >
uS(y(0), 0).

Uniqueness under Regularity Condition: Now assume the Regularity Condition. We
must show that there is a unique CS equilibrium partition, 〈0 ≡ t0, t1, . . . , tN ≡ 1〉, with t1 < t∗.
First note that under the Regularity Condition, if t∗ ≥ 1, then babbling is the unique CS equilibrium,
hence assume that t∗ < 1. The key observation is that under the Regularity Condition, for all i ≥ 0,
the function pi(t) is non-decreasing everywhere, and strictly increasing if pi(t) < 1. This follows
from the construction of pi and the restriction imposed by the Regularity Condition. Therefore,
since pn(0) < 1 and pn(t∗) < 1 for all n < M , there is no n-segment CS outcome with first segment
boundary t1 ≤ t∗ for any n < M . Crawford and Sobel (1982, Lemma 2) proved that under Condition
2, CS outcomes with more segments have shorter first segments. Accordingly, it suffices to show that
there is no (M +1)-segment CS outcome. But this follows from the facts that pM+1(0) = pM (t∗) = 1
and pM+1 is non-decreasing; hence there is no t′ ∈ (0, t̃) such that t′ = mint∈(0,t∗]{t : pM+1(t) = 1},
and thus no (M + 1)-segment CS outcome. ¤
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