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George Miller (1956) and those who further developed
the idea of chunking as a learning process have produced a
powerful new type of associative learning that goes
substantially beyond the classical notions of associations
of ideas, extant since Aristotle. In classical associative
learning, two ideas activated contiguously in time had the
connection between them strengthened, intuitively a
horizontal association. In chunking, two ideas activated
simultaneously in the mind recruit a new internal
representative (node or nodes) to represent them and
associations are strengthened from the constituent ideas
to the new chunk idea and in the reverse direction.

Intuitively, chunking is a learned vertical
association, with hierarchical structure similar to that
found in the more genetically specified peripheral sensory
and motor systems. Chunking is an important new type of
learning for at least two reasons. First, chunking greatly
reduces associative interference, by permitting associations
to a chunk that are distinct from the associations to its
constituents. Second, chunking permits high level-
representation of a complex idea that is as simple as the
representation of the more elementary constituent ideas at
their level.

In terrestrial biological minds, the mutations that
produced learning by chunking appear to be those that
produced the capacity for cognitive, as opposed to stimulus-
response, thinking. Chunking permits the minds of birds
and mammals to have mental maps or models of the world,
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with mental entities representing objects and actions, not
- just stimuli and responses. Chunking permits us to have
expectations of what our actions will accomplish, not just
a strong urge to perform some response in a stimulus
situation; the latter being, I believe, a fair description
of the mind of a fish. I am basing these claims in part
on the ideas and findings of Thorndike (1898), Tolman
(1948), Bitterman (1969, 1975), and Razran (1971), but
probably none of them would endorse all that I have just
said concerning the difference between the minds of higher
and lower vertebrates. One of my primary intellectual
goals is to provide mathematical formulations of minds with
and without chunking, to determine and compare the
capacities of such minds more precisely.

Many of the ideas in this paper are incomplete and
imprecise. Furthermore, my primary interest at present is

‘theoretical cognitive science, not theoretical cognitive or

physiological psychology. I hope some of these theoretical
ideas will apply to real biological brains and the minds
they make possible, and I will include a number of
statements about the human mind and brain. However, my
principal goal is to develop theories of possible minds,
whether or not they correspond to any existing minds,
though I will use what I have learned about real minds as
the main stimulus for my thinking. One final warning: I
will shift back and forth between statements about possible
minds and statements about real minds and brains. This is
ideal for theoretical exposition, so long as you remember
that no careful attempt is being made in this paper to
evaluate empirically any statements about real minds and
brains.

CHUNKS

George Miller (1956) invented the chunk, in the
context of processing and short-term memory, as a unit of
coding in the mind. Although Miller noted that a great
deal of learning had gone into the formation of chunks, he

did not attempt to explain the learning process that formed

the internal representative of a chunk, which is my focus.
Miller defined a processing strategy of "recoding”, which
is the use of an already learned chunk to represent a
sequence (order set) of smaller chunks. Although we
clearly have the ability to learn ordered sets, the manner
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in which orderings are represented in an associative memory
is beyond the scope of this paper. Briefly, I think that
downward (implies) associations from chunks prime the
unordered set of constituents, with the ordering of the
constituents given by horizontal (lateral) associations
among (context-sensitive) constituents (Wickelgren, 1969b,
1979b). In any case, here I am only concerned with the
unordered set of constituents of a chunk.

ASSOCIATIVE NETWORKS AND LINK TYPES

Throughout this paper I will work within a
connectionist or network theoretical framework for
describing a mind. Specifically, a mind is a digraph
(directed graph), consisting of a set of nodes connected
by directed links (that is, the link from A to B is distinct
from the link in the reverse direction, from B to A). You
should think of the mind discussed in this paper as an
abstract model of the "association areas" of the human
cerebral cortex with some of the nodes receiving specific
sensory input (relayed through lower levels of the mind
not modelled here) and all of the nodes receiving
nonspecific arousal input from two arousal systems, the
learning arousal system and the retrieval arousal system.
Some of the nodes would output to lower levels of the mind
as-well, but I am not concerned with this, and you should
assume that we can directly measure the activation output
of each node in this mind.

Nodes in this mind are all of one type (excluding the
arousal systems, which are considered external to this
mind). In particular, there are mno inhibitory nodes
analogous to inhibitory neurons. Inhibitory functions will
be modelled by inhibitory links between nodes. However,
there are several types of links. Links are classified on
four dimensions: conditionable or not, excitatory vs.
inhibitory, specific vs. nonspecific, and implies vs.
coimplies. Not all of the 16 possible link types exist,
and 1 will concentrate on just two types in this paper:
(a) conditionable excitatory specific implies links and
(b) conditionable excitatory specific coimplies links.
Hereafter, I will just refer to these as implies or
coimplies links, with the other adjectives understood.

I will also make some use of two other link types,
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unconditionable specific inhibitory links (referred to as
“inhibitory) and unconditionable nonspecific excitatory links
(referred to as nonspecific), with the implies vs. coimplies
dimension being irrelevant for these link types. The
nonspecific links connect each node in the mind to the
learning arousal system, not to each other. At a few points
in the paper I will refer to another type of nonspecific
link that might connect each node to the retrieval arousal
system, but the properties of this system and its links to
the mind are not discussed very much.

“~

Previously, I assumed not two but three types of
conditionable specific excitatory links -- up, down, and
lateral (Wickelgren, 1979a). The correspondence is roughly
as follows: Coimplies links will do the same job as the
old up links, activating a node when the sum of the inputs
from the link set that jointly coimplies the node exceeds
an activation threshold. Coimplies links are for two-to-one
or many-to-one associations. Implies links are for one-to-
one associations and do the job of the old down links. At
present, I assume that all excitatory lateral links are of
the implies type, but some may be of the coimplies type.

Do not be misled by the word "implies" into assuming
that if node A has an implies link to node B and A is
strongly activated at time i that node B will necessarily
be strongly activated at time i + 1. B will be activated
above the threshold for possible inclusion in the next
thought (consisting of all strongly activated nodes) .
However, a decision process (mediated by lateral
inhibition) limits the next thought to the most strongly
activated nodes within some limited attention span, and B
may not make it. I am not prepared to provide a
mathematical formulation of this decision process beyond
this intuitive property, and indeed I will largely ignore
all inhibitory links in this paper.

RANDOM CONNECTIONS AND BINARY CHUNKING

In discussing mechanisms of chunking it is helpful to
deal with the concrete case of chunking two nodes A and B
into a"site on some chunk node, which I will here call node
(AB). Such binary chunking is the simplest case, but '
repeated binary chunking is sufficient to chunk sets of
larger size, albeit with some form of binary syntactic
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structure, such as ((AB)C), ((AB)(CD)), etc. There is also
a strong probabilistic argument in favor of binary branching
in (genetically) randomly connected associative networks
where the total number of nodes 1is approximately the square
of the average number of links per node. Throughout this
paper, 1 will assume a concrete model with 108 nodes and

104 1links per node. These exact numbers are not important,
but it is important that the number of nodes in the mind is
roughly the square of the number of 1inks per node.
Incidentally, the total number of neurons in the human
cerebral cortex is roughly the square of the number of
synapses per cortical neuron (Cragg, 19753 pakkenberg,
1966) .

0f course, we do not know that the chunking associative
memory in humans is randomly connected. Part or all of it
may be partitioned on the basis of the particular types of
input or output connections to the more genetically
specified sensory and motor modules of the mind. The
transition from genetic to learned structuring of the
connections of the mind may involve several steps O
levels, even within chunking associative memory. Genetic
guidance of chunking could easily result in the single-step
chunking of sets of constituents larger than two. However,
consideration of the case of binary chunking in genetically
random associative networks will give us enough to chew on
for the moment.

LINKS, SITES, NODES: ACTIVATION, STRENGTH, FRAGILITY

A node has a set of input sites, with each site
containing a set of input links to that node. Sites will
be classified into three types: (a) a single implies link,
(b) two coimplies 1inks, or (c) one specific (implies or
coimplies) link and one nonspecific 1ink to the learning
arousal system. For reasons that will be discussed later,
these three types are called bound implies sites, bound
coimplies sites, and free sites, respectively. Links,
sites, and nodes all have a positive real-valued activation
property. Links also have a positive real-valued strength
property, and sites have a positive real-valued fragility
property, with site fragility being some monotonic
increasing function of the strength of the nonspecific link
to that site from the learning arousal system. Sites with
no nonspecific link are really sites with a very weak
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nonspecific link (close to zero strength) and therefore

close to zero fragility. For reasons that will be discussed
later, fragility will serve as the theoretical measure of
the degree of consolidation of a memory trace, with low-
fragility representing high consolidation.

If node i has activation xi and the link from node i
to node j has strength zjj, then link ij has activation
xizij. Greater link activation produces greater site N
activation for the site at which the link terminates, and
greater\site activation produces greater node activation.
I do not wish to commit myself to any particular functions
summing link activation to get site activation and summing
site activation to get node activation. Obviously, there
are advantages to assuming as much linear combination as
possible with at least one nonlinear threshold parameter
at the site, node, or both.

However, in this paper, I wish to consider the
possibility that the summation of two coimplies link
activations in a single site produces greater node
activation than if the same coimplies link activations
occurred in different sites. If this nonlinear property
holds and if chunking could somehow bring two coimplies
links to the same site, then if links a & b were in one
site and links ¢ & d were in another site on the same node,
the node would be more strongly activated by (a&b) or (c&d)
than by (a&c), (a&d), (b&c) or (b&d). I call this set of
assumptions the site grouping hypothesis. Site grouping
permits a single node to function more like a logical
conjunction unit than it could with only link strengthening
as a learning mechanism. I am not convinced this is either
desirable or true of the cerebral cortex, but it is worth
considering.

CONTIGUITY CONDITIONING BY CROSS-—CORRELATION

I make the standard assumption of contiguity
conditioning of nodes (Hebb, 1949; Grossberg, 1967) that
the strength of the link from node i to node j increases
when the nodes are strongly activated at about the same
time, more specifically when the activation of nodes i and
j has a positive cross-correlation, typically with a
temporal asymmetry (©) to reflect link delay times in
transmission of activation and perhaps other factors.
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Grossberg (1967) expresses this very elegantly by the
n:

equatio iij - —uzyy + By (t - e)xj(t),

where 2ij is the strength of the link from i to J, iij is

its time derivative (rate of change of strength, —uzjj

represents forgetting via an exponential decay of link -

strength (with which 1 disagree for long-term memory), and

Bxi(t - G)Xj(t) represents learning due to cross=

correlation of the activation of node i at time t - 0O,

xi(t - ©), and the activation of node j at time t, Xj(t).

Elegant theoretical work, such as that of Grossberg,
demonstrates that there is much to be learned by careful
study of contiguity conditioning in the context of varying
assumptions about other aspects of network minds. Although
it has not been formulated mathematically, my previous
theory of chunking (Wickelgren, 1979a) describes a network
mind in which chunking, as well as conventional association
of ideas, can occur via the contiguity conditioning
learning mechanism. In the present theory, both implies
and coimplies links are assumed to be strengthened by some
cross—-correlation type of contiguity conditioning.

However, as mentioned previously, changes in link strength
via contiguity conditioning may not be the only mechanism
mediating chunking. Chunking may also group two oL more
coimplies links into a common site on the target node.

FREE AND BOUND SITES

Recall that I classified the sites of the mind into
three types: bound implies sites, bound coimplies sites,
and free sites. For the moment collapse the first two
types into one type. Thus, there is a partition of all of
the sites of the mind into two subsets: free and bound.

A free site has omne specific link with low strength and
one nonspecific link with high strength. Activation of a
free site requires input activation of both the high -
strength nonspecific 1ink and the low strength specific
1ink. If a free site is consistently activated at about
the same time as its node is activated, activation of the
free site becomes a useful predictor of activation of the
entire node, and the strength of the specific link to that
free site is increased via the cross—correlation learning
mechanism. Although the nonspecific link to that site
contributed substantially to site activation, its
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activation is random with respect to events to be
represented by the mind and nonspecific links are assumed
not to be strengthened by contiguity conditioning. Indeed,
when the specific link to a site is strengthened by learning,
this weakens the nonspecific link. Thus, learning is assumed
to strengthen the specific link at a site and weaken the
nonspecific link at the same site, converting it from a free
site to a bound site. Basically, the notion is that, at
birth, each node (whose links are not entirely specified
genetically) has a bunch of weak specific links to (free)
sites en other nodes. Some of these weak specific links
will prove to be predictive of activation of the nodes they
connect to, thus becoming strong specific links. The sites
with strong specific input links are said to be bound to
those links.

The preceding paragraph only describes the process of
converting a free site to a bound site with a single
specific link, that is a 1-1 association. How do we get
the 2-1 association necessary for chunking? We get them
from having two sites activated in temporal contiguity with
activation of the target node. By the process described in
the preceding paragraph, this converts both free sites to
bound sites. Then the site grouping mechanism takes over
and collapses the two sites into a single bound site, or
perhaps the specific links of each newly bound site send
collateral links to the other newly bound site. 1In the two
cases, one gets either one or two bound coimplies sites.
Note that it is not necessary to assume that the specific
1inks of free sites are of two types, implies and coimplies.
There need be only one type of specific link to free sites.
A bound implies site results from a learning event that was
1-1. A bound coimplies site results from a learning event
that was 2-1 and the site grouping process that follows
such a learning event.

CHUNKING AND THE REVERSE LINK HYPOTHESIS

There is undoubtedly a considerable degree of genetic
constraint on the randomness of neural connections in
animals, even in the cerebral cortex, and strong cases can
doubtless be made for many different types of nonrandomness
in the connections of minds, from a cognitive science
standpoint. However, in this paper, I will assume a mind
in which each node has specific links to a random sample of
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other nodes, with one exception. The exception is the
reverse link hypothesis, that whenever node i connects to
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node j, node j connects to node i. The link from i to j
may have different strength than the link from j to i, but
there is always a structural link from j to i, whenever
there is a link from i to j.

If nodes i and j connect to node k, but nodes i and j
do mot connect to each other (the latter being the typical
case for the sort of mind envisioned in this paper), then
chunking i and j by binding them to node k will also
strengthen 1-1 (implies) associations from node k to node 1
and from node k to node j. Thus, chunking not only
strengthens two coimplies links from the constituent nodes
to the chunk node, it also strengthens two implies links
from the chunk node to the constituent nodes. Logically,
nodes i and j together coimply node Kk, while node k implies
both nodes i and j. The sense of this is that node k
represents the conjunction of nodes i and j, so the
conjunction implies its constituents.

NONSPECIFIC LINKS AND THE LEARNING AROUSAL SYSTEM

There are some relatively obvious questions concerning
the mechanisms by which chunking could be accomplished in
a network mind such as the nervous system. The first
question is how do we know there is any node that receives
specific links from both A and B nodes in a genetically
random network? In my first theory of chunking (Wickelgren,
1969a), 1 assumed that some electrochemical gradient created
by the simultaneous activation of nodes A and B caused them
to grow links toward each other until they met, whereupon
they would link to the nearest node. Such a long distance
growth process would be difficult to engineer and is
generally deemed unlikely to occur in the adult nervous
system as a mechanism of learning. -

A selectional theory of learning is far more plausible
for the human mind and more practical to engineer in an
artificial mind. One could also develop a model of
chunking in which one or more interneurons were enslaved by
the chunking process purely for the purpose of getting some
node that indirectly (via a chain of interneurons) received
input links from both A and B nodes, but I have little
interest in doing this. Furthermore, as I have argued




by ren o P e T A

_in the human cerebral cortex is such that, while it is very
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before (Wickelgren, 1979a), the ratio of synapses to neuroms

unlikely that any set of three or more neurons synapse with
a common (possible chunk) neuron, it is highly likely that
any set of two neurons do synapse on some Common meuron.

In an arbitrary random network there is no guarantee of this,
but, if the ratio of links to nodes is great enough, the
probability can be made as close to one as you wish.

For two contiguously activated nodes to be chunked,
they must have their links to the chunk node strengthened.
The only link strengthening process we have assumed is
contiguity conditioning. This requires the chunk node to
be strongly activated at about the same time as the
constituent nodes are strongly activated. Since, prior to
chunking, the constituent nodes have only weak links to the
chunk node, how does the chunk node get activated? I still
like the basic mechanism described in Wickelgren (1979a) in
which a (spontaneously active) learning arousal system
provides strong nonspecific input to combine with the
converging weak specific input to the (AB) chunk node from
the constituent A and B nodes. By providing each free site
with a strong nonspecific input link to compensate for the
weak specific link, one could probably design a network
(and the mammalian cerebral cortex may be one) in which
input from two weak specific links is enough to activate
the node strongly enough to trigger contiguity conditioning.
A precise mathematical model is really important here, but
the foregoing argument is intuitively persuasive.

Furthermore, we can postulate alternation of activation
of learning vs. retrieval arousal systems, so that during
the learning phase of mental functioning (occurring several
times a second like the alpha rhythm) only free sites can
be activated (Wickelgren, 1979a). Routtenberg (1968)
presented considerable evidence to support the existence of
two such arousal systems in the human brain, a limbic
(hippocampal) arousal system and the more familiar reticular
activating system. The former could serve as the learning
arousal system and the latter the retrieval arousal system.
I no longer think it is necessary to alternate learning and
retrieval phases to permit free sites to activate their
nodes 1in competition with existing strong links from
constituent nodes, but it might be.

Nonspecific input would also assist the weak implies
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links from the (AB) chunk node in activating the relevant
sites on the constituent A and B nodes. A positive feedback
loop is thus created between the chunk node and its
constituents, which produces a relatively long period of
paired activation of the chunk node and its constituents.
This strengthens both upward coimplies and downward implies
connections to the relevant sites by the plausible
contiguity conditioning mechanism.

FRAGILITY, CONSOLIDATION, UNLEARNING, DECAY AND AMNESIA

Although the learning event of contiguous activation
can be accomplished in a second or less and I assume that
the consequent increase in the strength of the specific
link(s) occurs almost immediately thereafter, a long-
lasting period of consolidation of this learning follows
the learning event. The consolidation consists of the
reduction in the strength of the nonspecific link(s) to
the learning arousal system at the newly bound site(s).
The nonspecific link has served its purpose of permitting
a new site to be bound via the contiguity conditioning
mechanism. Now that the site has been bound, a strong
nonspecific link would only cause more rapid forgetting
of the newly strengthened specific link. It is for this
reason that the strength of the nonspecific link is also
called the fragility of the site or, equivalently, the
fragility of the newly strengthened specific link.

Once a free site has been bound, its association to
the learning arousal system (fragility) begins to decrease,
rapidly at first, then progressively more slowly over time.
As fragility decreases, the probability of activation of
the site by the learning arousal system and other random
weak input decreases. Thus, there is less chance that the
bound site will be activated without input from the specific
link(s) it was bound to. Such uncorrelated activationm is
assumed to weaken the previously strengthened specific
associations. The reduction in site fragility is, thus, a
consolidation process which protects the memory traces
(strengthened associations) from disruption by one kind of
forgetting. This forgetting results from activation of the
site without activation of the proper specific input links.
This is a kind of (backward) unlearning, but, strangely
enough, it behaves like a pure time decay process, because
the events that drive the loss of trace strength are
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unrelated to the events that produced the original
learning.

A Furthermore, as the trace consolidates, this decay

: slows down over time since learning, a prediction that has
been overwhelmingly confirmed (Wickelgren, 1972, 1974).
Finally, although several facts concerning human memory
indicate that consolidation continues for years following

H learning, most of the consolidation occurs within the first
few hours or days following learning.

~
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g Retrograde amnesia is loss of memory for events that
occurred before some insult to the brain such as concussion,
electroconvulsive shock, lesions of the hippocampus, etc.
-i The same consolidation process can be used to explain the
reduced susceptibility of older memories to retrograde
amnesia. The theory also accounts for why subjects with
retrograde amnesia show anterograde amnesia, a reduction in
ability to learn new associations, the so-called ammnesic
syndrome (for an explanation, see Wickelgren, 1979a).
é, Since the amnesic syndrome seems to apply precisely to
éj learning that might be presumed to employ new chunking
% (Wickelgren, 1979a), the explanation of normal chunking,
normal forgetting, and both retrograde and anterograde
amnesia via a common mechanism is appealing. The evidence .
indicates that the long-term memories that are disrupted in
the amnesic syndrome are located in the cerebral cortex,
but that a neural circuit involving the cortex and the
hippocampus (and perhaps other structures) is critically
involved in the learning and consolidation processes.

v A e e

CONSOLIDATION, SITE RECYCLING, AND DENDRITIC SPINES

Apparently, virtually all excitatory synapses on
mammalian cortical neurons are on dendritic spines. Thus,
to apply the current theory to the mammalian cerebral
cortex, let us assume that a site is a single spine or a
set of nearby spines receiving one or more (specific)
synapses from another cortical neuron and one or more
(nonspecific) synapses from the learning arousal system.
Although the nonspecific synapses start out stronger than
the spedific synapses at free sites, there is a sense in
which the specific synapses are the genetically preferred
; synapses, because once the specific synapses are

; strengthened, this causes the nonspecific synapses to

-,;'.'vu...n:.-.-. i
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weaken at the same site. This is not all implausible, and
examples of just such a process were cited in Wickelgren
(1979a). It is also possible that if the nonspecific
synapses are on different spines from the specific
synapses, then what consolidation does is somehow to *
protect the newly bound specific spine from the effects
caused by input to nearby nonspecific spines. There are
many ways this could be done.

If a specific link becomes sufficiently weakened by
forgetting, the consolidation process might reverse itself,
recycling the site to the free state once more. There is
also the more pessimistic version of this theory in which
no site recycling is possible, and we gradually use up all
of our free sites as we learn.

LEARNING AND UNLEARNING VIA CROSS—-CORRELATION

Both learning and unlearning can be obtained from the
cross-correlation term of Grossberg's equation for
contiguity conditioning provided we change the activation
terms, xi and x3, from absolute levels of activation to
deviations in activation from some intermediate point.
This permits negative contributions to link strength
(unlearning) from the cross—correlation term whenever Xj
is high and xj is low (forward unlearning) and whenever Xj
is low and xj is high (backward unlearning). The effects
of consolidation would then have to be reflected in a
reduction of the B cross—correlation parameter. This will
reduce backward unlearning, but it will also reduce both
forward unlearning and further learning at the same synapse.

The reduction in further strengthening of the same
synapse is not in obvious conflict with the facts since
learning is definitely subject to diminishing returns, and
many theorists suspect that multiple-trial learning® involves
. trace replication at different synapses more than trace
strengthening at the same synapse. However, the reduction
in forward unlearning does not appear to be in accord with
the facts of human learning (Wickelgren, 1974).

Furthermore, it is only the kind of neurally backward
unlearning produced by nonspecific activation of the
postsynaptic neuron that can be assumed to diminish with
consolidation, since it is only that kind of unlearning _
that, behaviorally, appears to be a pure time decay process
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(and not an unlearning process). In human forgetting,
consolidation reduces the time decay factor and apparently

not the unlearning factor, whether forward or backward,

though the invariance of unlearning with time since original ;
learning is a result in need of much further replication 1
before we can be sure of it (Wickelgren, 1974). It is

probably better to account for the reduction in forgetting

due to time since learning (consolidation) by altering

Grossberg's exponential decay term to one more in accord

with the facts of long-term forgetting (Wickelgren, 1974).

This is also more in accord with everyone's intuition

(including Grossberg's) concerning the separation of

learning and forgetting processes.

Nevertheless, it is interesting and worth remembering !
that modification of link strengths by cross-correlation of
activation can be used to produce both forward and backward
unlearning as well as learning. While I would be the last
to downgrade intuitive verbal theory formulation, I am also
a great admirer of mathematical theory formulation, in part
because it can serve as a basis for, previously unsuspected,
grand unifications of apparently disparate phenomena, such
as the possible unification of learning and unlearning via
the cross=correlation mechanism. Even though this
particular unification may well be wrong for the mammalian
brain, it is a fascinating possibility that would never
have occurred to me without Grossberg's mathematical
formulation of associative learning.

SITE GROUPING AND LOCAL GROWTH

This section describes a speculative neural mechanism
; of site grouping following learning. You may have heard
the old saying about how a little knowledge is a dangerous
thing. You need to be warned that I have a little
knowledge of the nervous system. Also, I do not think
that old saying applies to me or to anyone else who is
careful to encode the degree of support for an idea and

i something about the nature of that support. Of course if
you are one of those people to whom the old saying does
apply, please skip to the next section. For those of you

coming along for the ride, it is time to fasten your
seatbelt.
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is any plausible neural mechanism by which constituent
1inks that coimply a chunk node could be grouped into a
common site, nearby sites, or sites with some other kind of
synergism that provided a superadditive combination of their
input link strengths. The purpose of such site grouping is
to make a chunk node represent something closer to a B
conjunction of its constituents, instead of an additive
combination. Of course, it may be that chunks do respond
additively to constituent input in the brain. Consideration
of whether there is a plausible neural mechanism for
conjunctive grouping is relevant to this issue and
interesting in its own right.

One possibility is that the dendritic tree might grow
and contract so as to keep all free sites on a connected
subtree containing no bound sites. The bound subtree would
also be connected and contain no free sites. The bound
subtree might be proximal to the cell body and the free
subtree distal, or the main dendritic trunk might divide
near the cell body into a bound subtree and a free subtree.
Either way, when free sites become bound, the entire portion
of the free subtree between these newly bound sites and
boundary with the bound subtree contracts SO as to transfer
the newly bound sites to the bound subtree. If two or more
sites were bound at about the same time, both would be
transferred to about the same place in the bound subtree
and thus might have a conjunctive-like, superadditive
combination in retrieval. Once the newly bound sites were
pushed onto the bound subtree, the free subtree would grow
back to approximately its previous size, perhaps observing
some sort of comnstancy in the total number of free and
bound sites or just the total number of free sites. When
bound links decrease in strength to some low level, the
terminals might either remain on the bound subtree or grow
a very short distance to reconnect to a site on the free
subtree, recycling the sites.

If all of this degeneration and regrowth of the
dendritic tree seems implausible, consider the possibility
of local presynaptic terminal growth. When two sites are
bound at about the same time, they may set up some local
electrochemical gradient in the intracellular space OT
within the portion of the dendritic tree that connects
them. This gradient might direct the growth of an axonal
branch from each terminal to the vicinity of the other
terminal, where it might synapse with the postsynaptic
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neuron in a nearby site, on the same spine perhaps or on
adjacent spines.

Doubtless there are other possibilities for learned
synaptic grouping that are as plausible as these or more
plausible. Some sort of axonal or dendritic growth is
probably required to achieve conjunctive-like superadditive
site grouping, unless the entire dendritic tree of a chunk
neuron is devoted to computing a single conjunction of two,
three, or more synaptic inputs, with the rest of the 40,000
synapses per cortical neuron (Cragg, 1975) being wasted.
However, the neural growth is of an extremely local kind
that seems plausible. What is probably most exciting about
such theories of site grouping is that they permit a neuron
the potential to bind all of its sites in one-to-one or
two—to-one combinations as desired. Furthermore, the
number of remaining possible groupings of two or more free
sites on a neuron degrades gracefully and minimally with
increased binding of sites according to either theory.
Recycling of decayed or unlearned previously bound sites
and their specific links seems possible with either theory.
All of this is of some importance in the distributed
associative memory to be discussed next.

DISTRIBUTED ASSOCIATIVE MEMORY

Previously; I have defined chunking in the context of
the specific-node ("grandmother cell”) theory of coding in
associative memory, once defining a chunk idea to be a
single node that represented a disjunction of conjunctions
of constituent nodes (Wickelgren, 1969a) and once
emphasizing only the "conjunctive” aspect by defining a
chunk idea to be a single node representing an unordered
set of constituents (Wickelgren, 1979a). The question of
this section is, "What is the representative of an idea in
the mind, whether a constituent idea or a chunk idea?”
Network minds offer some interesting alternative answers to
this question. I will briefly describe six different
classes of idea coding systems. These six systems do not
exhaust the possibilities for idea representation in
network minds, nor are they even mutually exclusive. The
human brain makes some use of at least two of these six.

The six classes of coding systems include two
nonassociative systems: (a) coding by temporal pattern of
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activation in any single node or small set of nodes and
(b) coding by spatial pattern of activation in a small set
of nodes (like the pattern of Os and ls in a von Neuman
computer's memory registers). The human brain is known to
make some use of temporal pattern coding in the more
peripheral parts of the auditory nervous system, namely,
periodicity information in pitch perception and phase
information in localization. However, the brain converts
both of these temporal pattern codes into some kind of
"which set of neurons fire" code at higher levels, since
the temporal spiking pattern of neurons at higher levels
has no correlation with the auditory input in periodicity
and phase. Spatial and temporal pattern coding may be
used to some extent in motor control systems if there is
any truth to the coupled oscillator theory (see Gallistel,
1980, for an insightful review) .

However, there is every reason to believe that higher
sensory, motor, and cognitive coding in the human mind uses
some version of one of the four following classes of
associative "which neuron fires" codes: (c¢) specific node
coding (the grandmother cell theory), in which activation
of a particular node represents thinking of an idea (your
grandmother, for example), (d) overlapping set coding, in
which thinking of an idea is represented by activation of
a set of nodes that will generally overlap with the
representation of different ideas (e) node activation
function coding, in which the representation of an idea is
a particular activation function defined over all of the
nodes in the mind, and (f) link activation function coding,
in which the representation of an idea is an activation
function defined over the links. Note that (e) can be
considered to be a generalization of (c) and (d), and (f)
can be considered to be a generalization of (e).

The extreme version of specific node coding in which
there is only one node for every idea is not very-fault
tolerant, so one probably wants to have several similarly
linked nodes to represent each idea. As long as the set
of nodes representing one idea do not overlap with the set
of nodes representing another idea, 1 will classify this
as a version of specific node coding because the properties
appear to be quite similar.

Overlapping set coding is a discrete (all-or-none)
version of node activation function coding, and both can be
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used to represent distributed associative memories. In
overlapping set coding, an idea is represented by a set of
nodes that generally overlaps the node sets representing
other ideas. The degree of distribution in the
representation of an idea can vary enormously within each
of these two classes. In the overlapping set coding systen,
the maximum size set for representing an idea might vary
from two nodes to all of the nodes in the network. If one
defines a special "don't care" value for activation or
considers levels of activation that are close to zero to

be "don't care” values, then similar wide variability in
the degree of distribution of coding is possible in the
node activation function coding system. Distributed

memory versions of node and link activation function

coding pose fascinating conceptual problems about which I
need to think more. Overlapping set coding seemed more
tractable for my first step into the distributed
associative memory area, and so I will describe a theory

of chunking in terms of coding by overlapping sets of nodes.

I think it is of some interest that it was possible 1
to present most of the ideas about chunking that are in 1
this paper without explicit adoption of either this
distributed memory model or the specific node model.
Finally, I should note that I am not at all convinced
that human associative memory uses distributed as opposed
to specific node coding. Randomly connected associative
memories probably function better with distributed node
coding, but when there is some "genetic"” guidance to
restrict the possible connections intelligently, specific
node coding may be functionally superior. I chose to
investigate chunking in a distributed memory context
mainly because I had not done so before and wanted to
become more familiar with the properties of distributed
associative memories.

DISTRIBUTED ASSOCIATIVE MEMORY VIA OVERLAPPING SET CODING

An idea is represented by a set of nodes, which I
currently imagine to vary in size from a few hundred for a
newly formed idea to around 10,000 for a highly familiar
idea. Different ideas are represented by different, but
overlapping, sets of nodes. Two constituent ideas
specify a new chunk idea when specific links from the two
sets of nodes representing the constituent ideas help
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activate some free sites in a set of other nodes that will
become the set representing the chunk idea. Those links
ending on the chunk nodes are strengthened by contiguity
conditioning, binding the sites on the chunk node that they
end on. Because nodes are always connected in both
directions, the reverse, chunk to constituent, links also
get strengthened and bind their sites on the constituent
nodes. So an idea is represented by a set of nodes and
the various sites on a node represent many different ideas
that may have no conceptual relation to each other. A
node represents a random collection of ideas.

IDEA INTEGRATION IN LEARNING AND IDEA COMPLETION IN
RETRIEVAL

Although a chunk node must receive inputs from two
weak specific links to be activated and bind its respective
input sites, nothing guarantees that these two links will
be one from one constituent idea set and one from the
other. Both may be from different nodes in the same
constituent idea set. Initially, I thought it was a
problem that the chunking mechanism of the theory would
chunk pairs of nodes that were members of the same idea
set (intrachunking) as well as chunking pairs of nodes that
were members of different idea sets (crosschunking). Then
I realized that intrachunking might serve a very useful
function, similar to Hebb's (1949) cell assemblies, that
of integrating the nodes of an idea set.

Some definitions are useful for a precise explanation
of the role of idea integration in thinking:
(D1) A thought is a set of idea sets that are simultaneously
activated.
(D2) A initial subset is the subset of an idea set activated
by the last thought.
(D3) The completion subset is the subset of an ‘idea set
generated asymptotically from the initial set by intraidea
links adding nodes to the activated subset of the idea set
until no further nodes can be added via intraidea links.
The completion of some initial subsets might be the entire
idea set, but the completion of other initial subsets might
be less than the entire idea set. The completion function
maps initial subsets to completion subsets.

Of course, you should note that this is not a
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completely precise model, as we need to deal with the

intra- vs. inter—idea retrieval problem, that each node will
have many strong interidea links besides those intraidea
links involved in idea integration. Indeed, these interidea
links are essential for activating the next thought, as in
Hebb's phase sequence. My current semiprecise working
hypothesis is that thinking consists of a cycle of phases
that repeats over and over. If we start the cycle with

the last thought's having activated an initial subset of
some current idea sets, then the cycle has three phases as
folldws: 1initiation (inhibition of the last thought and
activation of the initial idea sets for the current thought),
completion (activation of the completion of some number of
these initial idea sets up to a limit set by the attention
span), and chunking (activation of new nodes, and link
strengthening to further integrate existing chunks and to
form new chunk ideas). 1Initiation and completion are two
phases of the retrieval process, while chunking is a
learning process.

IDEA DISCRIMINATION

Consider the following idea discrimination problem:
How big an initial subset of nodes in one idea set must be
activated (by the prior thought) to uniquely specify that
particular idea set? This form of the question demands
some further clarification. First of all, I am not
concerned with all of the complexities of the actual idea
retrieval process in this problem. For example, I am not
concerned with whether the completion of an initial set is
the entire idea set. Indeed, I am not concerned with any
aspect of the actual activation of nodes. I am asking
only about how big a subset of some particular idea set is’
necessary in a logical sense to distinguish this idea set
from any other idea set encoded in the mind. That is to
say, you are to assume that there exists some number (N)
of idea sets in a particular mind, with all N idea sets
known completely by an omniscient observer. You give the
observer a subset of x mnodes all of which are guaranteed
to be from one idea set, and the question is, "With what
probability (P) will the omniscient observer have enough
information to determine uniquely which set that is?"

P should be very close to unity for good idea
discrimination. That is, we want our initial set to

P
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specify a unique idea with high probability, at least
logically, since otherwise there is no possible retrieval
mechanism that we could adjoin to this theory of idea
coding to make it work properly. Just because it seems
plenty high enough and works out conveniently, <let's take
P=.9999 and see how big the size of the initial set X needs
to be to achieve this P for n=108 nodes in the mind, d=104
nodes/idea, and N=108 idea sets in the mind. The answer is
that x=3 gives P=.9999 that no other idea in this mind also
contains all 3 members of the initial set X: For N=1012
ideas, x must be 4! For N=1016, you need x=5. These are
very small numbers.

Since specific node (grandmother cell) coding can only
get a maximum of 108 ideas coded by 108 nodes (though x=1
for P=1), we are clearly able to realize an enormous
increase in idea coding capacity with overlapping set
encoding at a very modest cost in the logical
discriminability of ideas. Note also that the idea
discrimination capacity of overlapping set coding is so
great that there is no incentive on these grounds to use
more than two values (on or off) of node activation in
idea coding. Multiple or continuous values of node
activation may play some useful role in learning and
retrieval dynamics, but they are certainly unnecessary for
the coding of ideas in network minds.

REDUNDANCY, DIMINISHING RETURNS, AND SPACING EFFECTS IN
CHUNKING

With overlapping set coding, when constituents A and B
are chunked, sites on more than one chunk node are assumed
to have their input associations for A and B strengthened,
so that the AB idea is represented by a set of nodes.
Subsequent experience with the AB pair is presumed to
result in associating A and B to more chunk sttes,
enriching the redundancy of representation of the AB idea.
However, while it doubtless makes sense to have more
frequently used ideas represented by larger sets, it is
probably not useful to add chunk sites in direct
proportion to the learning time or the number of learning
trials. Furthermore, we know that, by virtually any
commonly used measure of memory strength, the rate of
learning eventually slows down as a function of trials
or time--the law of diminishing returms in overlearning.
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Indeed, although there is a variable period of time after
exposure to material before a person settles on an encoding
and gets that first huge learning increment, which I
presume to reflect the initial chunking, after that initial
chunking, the rate of further chunking appear to decrease
monotonically as strength increases. Of course, after some
time elapses, there is a reduction in the strength of
chunking due to forgetting, which permits a greater amount
of chunking to occur after a longer spacing interval between
learning trials (see Wickelgren, 1981, p.39-40 for a brief
review). This greater amount of learning (here presumed

to be chunking) after greater spacing between learning
trials usually more than compensates for the greater
amount of forgetting that also occurs, producing the
familiar benefits of spaced over massed practice.

By what mechanism might the rate of chunking be reduced
with increasing total strength of association from A and B
to AB chunk sites? Assume that the familiar lateral
inhibition mechanism constrains the total sum of
activation of all nodes, as in Milner (1957)--perhaps some
kind of conservation of activation law or in any case an
upper bound on total activation. Chunking might occur when
the active A and B nodes are less strongly associated to
each other via chunk nodes and thus not as strongly
activated as they would be if they were more strongly
chunked. When the A and B nodes are less strongly
activated and there are fewer AB chunk nodes activated,
there is less total activation, less lateral inhibition,
and thus more chance for new AB chunk sites and nodes to
become activated. As the number of AB chunk nodes
increases, this probability of activating and thereby
specifying, new AB chunk sites goes down, producing the
diminishing returns in chunking. Since recently chunked
AB sites are strongly linked to both A and B nodes and to
the learning arousal system, such recently chunked AB nodes
might be hyperactive, further reducing the probability of
new chunking. This provides an even greater benefit to
the spacing of learning trials in that spacing allows both
consolidation and forgetting to occur. Please note that
this is a quantitative argument that requires more than
verbal logic for adequate demonstration, and the present
argument is hardly more than superficial handwaving.
This is only the germ of an idea. Some of us are easily
infected by idea germs.
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shallower subjects. Spaced study may be even more
important to hierarchically deep learning than to shallow
learning, though students of any subject should be told to
to study at least a little every day, because crammed
knowledge is poorly learned and quickly forgotten. In
learning, it is wise to revere the turtle.
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