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Using the decision rules and normal distribution assumptions of signal-detection 

theory as a base, a general strength theory of unidimensional absolute and comparative 
judgments is described in detail. The components of variance in both absolute and 

comparative judgments are considered, with particular emphasis on criterion variance 
in an absolute-judgment task and its relation to criterion variance in a comparative- 

judgment task. Some difficulties are noted in predicting comparative-judgment 

(forced-choice) probabilities from absolute-judgment (“yes-no”) probabilities. The 
principal difficulties are concerned with the relative magnitudes of criterion variance 
in the two tasks, the correlation of distributions, and attention. The question of the 

equality of variances for different criteria (e.g., yes-no vs confidence criteria) is 
considered, and two methods are suggested for answering the question (one of which is 

a new type of operating characteristic). The notion of a random variable being a function 
of a real variable or being a function of another random variable is used to analyze 

the effects of noise in an independent variable on the distribution of a dependent 

random variable. 

A strength theory is defined to be any theory in which the subject’s choice of a 
response from a set of possible responses is determined with a probability of unity 
by the exact values of some number of random variables having continuous distribution 

functions on the real numbers. What makes a set of assumptions a strength theory is 
that the set of assumptions include a deterministic decision rule operating on one 
or more random variables. There need be no more to the theory than the decision 
rule with its specified input variables, which means that there need be very little 
theory relating the values of the psychological (intervening) variables to experimentally 

manipulable or measurable stimulus variables. 
Thus, Thurstone’s Law of Comparative Judgment (1927) is a strength theory 

with or without any laws relating the means and variances of the psychological 
dimensions involved in the judgment to the physical attributes of the stimuli. Hull’s 
(1943) theories of animal learning and rote serial-list learning (Hull, Hovland, ROSS, 
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Hall, Perkins, and Smith, 1940) are also strength theories. Signal detection theory 
(Green, 1960; Green and Swets, 1966; Swets, Tanner, and Birdsall, 1961; Tanner and 
Swets, 1954) is a strength theory, as are the applications of this type of decision theory 
to other two-alternative sensory discrimination tasks (Creelman, 1962; Tanner, 1956; 
Weintraub and Hake, 1962), to perceptual recognition of 1 of n > 2 alternative 
stimuli (Green and Birdsall, 1958), to recognition memory for the amplitude or 
frequency of tones (Pollack, 1959; Wickelgren, 1966), and to verbal recognition 
memory (Egan, 1958; Norman and Wickelgren, 1965; Wickelgren and Norman, 1966). 

Choice theory (Lute, 1959) is not a strength theory because a probabilistic decision 
rule is used to relate real-valued intervening variables to responses. A linear-operator 

stochastic learning model (Bush and Mosteller, 1955) . IS not a strength theory for many 

reasons, since changes in response probabilities are direct functions of independent 
variables without any intervening variables. Stimulus sampling theories (Atkinson 
and Estes, 1963) are not strength theories, though the reasons differ for component 
and pattern models. Component models (Estes, 1950) are not strength theories 
because they use a probabilistic decision rule to go from the proportion of conditioned 
stimulus elements sampled to the response. Pattern models (Estes, 1959), all finite- 

state learning models (Atkinson, Bower, and Crothers, 1965), buffer storage models 
(Atkinson and Shiffrin, 1965; Bower, 1964), two-state threshold models (Lute, 1963a), 
multi-state threshold models and neural quantum theory (Norman, 1964) are all not 
strength theories because the intervening variables (states) are discrete. 

Although strength theories have been defined with sufficient generality to include 

theories postulating complex partitioning of multidimensional attribute spaces having 
any kind of multivariate probability density function defined over them, virtually 
all strength theories have been of two simple types. First, strength theories of “absolute 
judgments,” such as single-interval signal detection and “yes-no” recognition memory, 
where a single intervening variable is assumed to be compared to a criterion (or 
cutoff) set somewhere on the scale of that intervening variable. This is easily extended 

to handle confidence judgments along with the “yes-no” judgment or to handle any 
set of responses that is ordered with respect to the values of the intervening variable. 
Second, theories of “comparative judgments,” such as forced-choice tests of signal 
detection or recognition memory or a recall test of memory, where the decision rule 
is assumed to be to choose the response with the greatest value on the scale of a single 
intervening variable. 

The present paper attempts to formulate a general version of strength theory 
applicable to both absolute and comparative judgments on a unidimensional scale. 
The primary emphasis of the paper is to analyze several theoretical components of 
the total noise in these two types of judgment tasks to determine how strength theories 
must handle noise from different sources both inside and outside the organism. Since 
the standard deviation of the noise in some condition provides the unit of measurement 
in a strength theory, this analysis is quite important in testing such a theory. 
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The present formulation of unidimensional strength theory borrows heavily from 

signal-detection theory for many of its basic concepts, and should be viewed essentially 
as a modification of the decision making aspects of signal-detection theory. However, 
much of signal-detection theory is missing, some of the basic concepts have been 
changed very slightly, and some theoretical problems that arise from these changes 

or that were implicit in previous formulations are explicitly considered. 
What is missing is: (a) the interpretation of the dimension being judged as 

a likelihood ratio, (b) the theory of ideal observers, and (c) any substantive theory 

of sensory or memory systems that has been constructed on the decision making 
base of signal-detection theory. 

The changes are as follows: (a) Criteria are assumed to have variances which are 
not insignificant in relation to the variances in the psychological representations of 
physical variables. (b) Variance in the physical variable itself is explicitly distinguished 
from variance introduced in the mapping of the physical variable into a psychological 

representation of it. (c) Attention and memory are assumed to affect both the psycho- 
logical representation of a physical variable and the criterion, and these effects are 
assumed to be a function of the nature of the task. For example, the effects may be 
different for “yes-no” detection vs two-interval forced-choice. (d) Response bias 
terms for n-alternative multiple-choice tasks are handled in a manner completely 

analogous to the criterion term in a “yes-no” task, and this allows use of the simple 
maximum decision rule (“choose the alternative with the greatest value on the 
psychological scale”), instead of requiring a complex partitioning of an n-dimensional 
space (Lute, 1963b); Swets and Birdsall, 1956). 

The main problem considered in this paper is how the assumption of substantial 

criterion variance affects the predictions of strength theory. The two specific 
predictions considered are the relationship between “yes-no” and rating operating 
characteristics and the predictions of comparative judgments (forced-choice tasks) 
from absolute judgments (“yes-no” or rating tasks). 

UNIDIMENSIONAL STRENGTH THEORY 

Let us consider a completely general strength theory of a subject making judgments 
of ordinal position on some physical dimension s’, which we assume is represented 

by a single (real-valued) psychological dimension s. However, we assume that the 
mapping from s’ to s involves noise, so that s’ maps into a distribution of s values. 
Later on, we shall consider the effects of uncontrolled noise in the physical variable s’, 
but for now we ignore it. 

A random variable s, being a function of a real variable s’, means that the parameters 
of the distribution function of the random variable are real-valued functions of a real 
variable. Also, in this paper, when two random variables are said to be equal, it will 
mean that they have the same distribution function. 
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To aid in understanding, it is probably helpful to keep one example in mind. 

Imagine that the subject is to detect a 1000 cps tone in noise, s’ is the intensity of the 
1000 cps tone, (s’ may have only two values: s’ = 3; = 0 and S’ = s; > 0), and s is the 
degree of activation of the internal representative of a 1000 cps tone. Notice, however, 

that the theory can be applied to a wide variety of different tasks. For example, s’ 
could be any intensity dimension, and the two or more values of s’ could be well 
above threshold with the subject asked to set a criterion for an absolute “loud-soft” 
judgment. Also, s’ could be a qualitative dimension like frequency with subjects 

being asked to make “high-low” judgments. The theory can be applied to memory 
situations where s stands for strength in memory and s’ takes on two values (presented 
or not presented) or many values (degree of recency or similarity to previously 
presented stimuli). 

We may find that other independent variables, besides the one (s’) the subject is 

asked to judge, affect the psychological dimension (s) on which the subject bases his 
judgment. For example, pitch judgments are affected by duration as well as frequency. 
Strength in short-term memory is affected by duration of original presentation, 
primacy, and similarity of test item to presented items, in addition to recency. This 
is easily represented by s = (s’, V; ,..., VI) and requires no significant extension of 
the theory as long as only one psychological dimension is used to make the judgment. 

We shall consider 4 different types of judgment tasks, all involving judgments of 
s-ness: Z-alternative absolute judgment, n-alternative absolute judgment (B > 2), 
2-alternative comparative judgment, and n-alternative comparative judgment (n > 2). 

~-AL-~ERN~IvE ABSOLUTE JUDGMENT 

In 2-alternative absolute judgments, subjects are assumed to set a single criterion 
c on the s dimension and make one response if s - c > 0 and the other response if 
s - c < 0. In our detection example, the responses might be R, = “present” and 
R, = “absent.” Thus, the criterion decision rule for 2-alternative absolute judgment 
on a single dimension s is: 

Respond with R, , i f f  t = s - c > 0 , 

Respond with R, , i f f  t = s - c < 0 , (1) 

In signal-detection theory s is assumed to be a random variable and c a real variable, 
but it is most general to consider both s and c to be random variables. Certainly we 
know that criteria can vary considerably. At the same time one feels that, if the 
payoffs and subjective event probabilities remain constant, if subjects are instructed 
to maintain constant criteria, and if they are given practice, then criterion variance 
will be much reduced. However, the minimum criterion variance could still be large 
in relation to the variance in s (strength variance), especially if there is little variance 
in s’. The point is that we cannot answer this question, nor can we know if it makes 
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any difference how we partition the total variance between s and c, unless we explicitly 
consider the possibility that there is variance in c, as well as s, and investigate the 

consequences of that assumption. 
Strength theories almost always assume that random variables are normally 

distributed. This is particularly convenientwhen randomvariables are going to be added 
or subtracted because the resulting random variables are also normally distributed. 

Hence, we assume that s N N(p8 , us), c N N(pC , u,), from which it follows that 
t = (s ~- c) - VP,< - PC , Lo.2 + %211’2). 

Since we assumed that s was a function of the independent variable s’, this means 
that pLs = ~,~(s’) and possibly ‘J, = a,?(~‘). However, we assume that c is not a function 

of s’. 
Thus 

P(R, I s’) = Jff JqPa(S’) - PC > (usys’) + ~,2Y’21. (2) 

Although p(R, 1 s’) is the directly measured dependent variable, it simplifies 

computation with this theory to transform probabilities into normal deviates such 
that the normal deviate corresponding to a probability is that which would be required 
to yield a probability of p(R,) in the right-hand tail of the normal distribution. Thus, 
we define the “tails normal deviate”, TND(p), as 

TNDQ) = TND Irn N(b, u) = (b - a)/~. 
,I 

Applying the TND transform to Eq. 2 for two values of s’, namely sh and s; , we 
obtain: 

TWPW, I ~$1 = k+,, - c~,1/[~92($,) + uc211’2t (3) 

TWPP, I ()I = b.s(s;, - ~J/bsYs;) + ac2Y2. (4) 

The operating characteristic is obtained by solving the preceding two equations 

for pe and equating namely, 

TND[p(& I s;)] = ([us%) + d11’2/[d(s;) + ~c~l”~> TNDW-4 I sb)] 

t [P,(4) - PEMII[~sw + m2. (5) 

If  (T, is assumed constant for different values of pC, then such an operating 
characteristic will be linear with a slope of [a,:($,) + u,~]~‘~/[u,~(s;) + u,~]~/~ and a 

y-intercept of [am - ~s(s3]/[u>(s;) + ~,2]l/~, when we plot the TND’s of the two 
response probabilities against each other. I f  in different sessions we can induce the 
subject to adopt different mean criteria, pe , (by manipulating instructions, payoffs, 

or a priori presentation probabilities) with no change in the standard deviation of 



UNIDIMENSIONAL STRENGTH THEORY 107 

the criterion, uC , then we can obtain a number of distinct points of this operating 

characteristic and can test the normal distribution assumption by determining how 
well the points are fitted by a straight line. Assuming we are satisfied by their approxi- 
mation to a straight line, we can obtain empirical estimates of [uS2(sA) + u,~]~/~/ 

[u,2(4 + %211’2 and [t.LS(s;) - &s$]/[u~~(s;) + u,~]~/~ by the slope and y-intercept 

of the best-fitting straight line through these points. Actually, the d’ of signal-detection 
theory is the absolute value of the x-intercept, namely, 

d’ = I tcs(Gd - P~(W&,, + ~,2ll’~ 

= II&;) - P&>1/[~,2(GJ + %“Y2. (6) 

Often a less variable estimate of the distance between pS(s;) and y.,(s$ is given by twice 
the value of they-coordinate of the point of intersection of the operating characteristic 
with the negative diagonal, namely, 

bd;> - Ps(41 
ds = 2 TND’p(R1 ’ s3’ = 1/2{[uas2(s;) + uC2]r/2 + [us2(s;) + uc2]1/zj . 

(7) 

The proof of the above follows by simple algebra from Eq. 5 by noting that the x 
and y  coordinates of the intersection with the negative diagonal are TND[l - p(R, j s;)] 
and TND[p(R, 1 s;)], respectively, and that TND[l -p(Rr ( s;)] =z -TND[p(R, j s;)]. 

When the slope of the operating characteristic is unity, d, = d’. Since the estimated 
slopes of operating characteristics often demonstrate considerable random variation, 
it is often preferabfe to use d, , rather than d’. However, d, is measured in units of the 
average of two standard deviations. Thus, if slope varies systematically with d’, d’ 
is to be preferred to d, . The reason is that the unit of measurement for d’ is constant 
for all operating characteristics that are obtained by plotting TND’s of the response 

probabilities for many different conditions on the y-axis against the TND of the 
response probability for a single condition on the x-axis. On the other hand, the unit 
of measurement for d, would be different for every such operating characteristic. 

Notice that when criterion variance is considered, it is clear that the slope of the 
operating characteristic does not provide a measure of the ratio of the standard 
deviations of the two s-distributions, as has previously been assumed. One obtains 

a measure of [uS2(sJ + u~~]~/~/[u~~(s;) + uC2]1/2, which requires one to estimate the 
relative size of the variance of some strength distribution in relation to criterion 
variance before one can determine how fast the strength variance is increasing with 
the mean. The conclusion of Nachmias and Steinman (1963) and Swets et al. (1961) 
that the standard deviation increases at a rate of .25 times the increase in the mean 
of the strength distributions in visual signal detection, is valid only if criterion variance 
is negligible in relation to strength variance. Failure to consider the effects of criterion 
variance on the slope parameter provides one explanation for why Markowitz and 
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Swets (1967) found a higher “mean to sigma” ratio for more intense auditory signals 
than for less intense signals. In fact, one can assume that the mean to sigma ratio for 

strength distributions should be a constant and use this to estimate the relation between 
criterion variance and strength variance and at the same time estimate the true mean 

to sigma ratio. 

N-ALTERNATIVE ABSOLUTE JUDGMENT 

Subjects can be asked to provide more information about their s value in response 
to a particular s’ value by making any one of n responses, each of which is assumed to 
correspond to a region on the s dimension between two criteria. I f  there are n or more 

value of s’, the interpretation of an n-alternative absolute judgment task is quite 
obvious. The subject is being asked to use his s dimension to identify more or less 
exactly the value of the stimulus on the s’ dimension. If  there are only two values on 
the s’ dimension (present, absent), the subject can still be asked to give a reasonable 
n-alternative analysis of the s dimension by eliciting confidence (rating) judgments 

from the subject in addition to his “yesno” response: “yes” responses with high 
confidence being assumed to correspond to very high values of s, “yes” responses 
with low confidence to somewhat lower values of s, and “no” responses with high 
confidence to the lowest values of s. Whichever interpretation is given to the subject 
for the rating responses, it is reasonable to assume that the responses are ordered with 

respect to the s dimension, provided that the psychological dimension s exists and 
is the basis for the judgment. 

To aid in visualizing strength theory for n-alternative absolute judgments, assume 
that there is no variation in the criteria. In that case, Fig. 1 provides an accurate picture 
of what is assumed by strength theory for 6-alternative judgments. If  there is normal 
variation in the criteria, then one can visualize the criteria as whirring back and forth 

around their means. 

FIG. 1. Strength theory for n-alternative absolute judgments with 2 values of s’, S: , and S; , 
and no variation in the criteria, ci . 



UNIDIMENSIONAL STRENGTH THEORY 109 

The algebraic development of the theory for n-alternative absolute judgments 
is completely identical to that for 2-alternative judgments, except that one has as 
many s - ci terms as there are criteria, ci , and for each criterion ci one lumps all 

responses to the right of c,(R, ,..., Ri) considering them as one response (R,,J and 

all the responses to the left of ci as the other response. Having done this, all of the 
theory developed for 2-alternative judgments applies to n-alternative judgments. 
Furthermore, this method of n-alternative judgments is another way of generating 

several distinct points on an operating characteristic, as each distinct criterion ci 
yields another distinct point. Applications of this rating method of generating operating 
characteristics for signal detection are to be found in Egan, Schulman, and Greenberg 
(1959) and Swets et al. (1955, 1961) and for recognition memory in Egan (1958). 

VALIDITY OF STRENGTH THEORY FOR ABSOLUTE JUDGMENTS 

It should be noted that, for both binary decision and rating tasks, the prediction 
of a linear operating characteristic on normal-normal coordinates and the preceding 
interpretations of its slope and intercept parameters depend on a number of assump- 
tions, besides the criterion decision rule. First, the variance of the criteria must be 

constant, independent of mean criterion location. Second, the experimental conditions 
{payoffs, a priori probabilities, or instructions ) that alter mean criterion location must 
have no effect on the strength distributions. Third, the strength and criterion 
distributions must be normal. I f  the first two assumptions are valid, then the normal 
distribution assumption is directly testable by the shape of the operating characteristic 
on normal-normal coordinates, namely, it should be a straight line. 

The second assumption seems automatically valid for a rating task, since the subject 
is setting all the different criteria simultaneously and, thus, the strength distributions 
cannot be different for the different mean criterion placements. The subject’s 
attentional set and all other potentially variable aspects of the sensory or memory 
system under study must be in the same state for each criterion on each trial of a rating 
task. The distribution of these properties over many trials must, therefore, also be the 
same for each criterion in a rating task. 

This is not necessarily so for the various binary decision methods. In fact, one 
interpretation of the data of Markowitz and Swets (1967) and Schulman and Greenberg 
(1960) is that varying a priori probabilities can alter strength distributions. 
Furthermore, the discrepancy between the slopes for operating characteristics obtained 
by binary decisions and by ratings in Swets et al. (1961) may indicate that varying 
payoffs can also affect strength distributions. Alternatively, the data of these three 
studies may result from changes in criterion variance as a function of a priori prob- 
abilities or payoffs. Whichever interpretation is correct, these studies indicate that 
manipulating a priori probabilities or payoffs is not the ideal method for generating 
operating characteristics. 
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On the other hand, Egan et al. (1959) f  ound good agreement between operating 
characteristics obtained by binary decisions and by ratings, when the criterion in 
the binary decision task was manipulated by instructions to maintain a “strict,” 
“medium,” or “lax” criterion (as defined by the desired frequency of “yes” responses 

in different conditions). Thus, the existing data suggest that instructional manipulation 
of the desired frequency of “yes” responses is as effective as the rating method in 
avoiding any differential effects of different mean criterion placements on the strength 
distributions. 

The assumption of equal criterion variance for all mean criterion placements poses 
an interesting theoretical problem, to which one can take several different approaches. 
In the first place, it should be understood that, at present, there is no obviously best 
unit of measurement for any ordered psychological s-dimension. We have a choice, 
though some choices may be better than others in the sense of allowing simpler 

theories to fit the data. In many ways the most natural choice of a unit is the standard 
deviation of the criterion variability at each point along the s-dimension, where the 
different mean criterion placements are obtained by a single experimental method. 
Notice that, from this point of view, it is meaningless to ask if the variances of the 
different mean criterion placements are equal. They are equal by definition. However, 

if we have some other method of varying mean criterion location, we can determine 
whether the two methods yield the same criterion variabilities at each point by 
determining whether the operating characteristics they produce are identical. I f  they 
are not identical, and if we feel sure that the different methods do not differentially 

affect the strength distributions, then a different d’ value tells us that the lower 
operating characteristic has a greater criterion variance (at least in the vicinity of the 
mean of the noise distribution). A different slope value tells us that the ratio of the 
criterion variances at different points is different. 

Of course, there is no guarantee that with any method of producing different mean 
criterion locations, the spacing of values on any given s-dimension will be such as to 

yield strength distributions of the same simple (e.g., normal) form with means and 
variances that vary in a simple way with the values of certain physical variables. To 
work on a problem, one assumes that there is some way of spacing the values on a 
particular s-dimension such that the strength distributions are of the same simple 
(normal) form. Given that assumption, one rejects any method that produces “ugly” 
results on the grounds that the different criteria have different variances (measured 
on this unknown “ideal” scale) or on the grounds that the mean criterion placement 
affects the strength distributions, whichever seems more plausible. One hopes that 
one or more methods of varying criteria will be found which yield “pretty” results. 

On the basis of present evidence, it would seem that varying a priori probabilities 
or payoffs is not ideal, because these methods may violate the assumption that the 
strength distributions are independent of the mean criterion placement or the 
assumption that criterion variance is independent of mean criterion location. However, 



UNIDIMENSIONAL STRENGTH THEORY 111 

this conclusion is far from being definitely established. With the proper feedback, 
with the proper instructions, or with the frequent interpolation of trials where the 
subject knows in advance what is being presented, it might well be that the payoff 
or a priori probability method would not violate the assumptions that the strength 
distributions are independent of the mean criterion placements or that criterion 
variance is independent of mean criterion location. 

Although the rating method has the advantage of insuring that the different criteria 
are “looking” at the same strength distributions, it has the possible disadvantage 
that there may be increased criterion variability due to the larger number of criteria 
that must be maintained simultaneously. However, the mere fact that the 9 criteria 
for a lo-category rating are more variable than the 1 criterion for a binary response 

is no argument against use of the IO-category rating scale. Inches are not a poorer 
unit of length measurement than “finger widths” because the number of inches in a 
given distance will (generally) be less than the number of “finger widths.” The key 
issue is whether each of the 9 different criteria has the same variance on the unknown 
“ideal” scale. 

Whenever the rating categories are given the confidence judgment interpretation, 
there is almost always an explicit separation of the response categories into two classes 
corresponding to the two categories of the analogous binary response method. Thus, 
there is the possibility that the “yes-no” criterion in the confidence judgment method 
may have a lower variance than the other “confidence” criteria. Whenever this is the 
case, the operating characteristic obtained by the rating method will have a “peak” 

at the “yes-no” point. A statistical test of the criterion variance for any given point 
compared to the average criterion variance of the other points of an operating charac- 
teristic can be obtained by drawing a best-fitting straight line through the other points 
and observing whether the point one is testing lies above or below the line. This must 
be done on a reasonable number of different operating characteristics to determine 
if there is any systematic tendency for the point corresponding to a given criterion 
(such as the “yes-no” criterion) to lie above or below the best-fitting line through the 
other points. 

A quick check of a few studies that have employed the confidence judgment 
method to obtain operating characteristics reveals some that show no significant 
tendency for the “yes-no” point to lie above the operating characteristic drawn 
through the other points (Egan et al., 1959; Swets et al., 1961), some that show very 
slight, but statistically significant, tendencies for the “yes-no” point to lie above the 
line through the other points (Egan, Greenberg, and Schulman, 1961; Markowitz 
and Swets, 1967; Schulman and Mitchell, 1966; Wickelgren and Norman, 1966), 
and some that show slightly larger deviations (Watson, Rilling, and Bourbon, 1964). 
There is some tendency for the larger deviations to occur in studies with a larger 
number of response categories. For example, the Watson et aZ. (1964) study used a 
mechanical sliding scale, which was divided into 36 categories by the experimenter, but 
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which was a continuous scale to the subject (except that the center was clearly marked). 

Another example of somewhat larger discrepancies between the variance of the 
“yes-no” criterion and the variance of “confidence” criteria occurred in an unpublished 
experiment Don Norman and I did, using latency in a recognition memory task as 

a measure of lack of confidence. Interpreting latency as a type of confidence measure 
means assuming that the responses (decision-latency pairs) in the experiment are 
ordered along the s-dimension from high to low s values as follows: short-latency 
“yes” responses, long-latency “yes” responses (lumping together all latencies longer 

than some value), long-latency “no” responses, and finally short-latency “no” 
responses. The criterion separating the longest latency “yes” response from the 
longest latency “no” response is simply the “yes-no” criterion with a variance 
independent of the variance in the relationship between latency and s - c value. 

However, the other criteria include various degrees of variation due to the apparently 
variable relationship between latency and s - c value, and this variance combines 
with the “yes-no” criterion variance to yield a larger variance for the other criteria than 
for the “yes-no” criterion. This lesser variance of the “yes-no” criterion produced 
a peak in the operating characteristic at that point. 

What conclusions can be drawn about the variability of different criteria using the 
rating method ? Apparently the “yes-no” criterion may have slightly lower variance 

than the confidence criteria under some circumstances. Non-verbal continuous 
scales, such as the mechanical sliding scale and latency, probably give the greatest 

discrepancy. Verbal rating scales with 10 or less categories appear to yield very small 
discrepancies, which can probably be ignored. However, if the “yes-no” point is 
consistently elevated in an experiment, it might be wise to delete it completely and 
use only the confidence points to determine the operating characteristic. 

Many other questions about rating scales remain to be answered. Ignoring any peak 
at the “yes-no” point, how does criterion variability increase with an increasing 
number of rating categories? Can the variability of different criteria be more exactly 

equated by instructions to use categories equally often and by practice accompanied 
by feedback as to the frequency with which categories are being used? How do 
operating characteristics obtained with unequal numbers of categories on each side 
of the “yes-no” criterion compare with operating characteristics obtained from the 
usual symmetric rating scales ? Do rating scales with a central “don’t know” category 

yield different operating characteristics from rating scales which force a “yes-no” 
decision ? What happens when instructional manipulation of the frequency of “yes-no” 
responses is combined with the rating method to yield one binary-response operating 
characteristic and rating operating characteristics around each point of the binary 
operating characteristic ? If  subjects make an n-category choice and then are sometimes 
(and sometimes not) asked to locate their response more precisely within the chosen 
category, is any information transmitted by these secondary ratings and where do 
the points fall in relation to the operating characteristic based on the primary ratings ? 
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CRITERION OPERATING CHARACTERISTIC 

I f  and only if one has strong reasons to believe that the variance of the underlying 
strength distributions is constant, independent of the mean (measured on the unknown 

“ideal” scale), then there is an elegant way to compare systematically the variability 
of two different criteria by examining the slope of a new type of operating charac- 
teristic. This operating characteristic is obtained from analogues to Eqs. 3 and 4 
which assume the same value of s’ and two criteria, ci and cj , namely: 

Assuming that (T$ is constant for all pLs , we can solve these equations for ps and 
equate, obtaining a “criterion operating characteristic” which is linear on normal- 
normal probability coordinates, with a slope of [a,: + u,;]~/~/[u~~ + u,;]~/~. 

TNDW, I cJ1 = [us2 + Q;J’~/[u; + ~:3]l’~ TNW(Rl I ci)l 

+ be, - PJCU,” + UZjY2. (8) 

I f  ci and cj have equal standard deviations, uCi = uFj , then the operating charac- 
teristic represented by Eq. 8 will have a slope of unity. The d’ value for such an 
operating characteristic represents the distance between the two criteria in standard 
deviation units. 

This criterion operating characteristic can be applied equally well to the comparison 

of any two criteria obtained by the rating method or by some binary response method. 
When the rating method is used, Rsii can be substituted for (R, ) ci) in Eq. 8. 
However, to obtain the criterion operating characteristic it is necessary to have the 
same pair of criteria being applied to a wide variety of strength distributions. Thus, 
in a signal detection task, it would be necessary to present all the different levels of 
signal intensity intermixed in each session of the experiment in unknown, random 
order. It is not appropriate for the purpose of this analysis to plot on the same criterion 
operating characteristic, points obtained from sessions with different sets of possible 
signal intensities, because a subject might well alter the distance between two criteria 
when the stimulus ensemble is altered. 

2 -ALTERNATIVE COMPARATIVE JUDGMENT 

The general strength theory for this type of task derives from Thurstone’s (1927) 
Law of Comparative Judgment and the decision aspects of signal detection theory’s 

analysis of 2-alternative forced-choice (Tanner and Swets, 1954), as extended by Lute 
(1963b) to include response biases. The sulbject is presented with two values of s’, 
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namely sh and s; and asked to choose the greater. Were there no possibility of response 
bias, we would assume he performs this task by selecting the maximum of sa = s(&) 
and s1 = s(s;) (maximum rule). For 2-alternative comparative judgments, it is 

mathematically equivalent to assume the subject bases his decision on the difference 
between sa and si (difference rule). 

However, it is generally necessary to distinguish between s; and s; , in temporal 

or spatial position, in addition to s’ value, yielding four different stimuli, ski , s& , 

41 , s;a . It is possible that this distinction could affect the judgment. Some of these 
effects can be called response biases, since the perceptible spatial or temporal distinction 
between the two stimuli is the basis of the verbal response allowing the subject to 
communicate to the experimenter which stimulus he thinks has the higher s’ value. 
There are at least two different ways to handle these response biases, only one of which 

generalizes to more than two alternatives. 
The one which does not generalize is to use the difference rule modified so that 

when the subject subtracts the second stimulus’ s value from the first stimulus’ s 
value, the difference must be greater than b, which is not necessarily equal to zero. 

The way which generalizes to more than two alternatives is to use the maximum 

rule and incorporate the bias variables into the functions t,, = t(sb , k), tlk: = t(s; , k), 
where k = 1 or 2 depending on whether the stimulus was presented first or second. 
If  ti, = t(s; , k) = s(sl) - Ck = si - Ck , then the maximum rule with bias is equiv- 
alent to the difference rule with bias. 

Note, however, that the interpretation of the stage at which the bias term enters 

into the process is different for the maximum rule and the difference rule. For the 
maximum rule, the bias terms are essentially the same as criteria in the absolute 
judgment task, and the criterion is subtracted from each s term before the two s - c 
terms are compared. This means that there are really two criteria involved in the 
2-alternative comparative judgment task, whereas the more familiar interpretation 
has been that of a single criterion on the difference between the two s terms. For two 
alternatives, the probability that si - ci > sj - ca is identical to the probability 

that si - sj - b > 0, where b = ci - c, . Thus, both the difference rule and the 

maximum rule are described by Eq. 9. 

Respond R,(“first s’ greater”) i f f  si - sj - b > 0, 

Respond R, (“second s’ greater”) otherwise. (9) 

So, in one sense, it makes no difference whether one thinks of there being two 
criteria, one applied to each s term, or one criterion applied to the difference between 
the s terms. But, in another sense, it does matter, because it changes the most natural 
assumption concerning the total criterion variance in the comparative-judgment 
task in relation to the criterion variance in the absolute-judgment task. If  there are 
really two criteria and b = cr - c2 , then the most natural assumption is that 
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2zrJ *cl 2 zzz &” zzz 
ca cC2. On the other hand, if there is only a single criterion, then 

the most natural assumption is that ub2 = uC2. 
Usually we want to assume that all the variables in Eq. 9 are normally distributed. 

Also, we again must assume that ub is constant with changing criterion mean. In this 
case, operating characteristics are easily derived by plotting TND[p(R, / sir , $,,)I 
against TND[p(R, / s& , ~;a)], yielding: 

where r is the correlation between the two distributions. 
If  r = 0, +,a = cl C2 (the two-criteria interpretation), and the absolute-judgment 

operating characteristic has unit slope (i.e., us2(s;) = us2(s,$), then di = 11’2 d’, 
and one can predict the 2-alternative comparative-judgment di from the absolute- 
judgment d’. On the other hand, if any of these conditions is grossly violated, it is 
not possible to predict di from d’ without estimating additional parameters. Note 
that the one-criterion interpretation for comparative judgment does not predict that 

d; = d2 d’. 
In view of all the conditions that must hold to predict the “forced-choice” d; 

strictly from the “yes-no” d’ (without using the slope of the “yes-no” operating 
characteristic or estimating CJ~ and r from the forced-choice data), it is quite amazing 
that ,the predicted d& have not differed systematically from obtained d$ in 
several studies of signal detection (Tanner and Norman, 1954; Tanner and Swets, 

1954; Shipley, 1965; Swets, 1959). The present analysis makes it abundantly clear 
that a strength theory may be correct without di being equal to 2/2 d’. 

To see just how amazing it is that there has been no systematic deviation from the 
prediction that di = &! d’, let us examine the effects of deviation from each of the 
three assumptions that are necessary for di = 42 d’ to hold. 

An example of the effects of correlation between the two strength distributions 

is easily obtained for the case where os2(sJ = us2(s;) = uC2 = 4~~~. In this case, 
d; = 1/2d’[l/(l - ~/2)]l’~. Th e maximum value of dl , obtained for r = 1, is 41 y0 
greater than d2 d’, but a more reasonable correlation of .5 would produce a value of 
di only 15% greater than d/z d’. Still, such effects are not negligible, and the absence 
of systematic deviations from the d/z d’ prediction suggests either that correlations 
are not too far from zero, or that the effects of nonzero correlation are being counter- 
acted by other effects. 

An example of the effects of deviation from the assumption that ub2 = 20,~ is easily 
obtained for the case where usz(sh) = ~,~(s;) = uC2 and r = 0. The general form of 
the relationship between Us and uG can be given by ub2 = 2~0~2, where w = 1 is 
the assumption required for the 1/2 d’ prediction. For the case considered here, 
d; = 2/z d’[2/(1 + w)] lj2. Since w can have any value greater than zero, the possible 
effects of deviation from the assumption that w = 1 are di values anywhere from 100 y0 
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less to 41”/6 greater than 2/2 d’. Th e single criterion assumption for 2-alternative 
comparative judgment (W = .5) would yield a value of d;l that was 33% greater than 
42 d’. 

The effects of deviations from the assumption that the absolute judgment operating 
characteristic has unit slope are easily obtained for the case where oCs = ~~2 = 0 
and Y = 0. Let us represent the general case of nonunit slope by u,~a(si) = c+%J,~(s~), 
where m is the reciprocal of the slope of the absolute judgment operating characteristic. 

For this case, di = d2 d’[2/( 1 + ,2)]1/z. Th us, a slope of .5 for the absolute judgment 
operating characteristic would produce a value of d;l that was 37 “‘, less than the d2 d’ 
prediction. 

A recent study of the relationship between absolute and 2-alternative comparative 
judgment in auditory signal detection by Schulman and Mitchell (1966) eliminated 
any effects of nonunit slope in the absolute judgment operating characteristic by using 
a statistic of the operating characteristic in both “yes-no” and forced choice, D, 
and DFC , for which the relationship DFC = dZ DYN holds, irrespective of the slope 
of the “yes-no” operating characteristic. That statistic is the perpendicular distance 

from the origin to the operating characteristic on a normal-normal plot. When the 
effects of slope were thus eliminated, Schulman and Mitchell’s results still showed 
no systematic deviation from the l/2 d’ prediction, but there was enough unsystematic 
deviation to suggest the possibility of competing deviations, that sometimes produced 
overpredictions and sometimes produced underpredictions. 

Assuming that one has taken the slope of the absolute-judgment operating charac- 
teristic into account, one still has to worry about the effects of nonzero correlation 
between the two strength distributions and the relationship between the criterion 
variances in the two tasks. However, there is another possible complication. The 
level of attention to each of two alternatives may not be as high as that for a single 
alternative. If  attention affects the strength distributions, as it well may, then the 
difference between the means of the two strength distributions may be reduced for 

2-alternative comparative judgment and the variances may also be affected. 
One can imagine that the effects of attention might be present both in cases where 

the 2-alternatives are two successive intervals either of which may contain a signal 
or two alternative stimuli that could be presented in a single interval (e.g., either 
a light or a sound). In the successive case, the issue is whether attention can be 
sustained at the same high level over two successive intervals as over one interval. 
In the simultaneous case, the issue is whether one can attend to two stimulus channels 
as well as to a single channel. 

Furthermore, not only may level of attentional set be lower for two alternatives 
than for one, but it may be greater for one of the two alternatives than for the other. 
In addition to this, in the successive alternative case, there could be sequential effects 
of the nature of the stimulus presented in the first interval on the level of attention 
or state of adaptation in the second interval. 
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All these attentional and adaptational effects can be studied by experiments in 
which both or neither of the “alternative” stimuli may be presented, as well as one 
or the other. In such an experiment the subject makes an absolute judgment about 
the presence or absence of each stimulus. Ordinary absolute and 2-alternative com- 
parative judgments tasks should also be performed by the same subject with the same 
stimuli, and the pattern of the results for all conditions will show whether attention 

and adaptation are influencing the results in the ordinary prediction of comparative 
judgment from absolute judgment. 

When one considers all the ways in which the 2/2 d’ prediction might fail for 
reasons that have nothing to do with the essential validity of strength theory for both 
absohtte and comparative judgments, it is truly amazing that it has not failed thus far. 
However, the present analysis makes it clear that, if the 42 d’ prediction fails in 

some future application of strength theory, one cannot reject strength theory without 
a detailed study of the reasons for the failure. 

N-ALTERNATIVE COMPARATIVE JUDGMENT 

The biased maximum rule generalizes easily from 2-alternative comparative 

judgment to n-alternative comparative judgment to yield: 

Respond R,(Kth stimulus is maximum), i f f  tik 3 tj,, for all m # Jz, 

m = I,..., n, where tik = si - ck and tjm = si - c, . 

Assuming that si - N[&s;), us($)] and ck - Nbc , uck], then the probability 
density function for tik isfib -= N[&s;) - ~1.~~ , (oSz(s$ + a,:)1/2]. Let the cumuIative 
distribution function for tjm be Fj,(t) = sLmfjm(x) dx. Now if we assume that all 
the random variables are independent of each other, the probability of responding 
R, is given by: 

P(R,) = f= fidt) fi Fen(t) dt. 
-32 ,WL=l 

VL#k 

If A, = pcrn and uck = ucm = (TV for all k and m, then the above equation can be 
solved numerically given the d’ and slope parameters of enough “yes-no” operating 
characteristics to involve all the s; conditions at least once. Tables predicting p(Rk) 
from a single “yes-no” d’ value are given by Elliott (1964) for the case where 

f&t) = N[Ci + d’, C,] and f&(t) =f&(t) = N[C, , C,] for all (m, V) = I,..., n 
and (m, V) # k. 

To my knowledge, there is no satisfactory way to analyze n-alternative comparative 
judgments for cases where ck # c, for some k and m or where the various strength 
distributions for the n-alternatives are correlated. Cases where the strength 
distributions are independent, normal, and c K = nl c f  or all k and m, but ck # c, can be 
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handled by estimating one parameter. The estimation is quite simple since what 
needs to be done is to scale all the d’ values for the absolute-judgment task to the 
unit of measurement appropriate for the comparative-judgment task by multiplication 

with the parameter to be estimated. 
In addition to the possibilities of nonindependence, unequal response bias in the 

comparative-judgment task, and differences in the unit of measurement for absolute- 
and comparative-judgment tasks, there is again the possibility that level of attention 
is not as high for each of n-alternatives as for one. Thus, the assumption that 

tirc(s’) = si(s’) - clc is not as plausible as it might appear at first sight. 
Furthermore, the maximum rule for comparative judgment can only be applied 

to the remembered values of ti, for k = l,..., n. I f  memory is not perfect, this adds 
an additional source of variance to the n-alternative comparative judgment that is not 
present in the absolute judgment. I f  the memory noise is dependent only on time and 

independent of the level of s,(s’), it can be absorbed in the bias parameter, ck , of 
course at the cost of insuring that ck f  C, for K # m. If  the memory loss is a function 
of the level of So, the si(s’) variables derived from the absolute-judgment task are 
no longer appropriate for predicting comparative judgments and must be modified 
to reflect the effects of memory loss. 

EFFECTS OF NOISE IN THE INDEPENDENT VARIABLE ON THE 

DISTRIBUTION OF THE DEPENDENT VARIABLE 

So far, we have defined si to be a random-variable function of a real variable s; . 
I f  we assume that the independent variable s; is a random variable, we are faced with 
the problem of defining what it means for a random variable to be a function of a 
random variable. Let us assume that we know the forms of the distribution functions 
of the two random variables. In this case, a random-variable function of a random 
variable means a random variable whose parameters are real-valued functions of the 
independent random variab1e.2 Assuming that the distributions are normal, we 

obtain: 

2 The notion of a random variable being a function of another random variable is just a slightly 

different, but equivalent, way of talking about conditional probability distributions (see Parzen, 
1962, pp. 41-65). Furthermore, the present section considers a very special case where the 
conditional distributions have the same (normal) form and variance, differing only in mean. 
When this special case is a reasonable approximation, the effects of noise in the independent 

variable are very easy to determine. 
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Solving for the distribution of si can in general be quite complicated, but there is 
one special case of considerable use where the solution is very simple. The assumptions 
are that, for virtually all of the values of s; within its range of variability, the following 
functions are good approximations: am, = as; + b and asi = Gi , where a, b, 
and Oi are real variables. Provided the noise in any given value (s:) of the independent 
variable is not “too” great, these approximations will be satisfactory, regardless of 
the nature of the functions pcLs(s’) and a,(~‘) over the entire possible range of s’. 

The distribution of si in the above case is easily obtained by splitting si into the sum 
of two independent random variables x and y, where 

x - q/-h, , O] = N[a& + b, ) 01, 

and 

y - N[O, u,J = N[O, &I. 

Now note that x - N[u& + bi , 0] implies that x = a& + 6, , which implies that 
22 - N[ws: i- b, , q]. 

Thus 

since the sum of two independent normally distributed random variables is normally 
distributed with its mean and variance equal to the sum of the means and variances, 
respectively, of the components. Of course, it must be remembered that si , bi , and 
gi are in general different for every value of si , and we have no fundamental interest 
in their values. What we care about is showing that the distribution of si is approxi- 
mately normal. Note that the standard deviation of si , (ui2af; + Q/s, is a function 
of s; over the entire range of s’. Thus, we must choose the standard deviation of one 
particular si as the unit of measurement and measure every other sj with this unit. 

Incidentally, this same method of calculating the effects of noise in the independent 
variabIe on the distribution of a dependent variable which has noise in the mapping 
from independent to dependent variable, can be directly applied to two psychological 
(intervening) variables in a functional chain, vi = vC(si). As long as the noise in the 
random variable si is not too large in relation to the rate at which pVi is deviating 
from a linear function of si , and u,,. deviating from a constant function of si , the 
distribution of zti will be normal, prokded the distributions of the noise in si and the 
mapping from si to vi are normal. This is quite convenient for strength theories with 
many levels of intervening variables organized in a functional chain. 
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CONCLUSION 

Since strength theory uses the standard deviation of the total noise in some condition 
as the unit of measurement, it is necessary to consider the theoretical components 
of the total noise in order to be sure that the same unit of measurement is being 

apphed to different conditions. 
Whenever the judgment task and the criteria are certain to be identical for a number 

of conditions and one can plot every condition against the standard condition on an 
operating characteristic, the slopes provide one with the information as to how the 

noise is varying over the different conditions. In such cases, d’ measures everything 
with the same unit of measurement, and the only function of a careful analysis of 
the components of variance is to provide a plausible and simple explanation of the 
differences in variance for different conditions. 

However, when one attempts to make predictions from one judgment task to 
another, such as from “yes-no” to rating absolute judgment or from absolute to 
comparative judgment, where direct assessment of differences in variance from one 
task to another is not possible, it is extremely important that one have a plausible 
analysis of the components of variance in each case. With such an analysis it will 
generally be possible to determine what parameters will have to be estimated in order 

to make predictions from one task to another and it will be relatively clear how to 
estimate them. Also, it will be clear what data one must have to make an adequate test 
of the theory. Lacking such an analysis of the variance components, one is quite 
likely to reach erroneous conclusions. 
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