Quarterly Journal of Experimental Psychology (1 978) 30, 1-15

SEMANTIC MEMORY RETRIEVAL:
ANALYSIS BY SPEED ACCURACY
TRADEOFF FUNCTIONS*
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Semantic memory retrieval for verifying category—example associations was tested
by a speed accuracy tradeoff method: present the category for 2 s, present a correct
or incorrect example followed, after a variable lag (o, o'1, 02, 0°3, 04, 06, 08,
1, 2, or 3 s), by a signal to make a “yes—no’ response in about o2 s. Although
the strength of the category—example association is higher for high dominance
examples of a category, retrieval dynamics did not vary with dominance level.
Recognition for category—example associations appears to be a direct-access
(parallel) retrieval process. Priming a category by repeated testing of the same
category over three consecutive trials had no effect on either asymptotic strength
or retrieval dynamics. Partitioning into short, medium, and long latency responses
at each lag produced microtradeoff functions which did not lie on the same
macrotradeoff function. Retrieval dynamics were invariant with long-term
practice.

Introduction

People decide faster that A robin is a bird than that A chicken is a bird. A robin
is also rated to be a more typical example of a bird than is a chicken. In general,
the instances of a category which are rated as most typical of the category or are
most frequently produced by subjects as examples of that category are also most
rapidly verified as examples of that category (Loftus, 19734; Rips, Shoben and
Smith, 1973; Rosch, 1973; Smith, Shoben and Rips, 1974). Why are some
category—example associations verified faster than others? Rosch (1g973) suggests
a serial search model in which a category is entered at its core meaning and
examples are searched in a relatively fixed order from the best (most typical)
examples to the worst (least typical) examples. Anderson and Bower (1973,
pp. 380-81) also_assume a similar serial search.

Smith, Shoben and Rips (1974) have a two-stage model that distinguishes
between the defining and the characteristic features of examples and categories.
Robins, for instance, are said to have defining features (such as biped, wings,
distinctive shape and colouring, etc.) which are relatively essential features for
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an entity to be classified as a robin, but robins are also said to have characteristic
features (such as perch in trees, undomesticated, etc.) which are less essential
for being classified as a robin. They propose a two-stage model of verification
for category—example associations similar to that of Juola, Fischler, Wood and
Atkinson (1971). In this model, all features (defining and characteristic) of both
category and example are retrieved and matched with equal weighting in the first
stage but only defining features (or all features, but weighted by degree of
definingness) are retrieved and matched in the second stage. If the degree of
match (similarity) in the first stage is above some high criterion, a fast “‘yes” is
produced without having to go through the second stage. If the first stage
similarity is below some low criterion, a fast “no” is produced, avoiding the need
for a second stage. Only for intermediate degrees of similarity 1s it necessary
to invoke the second stage which operates only on defining features. Thus,
according to Smith et al. (1974), the average verification time for typical examples
should be less than for atypical examples because of a difference in the frequency
with which the second stage is required.

The similar two-stage model of Juola et al. (1971) would make the same
prediction, since the examples which subjects rate as most typical of a category
also tend overwhelmingly to be the examples with the highest strength of
association to the category as measured by the frequency of subjects’ producing
the example when generating instances of the category (Battig and Montague,
1969; Hunt and Hodge, 1971). Juola et al. assume that the first-stage of retrieval
is a direct-access process which produces a “yes-no” decision if the retrieved
strength of association is above a high criterion or below a low criterion. If
associative strength has a value between the two criteria, a serial search of the
examples of a category (in this case) is conducted. Although typicality ratings
and associative strength measured by production norms are highly correlated,
Smith et al. (1974) report that it is actually associative strength that is the better
predictor of category—example verification time. Hence, the present study uses
category-example production norms as a measure of what Loftus (1973a) calls
instance dominance, the strength of association from a category to an instance (as
distinct from category dominance which is the reverse association measured by
the frequency of generating superordinates of an example, e.g. Loftus and Scheff,
1971). Wilkins (1971) and Loftus (1973a) have shown that high instance
dominance produces faster verification time for category—example associations
when the category is presented a second or so before the example, while Loftus
(1973a) has shown that high category dominance produces faster verification
time for such associations when the example is presented before the category.
In the present study the category name was presented before the example, so the
term dominance will always refer to instance dominance.

By contrast to the foregoing models, the simplest direct-access model of the
verification of category—example associations assumes that the category (e.g.
bird) and example (e.g. robin) nodes are directly activated without search. 'The
stored strength of association between these two nodes (perhaps mediated by a
propositional node: e.g. the node representing a robin is a bird) is also retrieved
directly, without serial searching or scanning of alternative associations (Anderson,
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1976; Collins and Loftus, 1975; Wickelgren, 1975). Since there is no serial
searching of examples associated with a category, and no two-stage processing
differentially associated with low-dominance examples, the simplest direct-access
model predicts no difference in the retrieval process for high vs. low dominance
category—example associations. What this means will be explained in more
detail after discussing the speed accuracy tradeoff (SAT) method for studying
memory retrieval dynamics.

Although retrieval is assumed to be direct-access, it is clearly not instantaneous.
As a subject is given more time in which to make a recognition decision (item,
paired associate, etc.), accuracy improves up to some asymptotic level set by the
strength of the relevant association(s) in memory (Corbett, 1977; Dosher, 1976;
Reed, 1973, 1976; Wickelgren and Corbett, 1977). A speed accuracy tradeoff
(SAT) function may provide a direct measure of the entire time course of memory
retrieval dynamics, whereas the reaction time (RT) method yields the equivalent
of a single point on such a retrieval dynamics function (RT plus it’s associated
error rate), Also, asymptotic accuracy (with unlimited retrieval time) reflects
the strength of an association in storage, not the dynamics of the retrieval process.*
A number of SAT studies of memory retrieval (Corbett, 1977; Dosher, 1976;
Reed, 1973, 1976; Wickelgren and Corbett, 1977) show that the time course of
retrieval is well approximated by an initial period of chance accuracy (d" = o)
up to time T = § (the intercept) followed by an exponential approach to
asymptotic accuracy (A), namely:

dp = A (1—e BT-8Y) (1)
where {T-8} = T-8 for T>8 and o elsewhere.

In Eq. (1), dr is a d’ accuracy measure after T'ms of processing time, A is the
asymptotic accuracy level, 8 is the time intercept of the SAT function. The
exponential form of the retrieval function asserts that the absolute amount of
retrieval per unit time is proportional to the amount left to be retrieved. The
rate parameter, B, is this proportion of remaining, unretrieved, trace strength
which is retrieved per ms of retrieval time after the intercept (8). If the
exponential form of retrieval is even approximately valid for category-example
associations, it indicates that RT studies of dominance effects may simply be
showing that dominant category—example associations have higher asymptotic
strength (}), with no difference from low dominance associations in the intercept
and rate parameters (§ and B) which reflect the dynamics of retrieval process.
Because of the empirical fact that retrieval accuracy approaches a limit, even
small differences in asymptotic accuracy for two conditions can produce large
differences in the time to reach a high criterion level of accuracy even with no

* The terms retrieval time and retrieval process will be used throughout this paper to refer in a
theoretically neutral manner to: (a) the entire time from onset of a test category-example pair to
the response and (b) all the processes that go on in this period, respectively. One of us (Wickelgren,
1976) believes that serial stage analyses of information processing tasks are appropriate structurally,
but not dynamically (at least not in the usual sense). Accordingly, we use the term retrieval tyme
in a strictly empirical sense to be equivalent to processing time: it is the time allowed for retrieval.
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differences in the retrieval process. This is especially true since instructions to
subjects in RT studies usually emphasize achieving high accuracy. The present
study uses the SAT method to determine whether associative dominance in
semantic memory affects asymptotic strength or retrieval dynamics or both.

Collins and Quillian (1970) found that subjects could more rapidly verify the
truth of propositions such as ““A canary is a bird” or ““A canary is yellow” after
judging the truth of another proposition about a “canary” than after judging a
proposition about some other concept. That is, their results indicated that
processing any proposition about canaries primed the retrieval from memory of
other propogitions about canaries, producing a faster verification time. Ashcraft
(1976) in recognition and Loftus (1973b) in recall have found similar priming
effects. Once again, the SAT method can indicate whether priming affects
asymptotic accuracy (via a short-term boost in associative strength) or retrieval
dynamics.

Also we wished to determine whether the process of retrieval of one association
from a node (animal-horse) is responsible for the priming effect on the retrieval
of another association from the same node (animal-wolf) or whether accessing
the common category (animal) concept alone is sufficient to produce priming
effects. Therefore, in the present category—example verification study, the
category name was always presented well in advance (2 s) of the example so that
priming effects resulting from accessing the category concept will be present in
verifying the example even in the first presentation of a category, and no facilita-
tion effects from the first to second to third presentation of a category is expected
if priming is based entirely on activation of the category nodes alone. If
facilitation effects are still obtained with category repetition they must stem
from actually processing the category—example relation the first time the category
is presented. In the present procedure retrieval time is measured from onset of
the example. This procedure eliminates category node priming as the cause of
any facilitation effect obtained in repeating a category across trials.

In the current study, we used the response signal method of generating speed-
accuracy tradeoff curves. Our SAT functions for verification of a category—
example association (e.g. fruit-pear), were generated by the following procedure:
A category (fruit) was presented followed in 2's by an example (pear). At a
variable time (0-3 s) following onset of the example, the subject heard a brief
tone which was the signal to make a yes-no response regarding whether the
example belongs to the category. The delay between presentation of the example
and presentation of the signal to respond is termed the lag. The latency is the
delay between response signal and the subject’s response. Total retrieval time

is the lag I latency. In plotting our SAT curves, we typically plot accuracy as
a function of mean retrieval time (lag - mean latency).

Method
Subjects

Four subjects were paid $1.50/hour to participate in the experiment.
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Materials

Fifty-two category names and 1560 category members (30 from each category), were
selected from category production norms (Battig and Montague, 1969; Hunt and Hodge,
1971). [Each category name consisted of one, two or three words. The category members
were restricted to one or two words and three to 16 letters. Fifty of the categories
served as experimental categories, the other two were employed in practice trials at the
beginning of each session. The 30 examples in each category were subdivided into 10
high, 10 medium, and 10 low dominance examples.

. Procedure

There were a total of 3000 experimental trials divided into 20 sessions. In each
session the experimental trials were preceded by six practice trials for a total of 156 trials/
session. Subjects participated in two sessions a day, one in the morning and one in the
afternoon, each approximately 25 min long. Stimuli were presented on a cathode ray
tube. The experiment was controlled by a PDP-15 computer.

At the beginning of each trial READY appeared on the screen for 1000 ms then was
replaced by a category name. The category name remained on the screen for 2000 ms
then was replaced by a test example. Subjects had to decide if the test example was a
member of the category whose name had just been displayed. At a variable interval or
lag after the onset of the test example a tone, which served as a response cue, sounded
for soms. Subjects were instructed to make their yes—no response by pushing one of
two keys approximately 200 ms after the tone. After responding, the test example was
removed from the screen and subjects rated their confidence in their yes-no decision on
a scale from one to six. The subjects were instructed to think back and rate their confi-
dence in their yes—no decision at the time that decision was made, not their confidence in
their yes—no decision at the time of the confidence rating itself. After the confidence
rating the subject was provided feedback on his or her latency from the onset of the tone.
After 2—3 s the experimenter initiated the next trial. The lags employed in the task (i.e.
the times between the stimulus and response cue onset) were o, 100, 200, 300, 400, 600,
800, 1000, 2000, 3000 ms. Subjects became familiar with the procedure in an initial
practice phase consisting of four sessions which involved stimuli other than those employed
in the test sessions.

Design

Each of the 50 experimental category names appeared in three trials in succession in
each session. The order in which the category names were presented was randomized
for each session. The three successive presentations of a category were not blocked with
respect to truth value (whether the test example was or was not a member of the test
category) nor lag. Rather, the truth value, test example and lag were selected randomly
for each trial with three constraints. Across the 20 sessions each category name was
paired in the first, second and third presentation position with one correct example and
one incorrect example at each of the 10 lags. Each test example was paired once with its
correct category name and once with an incorrect category name. Finally, no example
of a category appeared twice in the experiment until each example of that category had

appeared once.
Results
Lag-latency functions

A very small number of trials with latencies greater than 1s were excluded
from all analyses. The mean latencies of the subjects’ yes-no responses were
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no different in the lag-latency functions for different dominance and priming
conditions so Table I presents the latencies averaged over dominance level and
over the first, second, and third presentations of a category (subsequentially
referred to as positions 1, 2 and 3). Latencies are longest at the shortest lag
and decrease by 60 ms on the average from the shortest to the longer lags, with
most of the decrease occurring before subjects are performing above chance
(below the intercept of the SAT function). These are typical lag-latency
functions for SAT studies using the response-signal method, with close to
constant latency at each lag. The small differences in latency across lags may
reflect psychologically interesting processes, but we attribute the differences
largely to response strategy. It seems reasonable at this point to assume that
the small differences in latency across lags may be satisfactorily incorporated in
the speed accuracy tradeoff functions by plotting accuracy as a function of mean
processing time (lag plus mean latency).

TasLE |

Lag-latency functions for category-example verification (latencies in ms)

Lag (s)
Subject ) oI o2 03 o4 o6 o8 10 20 30

DC 226 186 178 180 170 171 180 179 187 185

NV 203 279 253 234 209 197 187 189 201 199
PS 223 197 184 185 184 174 168 166 159 159
DS 220 199 198 170 163 157 166 172 180 179

Mean 240 215 203 192 182 175 175 177 182 180

SAT functions

The accuracy at each lag was assessed by dr, a d’-type measure based on the
pair of probabilities: (a) for a yes response under a hit condition and (b) its
comparable false alarm condition, but adjusted for the effects of non-unit slope
as indicated by the confidence judgement data (Reed, 1973). Since confidence
judgements were obtained after the yes-no response, they may be based on
more retrieved information than was available to the subject at the time of the
yes-no response. Accordingly, the confidence judgement data were used only
to estimate the relation between d’ and the slope of the operating characteristics,
in particular the regression of In slope on dg (the d’ value obtained from the
intersection of the operating characteristic and the negative diagonal). Then
instead of entering the tables of Elliott (1964), which assume unit slope, we enter
hit and false alarm rates for the yes—no response into the equivalent of a table
which assumes that the true slope has the value indicated by the regression
derived from the confidence judgement data. In a few cases, there was no
computable dy score for the two shortest lags because of heavy response bias
(e.g. subjects always pushing the yes button). These points were excladed from
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all analyses. In the few cases (only for subject DS) where there was no com-
putable dy score for the five longest lags because performance was perfect (infinite
dy), dp was arbitrarily set at 4 (a value equivalent to the highest obtained dyscore
for DS).

To determine the goodness of fit to the data of an exponential approach to a
limit [Eq. (1)], a measure R? (percentage of variance accounted for) was employed,
which adjusts for the number of free parameters with the equation

Mz

(0 — 42N — k)
R2= I — T=1

(2)

MZ
“a

r— /N — 1)
T=1
where N is the number of empirical points dr, k is the number of parameters in
the theoretical function, d; is the theoretical dy. value for condition T, and dp is
the grand mean of the d; (Reed, 1976). Reducing the number of degrees of
freedom by the number of free (estimated) parameters is the conventional method
of adjusting for differences in this factor across different models. However, our
criteria for evaluating models place as much weight on consistency of relations
among parameter estimates across conditions and subjects as on goodness of fit
as measured by R% Furthermore, we follow the criterion that if two models
have approximately equal fit, the simpler model is preferred.
Priming

There is no evidence of any difference in either asymptotic strength or retrieval
dynamics among the speed accuracy tradeoff curves for presentation positions I,
2 and 3. Fitting an exponential approach to a limit in which asymptote (A),
retrieval rate (8) and intercept (8) were held constant across the three curves for
each subject yielded as good an R? as that provided by independent fits to the
three curves (that is, 3 A, 3 Bs, and 3 8s). Therefore, Figure 1 shows the speed
accuracy tradeoff functions for category—example verification dynamics pooled
over all three positions, yielding one curve per subject. The best fitting para-

meters obtained in fitting an exponential approach to a limit to these pooled
curves are displayed in Table II.
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FIGURE 1. Speed accuracy tradeoff functions for category-example verification for each subject
pooled over all positions. Lines are the best-fitting exponential function (dr = A (1 — e—B{t—3}),
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TasLE 11

Best fit parameter estimates for category-example SAT functions
dT = A (I _— e——ﬁ{t——s})

Subject A B 3 (ms) R?
DC 2'5 0’0062 465 091
NV 43 0'0032 445 090
PS 43 0°0029 469 0°95
DS 39 o-o060 375 097

Mean 3-8 00045 438 0'93

Advance presentation of the category alone 2 s before presentation of the
example appears to completely eliminate the priming effect of prior category—
example verification. Thus, engaging in a formal retrieval-decision process for
one category—example pair is unnecessary to achieve maximum priming of the
retrieval-decision process for another example from the same category.

The result is most compatible with a nodal activation explanation of previous
priming effects. That is, repetition of a concept (in this case the category)
results in faster accessing of the same concept node. A concept-example
associative-activation model cannot be entirely ruled out, however, since accessing
a node (i.e. reading the category name) may result in a spreading associative
activation of links from that node, even without engaging in the process of retrieval
of (example) associations from that (category) node (Collins and Loftus, 1975).

Dominance

The 30 correct category—example pairs for each category were subdivided into
thirds representing the high, medium, and low (instance) dominance associations
according to the Battig and Montague (1969) and Hunt and Hodge (1971) norms.
The entire set of incorrect pairs was used to determine dy values for the three
dominance groups at each lag. The SAT functions obtained for high, medium,
and low dominance pairs were fit with the exponential function assuming four
different models for the parameters: (a) 3 As, 3 Bs, and 3 3s, (b) 3 As, 3 Bs, and
18, (c) 3Xs, 1B, and 3 8s, and (d) 3 4s, 1 B, and 1. The first three models
assume that dominance affects both asymptotic strength () and retrieval dynamics
(B and/or 8). The fourth model assumes that dominance affects only asymptotic
strength of association and has no effect on the retrieval process.

The fit of the exponential function was very good and nearly equivalent for the
four models, though model (d) fit best for three of the four subjects and model (a)
fit best for one subject [average R? gave a modest advantage to model (a) with
R? = 0-946 vs. R? = o0-942 for model (d)]. Thus, there is certainly no reason
based on comparative goodness of fit to prefer any of the more complex models
[(a), (b) or (c)] to the simpler model (d) which assumes that the dominant
category—example associations differ from the less dominant associations only in
asymptotic associative strength, with no difference in retrieval dynamics. The
same conclusion emerges from examining the consistency of the parameter
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TaBLE II1

Best fit parameter estimates for high (H), medium (M) and Low (L) dominance
SAT functions dp = A (1 — e—B{t—8})

Subject Ax Au AL B8 3 (ms) R?
DC 26 2°5 2'5 00048 462 096
NV 39 36 37 0'0028 436 0'94
PS 50 46 37 0'0033 473 0'92
DS 36 33 33 00058 377 0'95

Mean 38 35 33 0'0042 437 094

estimates across individuals for the four models. Models (a) and (b) show no
consistent relation between dominance and the retrieval dynamics parameters.
Model (c) showed some tendency for intercept (8) to decrease with increasing
dominance, but the overall fit of model (c) was actually slightly poorer than the
fit of the simpler model (d) both on the average (R? = 0:939 vs. R* = 0-942) and
for three of the four subjects. Table III shows the best fitting parameter values
and goodness of fit for the 3 A, 1 B, and 1 § model in which asymptotic strength
decreases from the high to medium to low dominance associations (with one
small reversal for NV) but retrieval dynamics is invariant with dominance.
Figure II shows the high and low dominance data (averaged over the four subjects)
fit by the exponential function with the parameters averaged over the four subjects.

°
| e o :
= 3 '/+’—‘+ +
% 2r * Instance dominance
3 [ (Strength of category —instance association)
2t ./ ® High
K] _E/* + Low
o !J. 1 1 )

i L H 1 1 i }
(¢} 02 04 06 08 | -2 -5 2 22 32
Retrieval time= 7 (s)

FiGURe 2. Speed accuracy tradeoff functions for category-example verification for high vs.
low dominance examples. Data are dy and T values for each lag averaged over the four subjects.
Lines are best-fitting exponentials with parameters derived from averaging the best-fitting values
for each subject.

Partitioning and microtradeoff

The distribution of a subject’s latencies for a given lag typically have a rather
small standard deviation with the response signal method, which minimizes the
potential evils of averaging. Nevertheless, it would be desirable to assess whether
such pooling of trials with various latencies (in a given lag condition) is distorting
the form of the SAT function or systematically biasing its parameters. To
investigate this, the data were partitioned into trials with short, medium-and
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long RTs with separate SAT functions being plotted for each. In addition to
these partitioned macrotradeoff functions, it is also of interest to examine the
three-point microtradeoff functions for each lag condition. The simplest possible
result would be for each microtradeoff function to lie on a common macrotradeoff
function. This result was obtained in the only prior study of latency partitioning
using the response signal method, a perceptual choice study (Schouten and
Bekker, 1g67).

The SAT functions for each subject for the shortest, medium, and longest
latencies at each lag are shown in Figure 3. The microtradeoff functions for
each lag are shown by connecting the three points at each lag by lines. Obviously,
the microtradeoff functions for category—example verification do not lie on the
same macrotradeoff function. In general, the longest latencies at each lag are
less accurate than the medium and shortest latencies, rather than being more
accurate as they should be if the microtradeoff functions were to lie on the macro-
tradeoff function.

TaBLE IV

Best fit parameter estimates for short (S), medium (M) and long (L) latency
SAT functions dp = A (1 — e—B{t—8})

Subject Asymptotes Rate Intercepts (ms)
)\B AM AL B 85 SM 8L RZ
DC 26 27 26 00056 415 454 514 094
NV 45 40 26 0'0032 388 448 458 0'91
PS 51 59 30 0'0035 432 465 585 092
DS 37 39 36 0'0077 336 368 486 096
Mean 40 41 3'0 0'0050 393 433 511 093

To get a more precise idea of the differences between the partitions, three
separate macrotradeoff functions were fit to the three latency-partition curves
for each subject.

Four models were fit to the curves (a) 3 A, 38, 36, (b) 34, 18,38, (c) 34,
38,18, and (d) 3 A, 18, 18. The best fit was obtained with the second model
which assumes a common rate parameter (B) for all three curves for a given
subject, but three different asymptotes (1), and three different intercept (3)
parameters. 'This fit is shown in Table IV. In this fit the asymptote of the
long-latency function is consistently lowest, and there is little difference between
the short and medium functions. However, the intercept increases monotonically
from short to medium to long latency SAT functions.

The greater variation over trials in the nature of the material being processed
probably accounts for why the microtradeoff functions are so discrepant from
the macrotradeoff function in this study, whereas they were not in the Schouten
and Bekker (1967) study. In Schouten and Bekker (1967), there were only two
different stimuli (lights one above the other), each of which was to be mapped
on to one of two response buttons. In our study there were 1500 different
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correct category—example pairs and the same number of different incorrect pairs.
Whatever the reason for the intercept and asymptote differences among the
latency-partitioned SAT functions, it was the case that the same exponential
form of the function with virtually the same retrieval rate parameter provided as
good a fit to the partitioned data as to the pooled data (8 was slightly higher in
the partitioned data). Thus, there is no reason to believe that the form of the
SAT function or the retrieval rate parameter is being substantially distorted by
pooling trials with different response latencies. Furthermore, the intercept
parameter for the pooled data is close to and not systematically different from
the average of.the intercept parameters for the partitioned data.

Practice

All the trials for the first 10 sessions of the experiment were pooled for each
subject. The same was done for the last 10 sessions. The empirical SAT
functions for the first and last halves of the experiment were fit with four models:
(a) 2 Xs, 2 s, 28s, (b) 2Xs, 2 Bs, 18, (c) 22s, 18, 285, and (d) 2 4s, 18, 1 8.
No improvement in fit was afforded by the five and six parameter models over
the four parameter model, which assumed constant retrieval dynamics (constant
B and 8). Nor was there any consistent tendency for faster dynamics (greater
rate andjor lower intercept) as a consequence of long-term practice in
category—example verification within the SAT paradigm. For three of the four
subjects there was not even much of a difference in the asymptotic strength (})
value for the first vs. second half. The parameter estimates and goodness of fit
for the best fitting (2 As, 1 B, 1 8) model are shown in Table V.

TABLE V

Best fit parameter estimates for SAT functions as a function of practice :
first vs. second halves of the experiment dp = X (1 — e—B{t—3})

Subject A A, B 5 (ms) R?
DC 26 2'5 0°0057 463 0'94
NV 35 47 0°0029 430 0'97
PS 43 45 0'002§ 465 094
DS 3’5 37 00062 375 094

Mean 35 38 00043 433 0'95

Why there was any increase in the asymptotic strength of the category-example
associations from the first to second half of the experiment is an open question.
No association was ever tested more than once, but subjects might review their
knowledge of the examples of the tested categories. In any case, a change in A
as a function of practice is of much less theoretical significance than the invariance
of the memory retrieval dynamics. After all, we know category-example
associations are subject to changes in stored strength as a function of learning and
forgetting. Apparently, a few practice sessions are sufficient to produce SAT
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functions which show no further practice effects in retrieval dynamics. Nor does
repeated testing of categories produce any long-term facilitation of retrieval
dynamics for examples in those categories.

Discussion

The conclusions of this study are primarily about method, though there are
invariance results which, if replicated, have substantial theoretical importance.
First, the present study demonstrates that even a relatively small difference in
asymptotic strength can produce the 50-150 ms differences in categorization time
for high- vs. low-dominance associations found in previous studies (see Smith
et al., 1974 for a review) without any necessary difference in retrieval dynamics.
In fact, if error rate were constant and low, say 6%, (d; = 3-10, assuming equal
hit and false alarm error rates) the RT difference between high and low dominance
predicted by the theoretical SAT functions in Figure IT is over 200 ms (840 vs.
1060 ms). If, as is typical, error rate is lower for the faster condition, for instance
5% error in the high dominance condition (d; = 3-28) and 7% in the low
dominance condition (d; = 2'94), the predicted RT difference based on the
theoretical SAT functions is only 4o ms (920 vs. g60). On the asymptotic
sections of the SAT functions (approximately 3%, errors in the high-dominant
condition and 5%, errors in the low dominant condition) very small changes in
accuracy are associated with large changes in response time and a large range of
RT differences may be obtained. Thus in a categorization task, or in other
recognition memory tasks RT differences are consistent both with differences in
retrieval dynamics or with asymptotic accuracy differences and do not actually
constitute conclusive evidence for either (unless asymptotic accuracy is constant
across conditions).

Specifically, previous RT studies of dominance effects on categorization time
are consistent with the hypothesis that dominant associations merely have higher
stored strength as well as with the hypothesis that there are genuine differences
in retrieval dynamics across dominance levels. The present study suggests that
there is no large difference in retrieval dynamics as a function of dominance and
provides some support for the hypothesis that all example associations to a common
category concept are retrieved in parallel at the same rate regardless of strength
(dominance). Since this amounts to accepting the null hypothesis, this con-
clusion must remain tentative pending corroboration by other investigations.
However, if retrieval dynamics is invariant with dominance, this finding contra-
dicts all two-stage models, such as Juola et al. (1971) or Smith et al. (1974),
which assume that dominant associations are retrieved faster because their retrieval
more frequently terminates in the first stage. This finding also contradicts all
serial search models of category—example verification such as Rosch (1973) or
Anderson and Bower (1974) which assume that examples are retrieved in order
of dominance.

Previous RT studies of priming are sufficient to show the existence of some
priming of retrieval of an A-B association due to prior retrieval of an A-C
association (though they cannot distinguish whether the priming effect is on
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asymptotic strength or on dynamics). Thus, we accept the existence of such a
priming effect. Our findings indicate that this effect is entirely due to prior
activation of A, which occurs even if no retrieval of associations to A is required.
Such a finding suggests that retrieval and priming of A-B associations are an
automatic consequence of presentation of A (or B) and is not contingent upon the
need to make a formal decision or response concerning any A-B association. This
supports the spreading activation principle of retrieval and priming (Collins and
Loftus, 1975).

Finally, the conclusions regarding the response-signal method of generating
SAT functions are generally favourable, though it would simplify matters if
microtradeoff functions lay on top of the macrotradeoff function. It is of practical
importance that measured retrieval dynamics is invariant with practice in the
SAT task, at least after a few practice sessions—a result which has also been found
previously in a word-word paired associate task by Corbett (1977). It is also
reassuring that the variation in intercept revealed by the partitioning analysis
does not greatly distort the form of the pooled macrotradeoff SAT function.
However, pooling should, and does, produce a small degree of initial positive
acceleration in the vicinity of the intercept, in the form of a small bump. This
is easiest to see in the dp values at T = o4 s in Figure 11, where this tendency
is amplified still further by averaging over intercept variations across the four
subjects. Examination of the individual SAT functions in Figure I reveals only
a very small effect of this type. Furthermore, it must be emphasized that any
such variation is probably in the subject, not in the response-signal method or
any other method of obtaining RT's or SAT functions. There is a more complex
model-fitting procedure by which any such intercept variation can be factored
out of the parameter estimation and goodness of fit process by deliberately
incorporating a submodel of this variation into all of the other models (a similar
procedure is discussed in Wickelgren, 1977, p. ~8). However, the magnitude of
the effect in the present study appeared to be so small as not to justify this added
complexity. In any case, obtaining a measure of the entire time course of retrieval
dynamics, by some SAT method, provides a relatively direct way of answering
such more detailed questions.
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