Delegation in Veto Bargaining

Navin Kartik Andreas Kleiner Richard Van Weelden

December 2019

Delegation in Veto Bargaining

Motivation

In many contexts

- Proposer needs approval for a project
 - e.g., from boss, other branch of gov't, majority of a committee
- Proposer is <u>uncertain</u> what veto player will accept

Significant literature emanating from Romer & Rosenthal 1978, 1979

This paper

- Establish that screening via a menu is valuable
 - positive, normative, and prescriptive interpretations

 \rightarrow New rationale for discretion/flexibility

Conceptual and methodological connection to optimal delegation

Applications

In U.S., prosecutor decides whether to include lesser charges

- e.g., "Murder" or "Murder or Manslaughter"
- Acquit is always an option
- Congress makes proposal to President
 - Bill can give much or little discretion of how to implement
 - President can always veto

Salesperson (e.g., real estate agent) decides which products to show

- Not buying is always an option
- Committee chooses pool of candidates to put forward
 - Leadership must select one, or none

Preview of Results

We study a one-dimensional model with single-peaked prefs

- Typically not optimal to offer a singleton
 - Menus can Pareto improve over singleton proposals
- But Veto player may get large information rents
 - Even her first best, despite limited bargaining power
- Identify conditions for optimal menu to be 'nice', e.g., interval
- Comp stats: e.g., more discretion when more (ex-ante) misalignment or Proposer more risk averse
 - Contrast with expertise-based delegation à la Holmstrom
- Methodology: allow for stochastic mechanisms, and invoke them to establish certain necessity

Delegation in Veto Bargaining

Related Literature

Proposal power and agenda setting

Romer & Rosenthal, 1978, 1979; Matthews, 1989; Cameron & McCarty, 2004

Optimal expertise-based delegation

Holmstrom, 1984; Melumad & Shibano, 1991; Alonso & Matouschek, 2008; Amador & Bagwell, 2013; Kovac & Mylovanov, 2009

Optimal delegation with outside options

Amador & Bagwell, 2019; Kolotilin & Zapechelnyuk, 2019, Zapechelnyuk 2019

Delegation in Veto Bargaining

Model

Model

- Proposer (P) and Veto player (V) determine action $a \in \mathbb{R}$
- P's utility u(a) concave, maximized at a = 1
 - Twice continuously differentiable at all $a \neq 1$
 - Leading examples: u(a) = -|1 a| and $u(a) = -(1 a)^2$
- V's utility $u_V(a, v) = -(v a)^2$
 - Type v is private info
 - Distribution F with differentiable density f; f(v) > 0 on [0, 1]
 - Leading examples: f log-concave
 - For many results, only ordinal prefs matter, so any symmetric loss function around v could be used

Timing

- **1** P proposes a menu $A \subseteq \mathbb{R}$. A must be a closed set.
- **2** V's learns type v and chooses $a \in A \cup \{0\}$. So 0 is the status quo.

Nb: equivalent to any (deterministic) direct mechanism. Accommodates various game forms/protocols. No transfers.

Delegation in Veto Bargaining

Benchmarks

Complete Information

- Suppose V's ideal point v known to P (Romer & Rosenthal 1978)
- Then *P* could offer a single action
 - $v < 0 \implies$ offer 0
 - if $v \in [0, 1/2] \implies$ offer 2v
 - if $v > 1/2 \implies$ offer 1
- Pareto efficiency, no vetos, P extracts all surplus

Incomplete Information, but Singleton Proposal

- Not optimal to offer 0
- Vetos will occur
- Pareto inefficiency
- Surplus is shared

Full Delegation, No Compromise, & Interval Delegation

Full Delegation

• P could offer full delegation menu A = [0, 1]

- offering any $a \notin [0,1]$ is dominated
- although V may find some $a \notin [0, 1]$ preferable

• V then chooses ideal point if $v \in [0,1]$; 0 if v < 0; and 1 if v > 1

Pareto efficiency obtains, no vetos

- V gets his "first best" (almost), despite P having substantial bargaining power and commitment
 - first best for all $v \in [0, 1]$
 - support of v could be [0,1], then really first best

Full Delegation

$$\kappa:=\inf_{a\in[0,1)}-u''(a)\geq 0.$$

Proposition

Full delegation is optimal if

 $\kappa F(v) - u'(v)f(v)$ is \uparrow on [0,1].

Nb: ↑ means non-decreasing

• Full delegation optimal if f(v) does not \uparrow too fast

Corollary

Full delegation is optimal if f(v) is \downarrow on [0, 1].

■ So for a unimodal *f*, full delegation optimal when ex-ante disagreement is *large*: *v*'s mode ≤ 0

Reverses logic of expertise-based delegation

Delegation in Veto Bargaining

Full Delegation: Intuition

• $F \geq_{SOSD} G$ if f is \downarrow ; hence Proposer prefers F to G

- If f is ↑ on (I, h), removing that interval increases expected action, but adds variance; desirable if f'/f large relative to -u"/u'
- With linear utility, $f \downarrow$ **necessary** for optimality of full delegation
- For any f, full delegation optimal if P is sufficiently risk averse

Delegation in Veto Bargaining

No Compromise

 \blacksquare The degenerate menu $\{0,1\}$ is no compromise

- can be viewed as a singleton proposal 1
- If *u* is differentiable at 1, then no compromise **not** optimal
 - because then u'(1) = 0
- If u is linear and $f \uparrow$, then no compromise is optimal
 - removing any interval $(a,b)\subseteq 1$ raises average action
- But these conditions much stronger than needed
 - e.g., with linear u, sufficient that $f(\frac{1}{2})$ is a subgradient of F at $\frac{1}{2}$

Interval Delegation

Interval delegation: $A = [c, 1] \cup \{0\}$ for $c \in [0, 1]$

- subsumes full delegation and no compromise
- Nb: $c > 0 \implies$ vetos and Pareto inefficiency

Interval delegation is simple: practically and analytically

Questions:

- Under what conditions is interval delegation optimal?
- What is the best interval?

Delegation in Veto Bargaining

Interval Delegation

$$u(a) = -(1-\gamma)|1-a| - \gamma(1-a)^2$$
 for some $\gamma \in [0,1]$ (LQ)

Proposition

If f is log-concave and u satisfies (LQ), then interval delegation is optimal.

Comparative Statics

Let $C^* \subseteq [0,1]$ be the set of optimal interval thresholds

multiple maximizers possible \because P's exp utility may not be quasiconcave

Proposition

- **1** Optimal singleton proposal $p^* \ge \sup C^*$, strictly when $\sup C^* < 1$.
- **2** If f str. \uparrow in LR on [0, 1], then $C^* \uparrow$ in SSO.
- **3** If *u* becomes str. more risk averse on [0, 1], then $C^* \downarrow$ in SSO.

Among interval menus:

- 1) Menus yield a Pareto improvement
- 2) \uparrow ex-ante alignment \downarrow discretion. Opposite to expert-based deleg
- 3) More risk-averse Proposer (à la Rothschild-Stiglitz) compromises more; eventually, full delegation

 \implies prosecutor/salesperson should include "lower" options when jury/consumer more difficult to convince

Intervals are important. (2) and (3) proved using MCS with uncertainty.

Delegation in Veto Bargaining

Delegation vs Cheap Talk

- Matthews (1989)
 - Cheap talk by V before P makes a singleton offer
 - Babbling equilibrium exists: $A = \{0, p^*\}$
 - Under mild conditions, also size-two equilibria:

V makes a veto threat, against which P proposes $\hat{p} \in (0, p^*)$ or V doesn't, against which P proposes 1

- Informative eqm equivalent to $A = \{0, \hat{p}, 1\}$
- P prefers informative eqa to uninformative
- How does P's lack of commitment affect her?
 - P's welfare from $A = \{0, p, 1\} \downarrow$ in p at $p = \hat{p}$
 - P would like to commit to lower proposal to reduce vetos
 - But even optimal "singleton compromise" need not be global optimum; it is not, in particular, whenever (non-trivial) interval delegation is

Delegation in Veto Bargaining

Methodology

Formulating Proposer's Problem

Any A induces choice function $\alpha : \mathbb{R} \to A$. Wlog, consider $A \subseteq [0, 1]$.

Let $\mathcal{A} := \{ \alpha : [0,1] \rightarrow [0,1] \text{ s.t. } \alpha(0) = 0 \text{ and } \alpha \text{ is } \uparrow \}.$

Optimization problem:

$$\max_{\alpha \in \mathcal{A}} \int u(\alpha(v)) dF(v)$$
(D)
s.t. $v\alpha(v) - (\alpha(v))^2/2 = \int_0^v \alpha(t) dt.$ (IC)

We tackle using inft-diml Langrangian methods (cf. Amador & Bagwell 2013)

Stochastic Mechanisms

Wlog, stochastic allocations $\mathcal{L} := \{ CDFs \text{ supported in } [0,1] \}.$

Let
$$S := \{ \sigma : [0, 1] \to \mathcal{L} \text{ s.t. } \alpha(0) = \delta_0 \text{ and } \mathbb{E}[\sigma(v)] \text{ is } \uparrow \}.$$

$$\max_{\sigma \in S} \int \mathbb{E}_{\sigma(v)}[u(a)] dF(v) \qquad (S)$$
s.t. $\mathbb{E}_{\sigma(v)} [va - a^2/2] = \int_0^v \mathbb{E}[\sigma(t)] dt. \qquad (IC-S)$

Delegation in Veto Bargaining

Stochastic mechanisms can be optimal

Delegation in Veto Bargaining

Stochastic mechanisms can be optimal

Delegation in Veto Bargaining

Relaxing the Proposer's Problem

Recall deterministic mechanisms problem:

$$\max_{\alpha \in \mathcal{A}} \mathbb{E}[u(\alpha(v))]$$
(D)
s.t. $v\alpha(v) - \frac{\alpha(v)^2}{2} = \int_0^v \alpha(t) dt.$ (IC)

Let
$$\kappa := \inf_{a \in [0,1)} -u''(a) \ge 0$$
 and define relaxed problem

$$\max_{\alpha \in \mathcal{A}} \mathbb{E} \left[u(\alpha(v)) - \kappa \left[v\alpha(v) - \frac{\alpha(v)^2}{2} - \int_0^v \alpha(t) dt \right] \right]$$
(R)
s.t. $v\alpha(v) - \frac{\alpha(v)^2}{2} \ge \int_0^v \alpha(t) dt.$

 Deterministic mechs with modified objective and weakened IC. If IC holds at solution, then clearly also solves (D).

Delegation in Veto Bargaining

Stochastic Mechanisms

Proposition

If $\alpha^* \in \mathcal{A}$ solves problem (R) and is incentive compatible, then α^* also solves problem (S).

Under our sufficient conditions, our solutions to (D) also solve (R) and hence are optimal even among stochastic mechs.

Proof idea.

Suppose not and let σ achieve strictly higher value in (S).

Define $\alpha(\mathbf{v}) := \mathbb{E}[\sigma(\mathbf{v})].$

 α is feasible for (R) \therefore V risk averse and **relaxed IC**, and achieves str. higher value than α^* in (R) \therefore P risk averse.

Necessary Conditions

$$u(a) = -(1 - \gamma)|1 - a| - \gamma(1 - a)^2$$
 for some $\gamma \in [0, 1]$ (LQ)

Lemma

Assume (LQ) A deterministic mech that solves problem (S) also solves problem (R).

It is thus enough to show necessity in problem (R), which has a concave objective and a convex feasible set.

Proposition

Assume (LQ). Our sufficient conditions are necessary for the given menu to be optimal among stochastic mechanisms.

- Other kinds of optimal deleg sets (e.g., singleton compromise)
- Could allow for interdependent prefs: u(a, v)
 - Holmstrom-like delegation model with outside option cf. Kolotilin & Zapechelnyuk, 2019

Conclusion

Delegation in Veto Bargaining

Recap

Studied role for screening/delegation in veto bargaining

- New rationale for delegation and discretion
 - Here: uncertainty about what is acceptable to Veto player
 - Contrast with agent has expertise
- Non-singleton menu typically optimal
- Veto player can obtain large info rents ("full delegation"), even though Proposer has substantial bargaining and commitment power
- Sufficient and necessary conditions for 'nice' delegation sets
- \blacksquare Among interval menus, discretion \downarrow when ex-ante more aligned
 - Highlights different economics from expertise-based delegation

Ongoing and Future Research

Endogenous default action (chosen by V ex ante)

cf. Coate & Milton, 2019

- Multiple proposers and competition
- No/limited commitment
 - If full delegation optimal with commitment, it survives
 - Coasian dynamics suggest that even if it is not, it will emerge
 - We conjecture non-Coasian result is possible