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1 Introduction

In an important paper on signaling with multiple instruments, Austen-Smith and Banks [2,

hereafter ASB] augment the seminal cheap talk model of Crawford and Sobel [3, hereafter

CS] by allowing the Sender to send not only costless messages, but also choose from a set of

purely dissipative signals, i.e. “burn money”. ASB’s contribution is twofold: first, to show

that money burning by itself can be an effective signaling instrument in the CS setting;

second, to study how money burning can interact with and influence the informativeness of

cheap talk messages.

This note accomplishes three tasks:

1. Section 3 identifies an error in Theorem 1 of ASB that asserts the existence of partic-

ular equilibria with money burning in relation to equilibria of CS. I provide a variant

of the Theorem, which preserves some of the main implications, but not all of them.

2. Section 4 derives a result showing that money burning cannot expand the set of

environments in which cheap talk is credible, except perhaps in knife-edged cases.

This considerably strengthens Theorem 2 in ASB, but also shows that ASB’s (p. 13)

claims following that Theorem are incorrect. In particular, not only is the example

reported in ASB (p. 13) erroneous,1 but moreover, the result here implies that no

such generic example exists.

3. Suppose the maximal amount of available burned money is some b ≥ 0. If b = 0, the

setting is effectively that of CS. Throughout their paper, ASB work with the case of

b = ∞ (or sufficiently large). However, ASB (p. 15) conclude with a conjecture that

the “qualitative properties of the equilibrium set are close to those of the CS model”

when b ≈ 0; to my knowledge, this has remained an open question. In Section 5, I

show that the conjecture is in fact correct and thereby establish a continuity result

on the equilibrium correspondence at b = 0.

1Footnote 8 in this note points out exactly where their example fails.
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Before turning to the formalities, I should mention that the ASB model can be considered

as a limit of the discriminatory signaling model studied in Kartik [4].2 An earlier, extended

version of this note [5] contains a detailed comparison of the similarities and differences,

and also discusses issues pertaining to refinement of equilibria in the ASB model.

2 Preliminaries

To preserve continuity of exposition, I follow ASB’s notation closely; the reader should

consult their paper for a discussion of the model.

A Sender, S, is privately informed about a variable, t ∈ [0, 1] (his type) which is drawn

from a distribution with density h, h(t) > 0 for all t. S sends a signal to the Receiver,

R, who observes the signal and then takes an action a ∈ R. Let σ : [0, 1] → M × R+ be

the Sender’s (pure) strategy that consists of a cheap talk message m ∈ M , where M is any

uncountable space, and a burned money component b ∈ R+, for every type t ∈ [0, 1]. Let

α : M×R+ → R+ be the Receiver’s (pure) strategy that consists of an action a ∈ R for every

(m, b) pair. The Receiver’s beliefs are denoted by the cdf G(·|m, b). Over triplets (a, b, t),

the Receiver’s preferences are uR(a, t) and the Sender’s preferences are uS(a, t)−b where uS

and uR satisfy the CS assumptions.3 The utility maximizing actions given t are denoted

yi(t) ≡ arg maxa ui(a, t) for each i ∈ {S, R}; it is assumed that for all t, yR(t) < yS(t). For

any t ≤ t′, define

y(t, t′) ≡
{

arg maxa

∫ t′
t uR (a, τ)h(τ)dτ if t′ > t

yR (t) if t′ = t

As shorthand, let y(t) ≡ y(t, t).

In what follows, I use two concepts from CS. First, recall the idea of a solution to the

standard arbitrage condition.

2By definition, money burning is non-discriminatory in the sense that its cost does not vary with the
Sender’s private information or type; this is in contrast to discriminatory signaling where the cost of using
a particular signal varies with the Sender’s type.

3That is, for each i ∈ {S, R}, ui(·, ·) is twice-differentiable, ui
11(·, ·) < 0, and ui

12(·, ·) > 0. To ease
notation, I have suppressed the bias parameter, x, used by ASB.
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Definition 1. A sequence 〈s0, s1, . . . , sN 〉 such that

∀i = 1, . . . , N − 1, uS(y(si−1, si), si) = uS(y(si, si+1), si) (A)

is a forward (resp. backward) solution to (A) if s1 > s0 (resp. s1 < s0).

Next, CS (p. 1444) introduced a condition on the product space of preferences and

distribution of private information that ensures the difference equation solutions to the

above arbitrage condition satisfy a “regularity” property.

Condtion M. For any two increasing sequences, 〈t0, t1, ..., tK〉 and 〈t̃0, t̃1, ..., t̃K〉, that are

both forward solutions to (A), if t1 > t̃1 > t0 = t̃0, then tj > t̃j for all j ∈ {1, . . . , K}.

What this says is that if we start at a given point, the solutions to (A) must all move

up or down together.

Throughout, the term equilibrium refers to a sequential equilibrium, which is equivalent

to perfect Bayesian equilibrium in signaling games such as this one.

3 Squeezing in Separating Segments

ASB (Theorem 1, p. 7) assert the following.

ASB Theorem. Let (σ, α) be a CS equilibrium with supporting partition 〈t0 ≡ 0, t1, . . . , tN ≡ 1〉.
Then for all t̂ ≤ t1, there exists a partition 〈s0 ≡ 0, s1 ≡ t̂, . . . , sN , sN+1 ≡ 1〉 supporting an

equilibrium (σ, α)(t̂) such that

∀i = 0 . . . , N − 1, ∀t ∈ [si, si+1), σ(t) = (mi, 0), mi 6= mj ∀i 6= j;

∀t ∈ [sN , 1], σ(t) = (m◦, b(t)),

where b(t) is a strictly increasing function.4

4ASB also pin down the function b(t), which I do not include here for brevity.
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3.1 The Problem

ASB’s proof proceeds in two steps. In the first, they start by picking any t̂ < t1 (the case

of t̂ = t1 can be dealt with easily), and consider a forward solution to (A) starting with

s0 ≡ 0 and s1 ≡ t̂. This, they claim, provides a sequence 〈s0 ≡ 0, s1 ≡ t̂, . . . , sN 〉 such that

sn < tn for all n ∈ {1, . . . , N}. Their justification of this claim contains the error. The

second part of the proof is to construct the strictly increasing function b(t) such that it is

optimal for all types t ∈ [sN , 1] to reveal themselves by burning b(t).

I note that if the above claim were true, that would make Condition M always true, since

the monotonicity of forward solutions to (A) is precisely what it assumes. The specific error

leading to ASB’s assertion is the following. On p. 8, they define for any s′, s, and t, the

function

V (s′, s, t) = uS(y(s′, s), s)− uS(y(s, t), s)

ASB claim that fixing s′ and setting V ≡ 0 yields their Eq. (6) through implicit differenti-

ation:
dt

ds

∣∣∣∣
s′

=
uS

2 (y(s′, s), s)− uS
2 (y(s, t), s)

uS
1 (y(s, t), s)y2(s, t)

(6)

But this is wrong: it ignores the indirect effect of s on V through the change of y(s′, s)

and y(s, t). To see this, observe that totally differentiating V with respect to s and t

(holding s′ fixed) yields

dV =
[
uS

1 (y(s′, s), s)y2(s′, s) + uS
2 (y(s′, s), s)− uS

1 (y(s, t), s)y1(s, t)− uS
2 (y(s, t), s)

]
ds

− [
uS

1 (y(s, t), s)y2(s, t)
]
dt

and therefore the correct formula is

dt

ds

∣∣∣∣
s′

=
uS

2 (y(s′, s), s)− uS
2 (y(s, t), s)

uS
1 (y(s, t), s)y2(s, t)

+
uS

1 (y(s′, s), s)y2(s′, s)− uS
1 (y(s, t), s)y1(s, t)

uS
1 (y(s, t), s)y2(s, t)

(6*)

For ASB’s claim to go through, it would have to be that the Right Hand Side (RHS) of Eq.

(6*) is positive. As they argue, the first term indeed is: both numerator and denominator

of the fraction are negative. However, the second term in (6*)—which is missing in (6)—is

negative. To see this, first note that the denominator is negative, just as in the first term. In
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the numerator, y1(·, ·) > 0 and y2(·, ·) > 0, but uS
1 (y(s′, s), s) > 0 whereas uS

1 (y(s, t), s) < 0.

Hence the numerator is positive, whereby the whole second term is negative. Accordingly,

one cannot in general sign the RHS of (6*), leading to a failure of the argument of ASB.

There is at least one explicit conclusion that ASB draw from their Theorem that may

not be correct. ASB (p. 11) say that their result “implies that a sufficient condition for

there to exist equilibria exhibiting both influential cheap talk and influential costly signals

is that there exist influential CS equilibria.” Given the error, it is an open question whether

this is true when Condition M does not hold. A corollary to Theorem 1 below is that a

sufficient condition is that there exists a CS equilibrium with three influential messages.5

3.2 A Correct Variant

ASB’s Theorem 1 is valid under Condition M.6 However, one would like to know what—

if anything—can be said without imposing Condition M, for at least two reasons: first,

the results of CS regarding existence and characterization of pure cheap talk equilibria do

not require Condition M; second, Condition M is not a condition on primitives.7 There

are a few ways one might alter ASB’s Theorem in this vein; I provide one below which

arguably preserves their main points. As I understand it, ASB’s primary goal was to

show that “we can squeeze in separating segments at the far end of any CS partition.” (p.

7, their emphasis) Their Theorem however claimed more: not only can we squeeze in a

separating segment at the far end of a CS partition, but moreover, we can squeeze it in

while maintaining the same number of influential cheap talk messages. It is here that one

runs into difficulty. Instead, if we are satisfied with squeezing in separation at the cost of

reducing the number of influential cheap talk messages by one, this can be done. Formally,

Theorem 1. Let there be a CS equilibrium with supporting partition 〈t0 ≡ 0, t1, . . . , tN ≡ 1〉.
5A precise definition of influential messages is postponed to Section 4.
6In most applications of CS, Condition M is typically satisfied. For example, it holds in the widely-used

“uniform quadratic” setting where the prior is uniform and utilities are quadratic loss functions.
7See Theorem 2 in CS for sufficient conditions on primitives that imply Condition M.
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Then there exists an equilibrium (σ, α) such that

∀i = 0 . . . , N − 2, ∀t ∈ [ti, ti+1), σ(t) = (mi, 0), mi 6= mj ∀i 6= j;

∀t ∈ [tN−1, 1], σ(t) = (m◦, b(t)),

where b(t) is a strictly increasing function.

The proof is relegated to the Appendix since the logic is similar to that of ASB’s Theorem

1. This modification of the ASB Theorem preserves the essence of their result. In

particular, it immediately implies that full revelation is an equilibrium outcome.

Corollary 1. There is an equilibrium (σ, α) such that for all t, α(σ(t)) = y(t).

Proof. Apply Theorem 1 to a CS “babbling” equilibrium, i.e. a CS equilibrium with sup-

porting partition 〈t0 ≡ 0, t1 ≡ 1〉. ¤

It should be noted that this Corollary is weaker than ASB’s (p. 11) Corollary 1, which

is correct despite the error in their Theorem 1.

4 Can Money Burning Make Cheap Talk Influential?

Following ASB, say that an equilibrium has influential cheap talk if a particular level of

money burning can elicit multiple actions in equilibrium through distinct accompanying

cheap talk messages.

Definition 2. An equilibrium (σ, α) has influential cheap talk if there exist t and t′ such

that m(t) 6= m(t′), b(t) = b(t′), and α(σ(t)) 6= α(σ(t′)).

Similarly, a CS equilibrium is said to be influential if at least two different Receiver

actions are played on the equilibrium path.

Theorem 2 of ASB shows that certain kind of equilibria with influential cheap talk

(termed “left-pooling influential equilibria”) exist if and only if influential equilibria exist

in CS. However, following their Theorem 2, ASB (p. 13) claim that their Theorem “cannot
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be extended to cover all influential equilibria” (their emphasis), because there may be some

equilibria with influential cheap talk when there are no influential CS equilibria. To support

this claim, ASB (p. 13) construct an example where there assert that there is no influential

CS equilibrium, but they claim an equilibrium with influential cheap talk in the presence of

burned money. Unfortunately, the example is erroneous: the strategy profile they report

is not an equilibrium.8 The following result implies that generically, one cannot construct

such an example, because except in knife-edged cases, an equilibrium with influential cheap

talk exists in the ASB model if and only if an influential equilibrium exists in CS.9

Theorem 2. Assume uS(y(0), 0) 6= uS(y(0, 1), 0). There exists an equilibrium with influ-

ential cheap talk if and only if there exists an influential CS equilibrium.

That is, contrary to their assertion, ASB’s Theorem 2 does extend to all influential

equilibria, except perhaps in non-generic cases where type 0 is exactly indifferent between

actions y(0) and y(0, 1). The proof of the Theorem requires two Lemmas, the latter of

which holds independent interest outside the ASB model.

Lemma 1. If there is an equilibrium with influential cheap talk, then there exists a strictly

increasing sequence, 〈t1, t2, t3〉, that satisfies (A).

Proof. Suppose that (σ, α) is an equilibrium with influential cheap talk. Then there exist t′,

t′′, m′, m′′, and b such that σ (t′) = (m′, b), σ (t′′) = (m′′, b), and α (σ (t′)) < α (σ (t′′)). Let

ai ≡ α (σ (t′)), ak ≡ α (σ (t′′)), and aj ≡ infa>ai{a : a ∈ ⋃
t∈[0,1] α(σ(t))}. For l = i, j, k,

let tl ≡ inf{t : α(σ(t)) = al} and tl+1 ≡ sup{t : α(σ(t)) = al}. By Lemma 1 of ASB,

ti < ti+1 ≤ tj ≤ tj+1 ≤ tk < tk+1, and by construction t′ ∈ [ti, ti+1] and t′′ ∈ [tk, tk+1]. If

ti+1 = tk, then we are done, since 〈ti, ti+1, tk+1〉 satisfies (A).

So suppose ti+1 < tk. If b(·) is non-decreasing on (ti, tk+1), then b(t) = b for all

t ∈ (ti, tk+1), in which case tj = ti+1, and we are done because 〈ti, ti+1, tj+1〉 satisfies (A).

8The reason it is not an equilibrium is that all types in [0.15, 0.2) would strictly prefer to deviate from the
prescribed strategy and play σ(0.2) instead. This is because type 0.15’s ideal action is 0.15+0.1157 = 0.2657
which is closer to α(σ(0.2)) = 0.2889 than α(σ(0.15)) = 0.1739.

9A working paper version of ASB [1] contained this result for the “uniform quadratic” special case.
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It remains to consider ti+1 < tk and b(·) decreasing somewhere on (ti, tk+1). By

Lemma 1 of ASB, there exists some tn ∈ (ti, tk+1) such that b(·) is discontinuous at tn,

and bn ≡ limε↓0 b (tn − ε) > bn ≡ limε↓0 b (tn + ε). It is straightforward that there must be

some t > tn such that b(·) is pooling on (tn, t) — if not, for small enough ε > 0, a type

tn− ε has a profitable deviation to σ(tn + ε). Let an ≡ mina>y(tn){a : a ∈ ⋃
t∈[0,1] α(σ(t))},

tn+1 ≡ sup{t : α(σ(t)) = an}, and (mn, bn) ≡ σ(t) for any t ∈ (tn, tn+1). There are two

cases: either (i) for some δ > 0, b (·) is separating on (tn − δ, tn); or (ii) for some δ > 0, b (·)
is pooling on (tn − δ, tn).

(i) It is straightforward to verify that the following incentive compatibility condition

must hold:

uS (y (tn, tn+1) , tn)− bn = uS (y (tn) , tn)− bn

By continuity, it follows that for some tn−1 < tn, and ε > 0 such that bn > bn + ε,

uS (y (tn, tn+1) , tn)− (bn + ε) = uS (y (tn−1, tn) , tn)− bn

Since bn > bn + ε, we have uS (y (tn−1, tn) , tn) > uS (y (tn, tn+1) , tn), and consequently,

y (tn, tn+1) > yS (tn) > y (tn−1, tn). By continuity, there exists some t̃ ∈ (tn, tn+1) such

that uS (y (tn−1, tn) , tn) = uS
(
y

(
tn, t̃

)
, tn

)
, and consequently, 〈tn, t̃, tn+1〉 satisfies (A).

(ii) Let an−1 ≡ maxa<y(tn){a : a ∈ ⋃
t∈[0,1] α(σ(t))}, and tn−1 ≡ inf{t : α(σ(t)) = an−1}.

Then, the following incentive compatibility condition must hold:

uS (y (tn, tn+1) , tn)− bn = uS (y (tn−1, tn) , tn)− bn

Since bn > bn, we have uS (y (tn−1, tn) , tn) > uS (y (tn, tn+1) , tn), and consequently,

y (tn, tn+1) > yS (tn) > y (tn−1, tn). By continuity, there exists some t̃ ∈ (tn, tn+1) such

that uS (y (tn−1, tn) , tn) = uS
(
y

(
tn, t̃

)
, tn

)
, and consequently, 〈tn, t̃, tn+1〉 satisfies (A). ¤

The next Lemma says that generically, a sufficient condition for the existence of an

influential CS equilibrium is that there exist some non-trivial forward solution to (A).

Crucially, this forward solution need not start at the lower end of the type space, 0, nor end

at the upper endpoint, 1. This result may be useful in applications of CS more generally,
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because it provides a sufficient condition for influential CS equilibria when Condition M

does not hold.10

Lemma 2. Assume uS(y(0), 0) 6= uS(y(0, 1), 0). If there exists a strictly increasing se-

quence, 〈ti−1, ti, ti+1〉, that satisfies (A), then there exists an influential CS equilibrium.

Proof. I start by arguing that there is a forward solution to (A), 〈ti−1, t̂, 1〉, such that

t̂ ∈ [ti, 1). Clearly this is true if ti+1 = 1, so assume that ti+1 < 1. For any τ1 > ti−1,

there is at most one value of τ2 > τ1 such that the sequence 〈ti−1, τ1, τ2〉 satisfies (A),

due to the monotonicity of y(·, ·) in each argument and the concavity of uS(·, ·) in its first

argument. Moreover, since uS(y(t, 1), 1) < uS(y(1), 1) for all t < 1, continuity implies that

there exists some τ1 ∈ (ti, 1) for which there is no τ2 > τ1 such that 〈ti−1, τ1, τ2〉 satisfies

(A). Since solutions to (A) vary continuously with initial conditions, it follows that there

is some t̂ ∈ (ti, 1) such that 〈ti−1, t̂, 1〉 satisfies (A).

Now I argue that there is a backward solution to (A), 〈1, t̃, 0〉, such that t̃ ∈ (0, 1).11

If ti−1 = 0, then by the earlier construction, the sequence 〈1, t̂, 0〉 suffices; so assume that

ti−1 > 0. By the earlier logic, for any τ1 < 1, there is at most one value of τ2 < τ1 such

that the sequence 〈1, τ1, τ2〉 satisfies (A). The hypothesis that uS(y(0), 0) 6= uS(y(0, 1), 0)

implies (by continuity) that for small enough τ1, there is no τ2 < τ1 such that 〈1, τ1, τ2〉
satisfies (A). Since solutions to (A) vary continuously with initial conditions, it follows

that there is some t̃ ∈ (0, 1) such that 〈1, t̃, 0〉 satisfies (A).

The proof is completed by noting that the sequence 〈0, t̃, 1〉 defines an influential CS

equilibrium partition, by construction. ¤

The proof of Theorem 2 readily follows from the Lemmas.

Proof of Theorem 2. Necessity follows from Lemmas 1 and 2. For sufficiency, simply note

that one can transform a CS equilibrium into an equilibrium of ASB by augmenting the

play of b(t) = 0 for all t, and α(m, b) = α(m, 0) for any (m, b) such that b > 0. ¤
10When Condition M does hold, it is well-known that the necessary and sufficient condition for influential

CS equilibria is that y(0) < y(0, 1).
11Recall that a sequence 〈s0, s1, . . . , sN 〉 is a backward solution to (A) if it solves (A) and s1 < s0.
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5 Continuity of the Equilibrium Correspondence

At the end of their paper, ASB (p. 15) write:

“if the costly signaling literally involves money ... imposing a budget constraint might

be appropriate. A referee conjectures that for arbitrarily small budget constraints, the

qualitative properties of the equilibrium set are close to those of the Crawford-Sobel

model. This conjecture has strong intuition ... However, a general argument has proved

elusive.”

This is a statement about continuity of the equilibrium outcome correspondence. Lower

hemi-continuity is straightforward: any CS equilibrium partition supports an equilibrium

when burned money is available, where no type actually burns any positive amounts of

money. So the real issue is that of upper hemi-continuity, i.e. as the budget of burned

money shrinks, are all equilibria “close” to CS equilibria? This section shows that the

answer is yes, as conjectured.

Let b > 0 denote the maximal amount of burned money available to the Sender. That

is, the Sender’s strategy is henceforth σ : [0, 1] → M×[0, b]. ASB (Lemma 1 and subsequent

discussion) have proven that every equilibrium with burned money is partitional; the only

difference with CS being that all types within an element of the partition may be completely

separating rather than pooling with each other. In particular, higher Sender types elicit

weakly higher actions from the Receiver.

The key step in analyzing equilibria as b → 0 is the following result which severely

restricts the set of separating types for small b.

Lemma 3. For any ε > 0, there exists δ > 0 such that for all b < δ, the only separating

types lie in [0, ε].

The proof consists of minor modifications of Lemma 2 in Kartik [4]; it is included in the

Appendix for completeness.
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The Lemma says that as b gets small, the measure of separating types in any equi-

librium is converging to 0, and moreover, all separation occurs in a neighborhood of type

0. Accordingly, henceforth, given an equilibrium, (σ, α)(b), with supporting partition

〈s0 ≡ 0, s1, . . . , sN ≡ 1〉(b), let s(b) ≥ 0 be the lowest type such that there are no sep-

arating types of positive measure above s(b).12 Clearly, s(b) → 0 as b → 0. With

some abuse of terminology, I will refer to the supporting partition of an equilibrium as

〈s0 ≡ s, s1, . . . , sN ≡ 1〉(b).

Theorem 3. For any ε > 0, there exists δ > 0 such that when b < δ, for any equi-

librium supported by 〈s0 ≡ s, s1, . . . , sN ≡ 1〉(b), there is a CS equilibrium supported by

〈t0 ≡ 0, t1, . . . , tN ≡ 1〉 such that |sj − tj | < ε for all j ∈ {0, 1, . . . , N}.

The proof follows from minor modifications of Lemma 2 in Kartik [4]; it is included in

the Appendix for completeness.

Appendix

Proof of Theorem 1. Construct the equilibrium as follows. Pick a set of N distinct mes-

sages, {m1, . . . , mN}. For all t ∈ [0, tN−1) define σ(t) as follows: t ∈ [ti−1, ti) (i ∈
{1, . . . , N − 1}) plays σ(t) = (mi, 0). For type tN−1, set m(tN−1) = mN and b(tN−1) =

C(tN−1) where

C(tN−1) ≡
{

uS(y(tN−1), tN−1)− uS(y(tN−2, tN−1), tN−1) if N > 1
0 if N = 1

That is, if N > 1, b(tN−1) is the amount of burned money that would make tN−1 indifferent

between eliciting action y(tN−1) (i.e. revealing itself) by burning b(tN−1) and eliciting

y(tN−2, tN−1) with no burned money.13 If N = 1, then there are no types below tN−1 ≡ 0,

hence b(tN−1) is set to 0.

12There are two details to note. First, supporting partitions are always defined so that adjacent to any
segment of separation are segments of pooling; i.e. each segment of full separation is “maximal”. Second,
unlike in CS, the partition supporting an equilibrium with b > 0 may have (countably) infinite elements.
However, above s, there are are only a finite number of elements.

13This follows the approach of ASB.
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For all types t ∈ (tN−1, 1], set m(t) = mN and b(t) following ASB to keep each type just

indifferent between revealing itself and mimicking a marginally higher type, i.e.

b(t) =
∫ t

tN−1

uS
1 (y(s), s)y′(s)ds + C(tN−1)

The Receiver’s response for any signal on the equilibrium path is given by α(mi, 0) =

y(ti−1, ti) for all i ∈ {1, . . . , N − 1} and α(mN , b̂) = y
(
b−1(b̂)

)
for all b̂ ∈ [b(tN−1), b(1)].

For signals off the equilibrium path, proceed thus: define a0 ≡ α(σ(0));14 for all signals

(m, b) such that there is no t with (m, b) = σ(t), set α(m, b) = a0.

It is straightforward to verify that these strategies constitutes an equilibrium where b(·)
is strictly increasing on [tN−1, 1]. ¤

Proof of Lemma 3. Pick any type t̂ > 0 and suppose it is separating. I argue to a contra-

diction for b small enough. Denote by t̃ the type such that yS(t̃) = y(t̂) if it exists, or else

let t̃ = 0. Note that t̃ is strictly smaller than t̂ (since yS(t) > yR(t) for all t) and does not

vary with b. Since t̂ is separating by hypothesis, α(σ(t̃)) ≤ y(t̃, t̂). For type t̃ not to imitate

(i.e. pool with) t̂ requires uS(y(t̂), t̃)− uS(y(t̃, t̂), t̃) ≤ b(t̂)− b(t̃). However, the Right Hand

Side is bounded above by b whereas the Left Hand Side is a strictly positive constant; hence

the inequality fails for all b smaller than some strictly positive positive threshold. ¤

Proof of Theorem 3. By Lemma 3, for any ε > 0, there is a δ > 0 such that for all b < δ, in

any equilibrium partition 〈s0 ≡ s, s1, . . . , sN ≡ 1〉(b), s0 < ε and there are only pools above

s0. For any pooling interval (sj−1, sj), denote the amount of burned money by all types in

this pool as bj . The incentive compatibility conditions for equilibrium require that for all

j ∈ {1, . . . , N − 1},

uS(y(sj−1, sj), sj)− uS(y(sj , sj+1), sj) = bj − bj+1 (IC)

As b → 0, the RHS of Eq. (IC) converges to 0. It follows from equations (IC) and (A)

that if for all b sufficiently small, every equilibrium partition has s1(b) arbitrarily close to

some CS partition first segment boundary t1, the Theorem is true.

14Since σ(0) is an on-the-equilibrium path signal, α(σ(0)) has already been defined.
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So suppose towards contradiction that this is not the case. Then there exists a sequence

{bi}∞i=1 → 0 and an equilibrium partition for each bi such that s1(bi) converges (in subse-

quence) to some s that is not a CS partition first segment boundary. Consider a forward

solution to the difference equation (A) starting with τ0 = 0 and τ1 = s. Since s is not the

first segment boundary of a CS partition, there is a θ > 0 such that no τj (j = 0, 1, . . .) lies

in (1 − θ, 1]. Noting that for sufficiently small bi, s0(bi) ≡ s(bi) and s1(bi) are arbitrarily

close to τ0 ≡ 0 and τ1 ≡ s respectively, it follows from Eq. (IC) that each sj(bi) is arbitrarily

close to some τj (j = 0, 1, . . .). Thus, for small enough bi, there is no j such that sj(bi) = 1.

But this is a contradiction with the requirement for an equilibrium partition. ¤
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