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The notion of strength is defined in several alternative ways for chains of
associations connected in series and in parallel. Network strength theory is
extended to handle retrieval dynamics for a network of associations, in a
manner that permits various degrees of serial versus parallel processing
through a chain of serially ordered associations. In the parallel-processing
version, a speedy activation pulse passes through the chain and initiates a
relatively slower retrieval process virtually simultaneously at each link. It
is demonstrated that under many conditions, the theory yields the same stor-
age and retrieval dynamics for a network as for any component association,
The theory is applied to recall and recognition, semantic mcmory, speech

recognition, and reading.

VERTICAL ASSOCIATIONS

Classical association theory has generally
assumed, either explicitly or implicitly, that
the association of two ideas A and B is by
means of direct “horizontal” associations
between A and B. A variety of considerations
now make it appear very unlikely that human
conceptual memory uses only direct horizontal
associations of ideas.

First, the notion that learning a pair con-
sists of strengthening direct forward and
backward associations between the two ele-
ments does not appear to generalize satisfac-
torily to semantic memory for propositional
material (e.g., Anderson & Bower, 1973;
Rumelhart, Lindsay, & Norman, 1972;
Schank, 1973). All of the component words
or concepts of a sentence are not directly
associated to each other, nor are the primary
associations between temporally or spatially
adjacent words or concepts (Anderson &
Bower, 1973). Rather, as suggested by struc-
tural linguistic intuition (Chomsky, 1957),
semantic memory for propositional materials
appears to have an organized hierarchical
(more generally, network) character, with
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complex propositions having elementary prop-
ositional constituents, elementary propositions
having phrasal constituents, and phrases having
smaller phrasal constituents and ultimately
concept constituents. Besides the structural
linguistic evidence for this hierarchical orga-
nization (e.g., Chomsky, 1957), there is also
considerable psycholinguistic evidence for this
in studies of sentence memory and perception
(see Anderson & Bower, 1973).

Second, even the memory for an elementary
A-B paired associate does not generally ap-
pear to be the result of strengthening a di-
rect horizontal connection from the internal
representative of the A element to the inter-
nal representative of the B element of the
pair. It is now perfectly clear that direct rote
association of two members of a pair, far from
being the fundamental building block of
learning, is actually the hardest procedure for
learning a pair. An enormous number of
studies indicate that paired-associate learning
is greatly facilitated by (a) embedding 2 word
pair into a more complex mnemonic structure
such as a phrase or sentence (e.g., Epstein,
Rock, & Zuckerman, 1960; Rohwer, 1966),
(b) employing a natural language . mediator
such as A-Apple-Pie (e.g., Montague, Adams,
& Kiess, 1966; Schwartz, 1971), or (c) em-
bedding in a unitary visual image (Asch,
Ceraso, & Heimer, 1960; Epstein, Rock, &
Zuckerman, 1960; Paivio, 1969). Considering
the efficacy of these mnemonic devices for
paired associate learning and the typical lack
of control over the learning methods used by
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rote-rehearsal subjects, one can question
whether much direct rote association of A
and B ever occurs in paired-associate learning.

Third, in memory for serial lists, the im-
portance of organization by serial-position
cues and grouping structure has been repeat-
edly demonstrated (e.g., Bower & Winzenz,
1969; Wickelgren, 1964, 1967; Young, 1968),
although there is also good evidence for the
simultaneous existence of item-to-item associ-
ations in both short-term and long-term
retention at a phonetic level of memory
(Wickelgren, 1965, 1969, 1972). In addition,
mnemonics of the form “one is a bun” and
the method of loci can greatly facilitate the
learning of serial lists.

In paired-associate and serial learning, more
and more theorists are making use of concepts
such as chunks (Miller, 1956), organization
or structure (Mandler, 1968), control ele-
ments (Estes, 1972), or unitary concept rep-
resentatives that have various relationships to
constituent attributes (Anderson & Bower,
1973; Rumelhart, Lindsay, & Norman, 1972;
Schank, 1973; Wickelgren, 1969). Al models
of semantic memory assume thit events or
propositions are represented by a hierarchical
or network structure of associations between
the constituents, '

Geometric Increase of Conmection Capacity
in Associative Networks - -

It seems. increasingly undeniable that the
human capacity for associating any two ideas
at a conceptual level does not result because
every idea can be directly connected to every

other idea. Rather, it seems necessary to-

assume that this capacity for associating any
two ideas results from an indirect association
through a connecting system of intervening
nodes. As Mandler (1968) pointed out, the
number of items that can be associated one
to the other by means of an.organizational
hierarchy can demonstrate a geometric in-
crease as the number of intermediate nodes
(associative distance) increases. Although
Mandler applied this principle to learning
concepts in a categorical hierarchy, precisely
the same principle applies as well to the asso-
ciation of elements via any sequence of verti-
cal associations in a propositional network.

Hence, any of the semantic-memory systems
currently envisaged also provide for a geo-
metric increase in connection capacity with
increasing associative distance (an increase in
the number of intervening nodes). Thus, a
semantic-memory network automatically pro-
vides for the connection of every irea with
every other idea. Furthermore, it does this
in a manner that represents linguistic and
semantic structure.

Neural Analogues

Although all suggestions concerning the
neural representation of concepts or proposi-
tions must be considered speculative at the
present time, it is interesting to note that the
need to provide connection-capacity between
every idea in a semantic network with a
limited number of links is paralleled by the
need to connect every neuron to every other
neuron in the cortex. It is estimated that
there are approximately 2 X 10° neurons in
the human cerebral cortex (Pakkenberg,
1966). At the same time, the number of
synapses per neuron, while varying substan-
tially for different neurons, is on the order of
4 X 10* for the human cortext (see Cragg,
1975). Thus, every cortical neuron cannot be
directly connected to every other cortical
neuron, though every cortical neuron may be
indirectly connected to every other cortical
neuron via one or more interneurons. In fact,
just one interneuron could serve to connect
every pair of neurons in the cortex, since
(4 X 10°) X (4 X 10*)= 2 X 10" s

Internodes as Chunk Nodes

It is parsimonious to view the intervening
node connecting two nodes A and B as a
chunk node representing the conjunction

A&B, if we make the assumption that if A -

(or B) is connected to A&B, then A&B is
connected to A (or B). This builds in the pos-
sibility (but not the necessity) of equivalent
forward and backward associations between
every pair of nodes. Besides serving as a

higher order chunk node, the A&B node -

serves as an internode connecting A to B by~
an upward association from A to A&B and a
downward association from A&B to B.

Even if the number of nodes in memory is
as large as the number of neurons in the
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cortex, 2 X 10°, every pair of nodes can be
dircctly connected to a single intervening
chunk node under the assumption that the
connection-capacity of each node is on the
order of 4 X 10* (the number of synapses/
neuron in the cortex). In combining three or
more nodes into a single chunk in a connec-
tion network with 2 X 10° nodes and 4 X 10*
connections/nodes, it is highly probable that
three or more nodes will converge on inter-
nodes (chunk nodes) in a pairwise fashion—
for example, A&B and (A&B)&C. With such
a network, it is highly improbable that three
nodes will converge on a single node without
prior convergence of a pair of nodes. Thus,
network connection-capacity provides a theo-
retical argument supporting a hierarchical
structural encoding of any multielement event,
with binary branching at virtually every node
in the structure. An entirely different argu-
ment in favor of binary branching was given
by Anderson and Bower (1973, pp. 246-247).

Both theoretical arguments and cognitive
and psycholinguistic evidence favor a net-
work representation for the interconnection of
ideas. Physiological and anatomical studies
of sensory systems indicate that a consider-
able degree of vertical hierarchical organiza-
tion occurs in the analysis of sensory stimuli.
Thus, vertical association and the representa-
tion of complex sets of lower order nodes by
higher order nodes appears to be a ubiquitous
feature of coding in the nervous system at
all levels.

PyURrPOSE OF NETWORK STRENGTH THEORY

If the association of A and B is not by a
direct (horizontal) connection, but rather by
a network of indirect (vertical) connections,
can any meaning be attached to the notion
of strength of association between A and B?
Many researchers who assume memory to be
a complex network have decided that we must
give up on efforts to provide a simple abstract
mathematical theory of storage and retrieval
dynamics. They would either forego quantita-
tive theorizing altogether or else make a seri-
ous attempt to “map out” the detailed struc-
ture of semantic memory and combine this
structure with storage and retrieval processes
in a complex computer-simulation model.
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Network strength theory takes a diffcrent
tack by attempting to find assumptions under
which the storage and retrieval dynamics of
an indirect, network-mediated association will
behave like a simple direct association.

Network strength theory is similar in some
of its basic objectives to a theory put forth
by Giuliano (1963) as a model for word
association (an abbreviated, but more acces-
sible presentation of the model can be found
in Norman, 1969). However, the specific
mathematical theory is different in ways that
have rather important additional consequences.

In the following section on storage dynam-
ics, the assumptions for serial and parallel
combinations of links are presented without
consideration of retrieval dynamics. That is,
in this section, network strength theory is
described in its asymptotic form. The predic-
tions concern the asymptotic strength of
association between two nodes after two or
three seconds have elapsed following the re-
trieval probe. I will demonstrate that under
many conditions, the storage dynamics for the
strength of association between two nodes has
the same form as the storage dynamics for
each individual component and that the
decay-rate parameters for the whole are
simple averages of the parameters of the com:
ponent associations. Under other circum-
stances, the retention function for the whole
bears a reasonably simple relationship to the
retention functions of the components even
though it is not identical in form.

In the subsequent section of the paper, the
theory is generalized to accommodate re-
trieval dynamics and to predict the entire
speed—accuracy tradeoff function for recogni-
tion or recall. The speed-accuracy tradeoff
function is some measure of accuracy in recall
or recognition plotted as a function of the
time the subject has in which to make a re-
sponse (Reed, 1973, 1976; or Wickelgren,
1975b, in press). The most novel aspect of
network strength theory is that retrieval of
several links in an associative chain can,
under some conditions, occur essentially at
the same time (in parallel). Semantic-memory
theorists have debated the extent to which
links diverging from a common node can be
activated or searched in parallel, but it has
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always been assumed to be logically neces-
sary for two links in series to be retrieved
sequentially. This is not so, and network
strength theory actually permits any degree
of serial versus parallel processing through a
chain of associations by changes in parameter
values.

The last section briefly considers some
applications of the theory to explain phe-
nomena in recall and recognition, semantic
memory, speech recognition, and reading.

STorAGE DyNaAMICS

Across a variety of conditions (paradigms,
study times, retention intervals, delay-filling
tasks), types of materials (letters, digits, non-
sense materials, words, sentences, pictures,
tones), and subjects (children, adults, elderly
subjects, amnesic patients, intoxicated sub-
jects), the same form of retention function
may describe long-term memory for delays
from 30 sec to 2 years (e.g., Wickelgren,
1974, 1975a):

S(£) =X (14 Bt)ver, ¢y
where S(¢) is the strength of the trace in d’
units; ¢ is the retention interval (in sec):
A is the degree of learning (trace strength at
£=0); B and y are the parameters of the
consolidation and time-decay processes, re-
spectively (constants for a given individual

-under most conditions); and = is the variable

parameter of the interference process repre-
senting the degree of similarity between the
previously stored association and the material
learned (or processed) during the retention
interval. Most of the evidence supporting
Equation 1 has not been published, so no pre-
tense is intended that Equation 1 has been
established as an invariant law of forgetting.
We are concerned with whether this same
multiplicative forgetting function could be ob-
tained for a wide variety of materials inde-
pendent of the structure and complexity of
their network representation. There are at
least two approaches to this question: (a)
One could argue that the encoding of all ma-
terials involves a large network structure
and could show that under certain conditions,
forgetting in large networks converges toward
a2 commen form as the size of the network
increases, regardless of the nature of the net-

work structure and the forgetting parameters
for each link. (b) Alternatively, one could try
to establish some conditions under which for-
getting in networks has the same form as the
basic forgetting function for an individual
link. It is this latter approach that is taken
here. The basic strategy is to find some pos-
sible rules for defining network strength from
the strengths of the component links of the
network and then to see if there are condi-
tions in which the form of the forgetting func-
tion for the network is the simple product
function given in Equation 1, assuming that
Equation 1 is the form of forgetting function
for individual links (but with possibly differ-
ent parameter values for A, 8, y, and = for
different links).

Serics Connections of Associations in a Chain

Since it is assumed that two memory nodes
are virtually always connected by a chain of
two or more associative links, a rule for series
combination of component strengths is funda-

mental to network strength theory. We shall

consider three possible rules—the minimum,
the geometric mean, and the hermomic—and
point out some consequences of each.
Minimum rule. The stréngth (S) of a chain
of n associations with strengths (s, sa, . . . ,
$a} is the same as its weakest link: :

S=min {s1,52, . .., 8s).  (2)

According to the minimum rule, the for-
getting function for a chain would be the

same as that of its weakest link, so the equiv-

alence of macro and micro storage dynamics
is easily obtained. The main question is just
how plausible the minimum rule is. In charac-
terizing learning in network structures, an at-
tractively simple rule appears to be followed
by most semantic-memory theories, ‘namely,
all learning takes place at the top of some

local hierarchy. When we learn that “gliding-

to a stop saves gasoline” we probably do not

substantially strengthen the links from fea-.

tures to segments, from segments to words,

from words to concepts, or from concepts to

familiar conceptual components as “gliding to
a stop” or “saves gasoline.” This large subset
of our network representation of the proposi-
tion was learned long ago and, by Jost’s sec-
ond law, is being forgotten at a very slow




NETWORK STRENGTH THEOQRY 470

rate. What is newly learned and subject to
the most rapid forgetting is the small subset
of associations at the top of the hierarchy,
which link the familiar conceptual compounds
into a single proposition. Most learning may
involve adding a rather small number of links
to the top of some well-established portions
of a hierarchy. If this is correct, then some
newly learned weak link at the top may often
dominate storage (and retrieval) dynamics
and may be analogous to 2 rate-limiting re-
action in a complex series of chemical reac-
tions. This might make the minimum rule a
good approximation even if it is not the exact
rule for serial combination of strengths,

Geometric mean rule, The strength of a
chain of n associations with strengths {s,,
$2, - « ., 5} is the geometric mean of the
component strengths:

$ = [T sJu». ()

fuer]

To some, this geometric mean rule for series
connection may seem counterintuitive because
it asserts that the strength of a chain of asso-
ciations is stronger than the strength of its
weakest link, However, the geometric mean is
more sensitive to the strength of the weakest
link than the arithmetic mean, and it is by
no means theoretically or experimentally ob-
vious that the strength of a chain of associa-
tions should be set at the minimum compo-
nent strength, independent of the strength of
all other associations-in the chain. This de-
gree of dependence on the weakest link may
be optimal.

Under the geometric mean rule, demon-
strating that the storage dynamics for a chain
can be equivalent in form to that for a single
link is critically dependent upon the presumed
storage dynamics for a single link. This

. equivalence holds when the forgetting func-

tion for a single link has a simple multiplica-
tive form, but it is violated when the function
involves additive components. For example, if
Equation 1 is assumed to hold for each link
in the chain, with parameters A, By, ¢4, and =g
that may be different for each link, then the
macrodynamic forgetting function for the
chain does not have the same form as the

macrodynamic function for a single link. The
lack of equivalence stems from the use of
the additive component (1 + Bi). However,
if B is a constant for different links (and both
B and ¢ do appear to be constant across dif-
ferent materials), then the geometric mean
rule does yield equivalent micro and macro
storage dynamics (namely, Equation 1) with
decay and interference rate parameters for the
chain that are simple arithmetic averages of
the component rate parameters and a degree-
of-learning term that is the geometric mean
of the component degrees of learning:

S{t) = X1 4 pty-ve =,
where

A= [fI A"]”n’

fw=i

X

V= Zn: i, and & = 1 Z": . (4)
il

Te-=]

Furthermore, for large values of ¢ (greater
than 60 sec or so, Bt is sufficiently large in
relation to 1 that the retention function is
well fit by an equation of the form St)y=2a
¢ Ve, for which the equivalence of micro and
macro storage dynamics holds irrespective of
the constancy of B across links.

Harmonic rule. The strength of a chain of
n associations is the reciprocal of the sum of
the reciprocals of the component strengths
(same rule as for combining conductances in
series electric circuits):

1
S=-7 )

im1 53
With the harmonic rule, the equivalence of
micro and macro storage dynamics can still
be obtained but under more restrictive condi-
tions than for the other two rules. If the time-

decay process is truly invariant for all links,
which is plausible and has some ( unpublished) .

'~ evidence supporting it, then we get:

(1+8)-¥
n 1 *

Aie— 7t

() = ©

i=] .
It is not theoretically reasonable to assume
constant w for links at different levels in a
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hierarchy, since =; refers to susceptibility to
interference and this should be greater for
links at lower nodes that participate in other
propositional hierarchies. However, at 2 macro
level in the absence of highly similar interpo-
lated learning, » is typically very small in
relation to y, so that for retention intervals
less than a day or so, the interference factor
is negligible in relation to the time-decay
factor. In this case, ™ =1, and even with
the harmonic rule, one would obtain equivalent
micro and macro storage dynamics, namely:

S = A1+ 80,
where
\ = 1
=57
5

je] O3

™

Which of the three rules for series combina-
tion is most reasonable is an open question.
The minimum rule makes the strength of a
chain equal to its weakest link, the geometric
mean rule makes it stronger than the weakest
link, and the harmonic rule makes it weaker
than the weakest link. While most semantic-
memory theories have assumed that the prob-
ability of successful retrieval generally de-
creases with an increasing number of links in
a chain (and cannot ever increase), it is
worthwhile to question the necessity of that
assumption. It might be functional to regard
longer chains as not necessarily weaker than
shorter chains. In many ways, the minimum
rule seems the most plausible- of the three,
and for this rule, micro and macro storage
dynamics are always equivalent. However,
there are an infinity of possible series-
combination rules and link forgetting func-
tions, and it is premature to draw any conclu-
sions as to which works best. The point of the
present section is that it is quite possible
under many conditions to develop a theory
of memory storage dynamics that holds
independent of the exact coding of material
in memory.

Parallel Connection of Associative Chains

Whenever a subject learns two images or
two propositional or single-word mediators
that link components of a pair, it is plausible
to imagine that there are two separate chains

of associations linking the elements of the
pair. Such separate chains are assumed to be
connected in parallel, by analogy to electric
circuits. Another example of parallel connec-
tion arises in situations where a visual-image
connection is assumed to exist simultaneously
with a verbal (generally propositional) con-
nection, Spaced learning trials appear to gen-
erate multiple traces to some extent, rather
than merely incrementing the strength of a
single trace (Hintzman & Block, 1971). Fi-
nally, it might be necessary to assume parallel
links between nodes in memory in serial-list
learning, in which it appears plausible to
assume both item-to-item associations and
associations involving serial position or group-
ing concepts.

It seems reasonable that under many condi-
tions, it might be possible to limit the con-
nection between two nodes to a single chain
by carefully controlling the method of en-
coding used by each subject on each trial
(independent of whether we have any exact
theory of the nature of the encoding). For
this reason, primary emphasis should be
placed on the invariance of storage dynamics
under series combination, rather than on the
conditions under which this invariance might
hold for parallel combination of comppnent
links. However, experimental situations cer-
tainly exist for which a limited degree of
parallel connection will probably have to be
assumed. Under natural learning conditions,
semantic memories may involve a large’
number of parallel connections. ’

Accordingly, it is of some interest to con-
sider a plausible rule for the combination of
associations in parallel. The most plausible
rule would appear to be a simple additive
combination. Let S be the asymptotic strength
of association between node A and node B,
and let S represent the strengths of each of
the parallel associative chains from A to B.
Then the additive rule is: .

Jm=1
If the additive rule for parallel chains is
combined with any of the three rules for the
individual chains, then one obtains a macro-
dynamic forgetting function equivalent in
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form to the microdynamic {function only
in the case where the time-decay and
interference parameters are approximately
equal for each chain. For the minimum
rule, this means that the decay and inter-
ference parameters must be equal for the
weakest links, For the geometric mean rule,
it means only that the averages of the
decay and interference parameters must be
approximately equal for the different chains.
For the harmonic rule, the conditions for ob-
taining equivalent micro- and macrodynamics
for a single chain are already strong enough
to yield the same equivalence for a set of
parallel chains,

Note that to obtain invariance of the reten-
tion function for parallel combinations of
associations, it is not necessary to impose
restrictions on the magnitudes of the acquisi-
tion parameters. Also, no restrictions need be
placed on the number of intervening associa-
tions forming each of the associative chains,
nor are the number of links required to be
equal for the different chains. Furthermore,
it is quite possible to experimentally study
the retention function for ecach of the two
encodings of an association separately, and
then to study the reteation function for the
association when buth encodings are learned.
This would test the validity of the additive
combination rule for parallel associations.

An alternative to the additive rule for par-
allel connections that is analogous to the
minimum rule for serial connections is the
maximum rule: The strength of m parallel
chains is the maximum of the strengths of
the individual chains. As with the minimum
rule for serial combinations, the maximum
rule for parallel combinations always yields
a form of the macro retention function for the
association between nodes A and B that is
identical to the form of the micro retention
function of the component chains,

Compound Cues

Both the additive and the maximum com-
bination rules for paralilel connection can be
naturally extended to the combination of
strengths in the case of compound (multiple)
cues for memory retrieval. If both nodes A
and B are associated to node C by indepen-

dent chains and the additive combination rule
is followed, the strength of association from
the compound cue A + B to node C would be
the sum of the strengths of associations from
A to C and from B to C. If the maximum
rule is followed, then the strength of the
compound association would be the maximum
of the component associations.

RETRIEVAL DyNAMICS

Studies of recognition-memory retrieval
dynamics by Reed (1973, 1976), Corbett
(1975), and Dosher (1976), who used the
speed-accuracy tradeoff method, indicate that
the time to retrieve an associative strength
in a recognition-memory test is on the order
of 1 to 2 sec. The speed-accuracy tradeoff
function begins to rise above chance perfor-
mance (at the time intercept) after about
300-600 msec, and nearly asymptotic per-
formance is achieved anywhere from .5 sec to
1.5 sec later. Over this time, the increase
in accuracy is generally negatively accelerated
in a manner that is well fit by an exponential
approach to limit: :

S(T)=S(1—enm8),  (9)

where {T—8} =T —38forT >3 and (T
— 8} = 0 elsewhere.

In the above equation, S(T') stands for.the
retrieved strength of association at T seconds
following the onset of the probe item or set
of items; § represents the asymptotic strength
of this association as retrieval time T ap- -
proaches infinity; y represents the rate of
approach to the limit; and § represents the
time intercept of the function (the largest
value of T' at which §(T) = 0).

Reed prefers functions other than an expo-
nential approach to a limit to describe his ob-
tained speed-accuracy tradeoff function for

-recognition-memory data, but the exponential

approach to a limit provides a reasonable ap-
proximation to these data, and it is really too
early to make any definite decisions concern-
ing the form of the speed-accuracy tradeoff
function for recognition-memory retrieval.
None of the conclusions that follow depend
in any way upon the assumption of an expo-
nential form for the speed—accuracy tradeoff
function S(T).
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The only important assumption to be made
concerning the form of the retrieval function
is that it be the product of a time-invariant,
asymptote factor and a time-varying factor
representing the approach to that asymptote,
with the latter factor being independent of
asymptotic strength. That is, the speed-accu-
racy tradeoff function for any component link
(association) is assumed to have the form

s(T) = s, - 7(T). (10)

In the above equation, s5; represents the
time-invariant term and 7(T) represents the
“universal” retrieval function for the in-
crease in retrieved strength of association as
a function of retrieval time T.

This is a strong assumption concerning the
nature of retrleval dynamics, since it assumes
that both the form and the parameters of re-
trieval dynamics are the same for all associa-
tions and, furthermore, that the approach to
an asymptote is independent of the value of
that asymptote. Nevertheless, one has a
choice of an infinite variety of possible re-
trieval functions 7(T). Regardless of which
universal retrieval function is chosen, one can
draw a very important and novel conclusion
regarding the retrieval dynamics of a chain
of associations.

Chain Serial versus Parallel Processing

When a psychological process is considered
to be composed of a variety of several sub-
processes, the issue -of serial versus parallel
processing concerns whether the component
subprocesses are executed sequentially (one
at a time) or simultaneously (all at the same
time). Whenever the component subprocesses
are organized into a chain such that one end
of the chain constitutes the starting point for
processing and the output of each link in the
chain is the only input for the next stage,
everyone has previously assumed to my
knowledge, that serial processing is necessar-
ily implied. As we shall see in the present
section, having a set of links (associations)
organized into a chain does not necessarily
imply serial processing of the separate links.
In fact, the present network strength theory
of retrieval dynamics actually yields a con-
tinuum of various degrees of serial versus par-

allel processing through a chain of elements,
dependent upon the relative values of certain
parameters, The specifics are as follows,

In general, one assumes that there is a
delay of r under the parallel processing as-
sumption (r &= 1 msec) between the initiation
of retrieval of the first association in a chain
and the initiation of retrieval of the second
association in that chain. Thus, in the
parallel-processing version, a speedy little
activation pulse is assumed to travel through
a chain of # links in #r msec and to-initiate
retrieval of trace strength at each link, but
the completion of this retrieval requires sev-
eral hundred milliseconds. If one assumes
that this nodal delay parameter - is invariant
for all nodes, then the form of the retrieval-
dynamics function for a chain of # associa-
tions can be expressed in a particularly simple
way as in Equations 11 through 13.

Minimum:
S(T) = minfsir(T = [i —117)] (1)

Geometric Mean:

S(T) =1 ssJ”"[I:Il o = [~ 13

]
(12)
Harmonic: o

1
S(T) = = i

2 S."'f(T —[-=1])

C13)

Tl

The forms of the retrieval function given
in Equations 11 through 13 are not identical
to those for component links, unless nr is
small in relation to the various intercept and
rate parameters characteristic of the universal
retrieval function r(T). Making the assump- -
tion that nr is negligible in comparison to
the ‘rate of retrieval of the associations is
essentially equivalent to assuming parallel
processing through a chain of associations.
That is, the delay between the initiation of
retrieval for each component link in the chain
is small when compared to the time required
for retrieval of full associative strength at
each link, and therefore it can be ignored.
Under such parallel-processing conditions, the
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forms of the retrieval function for a chain
of associations are given in Equations -14
through 16 and they are identical to the forms
of the retrieval function for individual links.
S(T) = min{s;-r(T)} (14)

Minimum:

Geometric Mean: S(T) = [fI sV (T) (15)

qmm]

Harmonic: S(T) = | = I r(T) (16)
=

im1 54

So long as the parallel-processing assump-

tion (#r negligible) is valid, the theory obvi- -

ously generalizes to handle parallel combina-
tions of chains of associations, such that the
total strength has the form of the product of
an asymptotic strength factor multiplied by
the universal retrieval function r(T).

Network strength theory also makes the
typical parallel-processing assumption that re-
trieval proceeds in parallel through all links
emanating from a given node. This contrasts
sharply with the serial-processing assumption
made by Anderson and Bower (1973), among
others.

It is a rather elegant property of the re-
trieval dynamics of network strength theory
that it provides for the expression of any

degree of serial or parallel processing by -

means of the value of a single parameter r.

The equations for retrieval dynamics are
simple only under the assumption of parallel
processing; for example, when 7 is small in
relation to the time period of speed-accuracy
tradeoff for an individual association. How-
ever, the assumption of parallel processing
through a chain of associations is actually
quite plausible considering what we know of
the properties of the nervous system. Of

~ course, it is completely speculative to consider

the nodal-delay time » in any way analogous
to synaptic-delay time. However, if one makes
that leap of faith, we know immediately that
r is on the order of 1 msec, while the time
period for speed-accuracy tradeoff appears to
be on the order of 500 msec or more (Corbett,
1975; Dosher, 1976; Reed, 1973, 1976). Of
course, these speed-accuracy tradeoff find-
ings concern effective recognition-memory
strengths that may represent complex serial

and parallel combinations of individual com-
ponent strengths. Nevertheless, it would be
difficult to make the speed-accuracy tradeofi
functions for recognition memory consistent
with a theory in which a large number of
serially ordered delays r occur prior to arriv-
ing at the final step in the chain, at which
point the speed-accuracy tradeoff function
rapidly reaches asymptote. A serial-process
explanation of the relatively long time course
of speed-accuracy tradeoff would require an
assumption of very substantial random varia-
tion from trial to trial in the parameters regu-’
lating processing speed at each link in the
chain.

The point of the present discussion is that
the parallel-processing assumption is at least
as plausible, if not more plausible, than the
assumption of serial processing through a
chain of associations. While chains have un-
doubtedly appeared to many people as an
obvious example of serial processing, the
present theory demonstrates that this is not
necessarily the case. The undertlying phi-
losophy of the nervous system that generated
network strength theory is similar to the
principle of “continually available output”
advanced by Norman and Bobrow (1975).
This principle implies that the judged vari-
able on which any cognitive decision is based
does not suddenly go from a chance level to
asymptote after the completion of the required
number of serially ordered stages; rather, the
judged variable rises gradually from chance
to asymptote as time for processing increases.
Network strength theory, augmented to in-
clude retrieval dynamics, provides an example
of one precisely defined system in which the
property of continually available output can
be realized. '

APPLICATIONS

In this section I shall briefly consider some
present and future applications of network
strength theory to the understanding of phe-
nomena in four areas: recall and recognition
dynamics, coding and retrieval in semantic
memory, speech recognition, and reading.

Recall and Recognition Dynamics

The predictions of any particular network
strength theory concerning retrieval dynamics
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- in recognition memory can be tested quite
directly using the speed-accuracy tradeoff
method described by Reed (1973, 1976). For
example, in testing recognition memory for an
A-B paired associate, one presents the A-B
pair, and then after a variable delay (ranging
from O to 4 sec), one presents a signal to the
subject to make a yes—no response concerning
whether the pair has been presented previ-
ously. Subjects can be trained to make their
yes-no decision at a relatively constant la-
tency on the order of 200 msec, largely inde-
pendent of the lag between the onset of the
pair and the onset of the response signal. This
permits plotting of a speed-accuracy tradeoft
. function in which accuracy in the recognition-
memory decision (measured in d’ units, for
example) is plotted as a function of the re-
trieval time allotted to the subject. In this
way, the time course of retrieval in rec-
ognition memory may be assessed relatively
directly.

Wickelgren and Corbett (in press) have
also developed a procedure to assess retrieval
dynamics in paired-associate recall using the
same sort of two-choice yes-no response em-
ployed in recognition memory. To test recall
of an A-B paired ~ssociate, one presents the
A item followed after a variable lag by pre-
sentation of the correct B item or an incorrect
D item. Subjects are told that after presenta-
tion of the A item, they should attempt to
recall the B item; this permits them to make
a rapid yes-nmo decision, following presenta-
tion of the second item, as to whether their re-
called item matches the presented second item.

The purpose of the yes—no recall task is to
assess the dynamics of retrieval of the uni-
directional association from A to B without
any contribution from the association in the
reverse direction from B to A. Since the time
intercept of the speed-accuracy tradeoff func-
tion for paired-associate recognition memory
appears to be around 400 msec, and since
subjects appear capable of making a yes-mo
recall response in the current procedure within
a period of about 400 msec, it appears likely
that pair recognition in no way contributes to
any increase in accuracy as a function of in-
creasing the delay between presentation of the
A and B items (Wickelgren & Corbett, in
press). Thus, there is some support for the
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assummption that the yes-no recall procedure
assesses retrieval of only the unidirectional
association from A to B.

Comparison of recall and recognition dy-
namics is facilitated by the use of the yes-no
response in both cases, and such data can be
transformed into discriminability (d’) mea-
sures of performance accuracy using the same
assumptions for both recall and recognition
memory. Because of the limited amount of
data available, it would be premature to
attempt to evaluate any specific network
strength theory, but this is so only because of
the absence of data that we know how to ob-
tain, not because of any intrinsic untestability.

Coding and Retrieval in Semantic Memory

In network strength theory, nodes that are
close together in terms of the number of inter-
vening associative links are not necessarily
the most strongly associated. If nodes that
are connected by two intervening links have
one very weak link, then the strength of the
association between the nodes may be ex-
tremely weak in comparison to the strength
of association between two nodes connected
by five strong intervening links. Of course,
all other things being equal, there is a.
greater chance that nodes separated by a
large number of links will have a weak (low
strength) link, and all three of the proposed
serial rules are rather sensitive to weak links,
However, two nodes that are distant in terms .
of the number of intervening links need not
be distant in terms of associative strgth »
This may be a very desirable property, since
it seems unreasonable to assume that nature .
has always provided close connections for~
ideas that we wish to have strongly associ- - s
ated. The opportunity to develop strongly ~
associated nodes through a large number of
intervening links, far from being a suspect
property of network strength theory, is actu- .
ally a desirable property. L

Under the parallel-processing assumption, .
network strength theory also makes the some- ..
what surprising prediction that the rate pa-
rameters for the speed-accuracy tradeoff
function in recognition-memory retrieval for
a pair of items should often be invariant with
nodal distance. This invariance holds as long
as nodal distance (i) is small enough that the
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quantity (s — 1)r remains negligible in rela-
tion to the time period for growth of the
speed-accuracy tradeoff function for retrieval
dynamics. Consideration of this matter tends
to- justify once again the assumption of par-
allel processing through chains of associations,
since such a system permits nodes that are
distantly connected to compete effectively
with nearby nodes on the basis of the strength
of association,

Parallel processing through a chain of asso-
ciations has the further side effect that one
cannot use reaction time or speed-accuracy
tradeoff retrieval dynamics to determine the
structure of semantic memory, as suggested
by Collins and Quillian (1969), Rips, Shoben,
and Smith (1973), and others. This occurs
because semantic relations between nodes that
are farther apart in the network structure
need not require appreciably more time to
verify than those that are closer together, so
long as the links are equally strong in both
cases. Network strength theory thus provides
an explanation for why there has been re-
peated failure to find the expected differences
in (a) verification time for subject-property
propositions with different distances in a cate-
gorical hierarchy (e.g., “a canary can sing”
vs. “a canary has skin”) when associative
strength is controlled or is counteracting
semantic distance (Conrad, 1972; Rips,
Shoben, & Smith, 1973; Wilkins, 1971) and
(b) recognition-memory time for pairs of
propositional constituents (subject, verb, ob-
ject, time, location) presumed to be at dif-
ferent distances —in~ the" semantic-memory
structure encoding the proposition (Dosher,
1976; Anderson, Note 1). From the stand-
point of network strength theory, semantic
memory may well have the hierarchical struc-
ture assumed by Collins and Quillian (1969),
Anderson and Bower (1973), and others,
but this structure will not necessarily be
revealed by studies of retrieval dynamics.

Speech Recognition

Broadly speaking, speech recognition is
usually considered to involve the passage of
the auditory signal first through one or more
levels of general-purpose auditory analyzers
then through one or more levels of specific

speech analyzers (distinctive features) to
the segmental (phoneme, syllable, allophone)
levels, and finally to the word and concept
level. These words or concepts are typically
assumed to be the basic elements of nodes in
semantic memory, with other (higher) nodes
representing phrases and sentences.

This neat, serially ordered, hierarchical or-
ganization of the speech-perception process
was rather strongly challenged by the findings
of Savin and Bever (1970) and Warren
(1971), as replicated and extended by Foss
and Swinney (1973) and McNeill and Lindig
(1973). These studies showed that under
some circumstances, syllables can be recog-
nized faster than phonemes, words can be
recognized faster than syllables, and sentences
can be recognized faster than words, syllables,
or phonemes. An interesting consequence of
network strength theory, under the parallel-
processing assumption, is that a serially
ordered structure of levels in the processing
of stimulus input does not necessarily predict
faster recognition of target elements at levels
closer to the periphery. Even the extraordi-

nary findings of McNeill and Lindig (1973),

that subjects can sometimes detect a sen-
tence target faster than a syllable target,
which in- turn can be detected faster than a
phoneme target, in no way contradict the
ordering assumption for the levels. The expla-
nation is completely analogous to the reason
why increasing the distance in terms of the
number of intervening links does not neces-
sarily have any detectable effect upon re-
trieval dynamics so long as the  parameter
for nodal-delay time is small in relation to
the rate of approaching the limit for the
retrieval function of each link. '

Reading

Precisely the same considerations that apply
to speech recognition also apply to reading.
Analogous to the Savin and Bever (1970)
reaction-time finding in speech recognition,
Johnson (1975) found that subjects can
identify whether a visual stimulus is or is not
some target word as fast as they can deter-
mine whether a single visual letter is or is not
the target letter and faster than they can
determine whether a visual word does or does
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Bot contain a target letter. This finding has
been taken to challenge the assumption that
the letter level of analysis precedes the word
(or concept) level. If letters are analyzed be-
fore words, how can words be identified as
rapidly as isolated letters, and how can letters
in the context of a word be identified even
more slowly than the entire word?

Once again, network strength theory pro-
vides an explanation of these findings that
permits retention of the attractive assumption
that graphic segment units such as letters
and/or letter dyads or triads (context-sensitive
graphemes) are constituents of words that
precede the word level for visual stimuli.
With chain parallel processing, the delay be-
tween the onset of activation of segmental
(letter) units and transmission of this activa-
tion to associated word units is negligible.
Since word units receive converging input

from a large variety of segmental (letterlike).

units, the time to reach some retrieved-
strength threshold for identification of a word
might easily be the same or less than the time
for a segment (letter).

REFERENCE NOTE

1. Anderson, J. R. Personal communication, Febru-
ary 1975.
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