CHAPTER TWELVE

Chunking, Familiarity, and
Serial Order in Counting

Wayne A. Wickelgren
Columbia University

At a Little League game awhile back, my 9-year-old son Peter told me,
““Dad, this is a six Jason game!”’ By this he meant that there were six kids
named Jason in the game—two on his team and four on the other. How
one might recognize this is the topic of the present chapter. Why one
might recognize it is another matter.

This chapter analyzes sequential counting and is not concerned with
the discrimination of different numbers of simultaneously presented
stimuli via subitizing mechanisms. Throughout this chapter, counting
means sequential counting.

The chapter focuses on sequential counting for successive events where
there is a substantial time interval between repetitions. When we sequen-
tially count a set of simultaneous stimuli, we may use many of the same
mechanisms required for sequential counting of successive events, but
I'have not considered this question in any detail. Thus, the emphasis here

" is quite different from that of Gelman and Gallistel (1978), for example,
who concentrated on sequential counting of simultaneous stimuli.

This chapter considers sequential counting to require three basic com-
petences: chunking, recognition of repetition, and the capacity to
represent serial order. The serial order capacity corresponds to Gelman
and Gallistel’s stable-order principle. Neither repetition recognition nor
chunking is present at all in Gelman and Gallistel’s list of five basic prin-
ciples that ‘‘govern and define counting,”’ though the one-one principle
has some similarity in function to repetition recognition and, there is a
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small functional overlap between chunking and Gelman and Gallistel’s
cardinality and abstraction principles.

It surprised me how much Gelman and Gallistel’s model of counting
relies on the simultaneous availability of the things to be counted and
does not easily apply to counting successive events with long time inter-
vals between repetitions. This is particularly noteworthy because Gel-
man and Gallistel argued against the claim that subitizing plays much of
a role in the perception of even small numerosities of objects, and, like
me, they are primarily concerned with sequential counting.

Gelmdn and Gallistel were also interested in children’s understanding
of number concepts, not just the ability to count, which I do not address
at all. By contrast, I wish to make some progress toward more mechanis-
tic, neural net, models of counting. Thus, although we share a focus on
cognitive sequential counting by humans, there is very little overlap be-
tween this chapter and Gelman and Gallistel (1978).

The two major goals for this chapter are (a) to analyze the semantics
of sequential counting by human beings in the sense of understanding
what kinds of repeated events people count and (b) to analyze three com-
ponent mechanisms that may play important roles in counting—chunking,
repetition recognition, and serial ordering. The discussion of these
mechanisms focuses primarily on a semantic or functional analysis of what
these mechanisms accomplish and secondarily on making some progress
toward a neural model of these mechanisms.

REPETITION, FAMILIARITY, AND NOVELTY

Semantics of Counting:
The Role of Repetition Recognition

Counting Jasons is unusual in a baseball game, but counting balls, strikes,
runs, and so forth is typical. How do you know when you have struck
out? Umpires often use a mechanical or electronic counter to aid them,
but batters usually know the count without the aid of auxiliary devices.
Coding the number of strikes is paradigmatic of the human capacity for
counting events.

Counting is not identical to coding duration, though there are times
when we count the seconds. We can count events that occur with irregu-
lar time intervals between them, and experimental studies of counting
often design counting tasks so that time duration is not too highly cor-
related with number of repetitions. Theoretical mechanisms for count-
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ing are likely to differ in some respects from mechanisms for encoding
duration.

Counting is not limited to objects. We can count events of any type,
including actions such as swinging a bat.

Counting is not limited to events that are identical or even very simi-
lar in their sensory qualities. The Jasons in Peter’s game were all young
boys, but they did not otherwise look much alike. The similarity was in
their names, which I grant you is a physical sensory similarity. However,
Peter did not recognize the similarity from hearing or seeing their names.
He recognized the six Jason game by associative memory for the names
from their disparate visual appearances. Finally, a strike in baseball is a
disjunctive class of events that have no common physical component
property that distinguishes them from balls, foul balls, hits, and so forth.
There are called strikes that are over the plate and between the knees
and the letters. There are swinging strikes where the batter misses the
ball completely, foul ball strikes, and tipped balls that are caught by the
catcher. In all of these latter cases it is irrelevant to classification as a strike
whether the ball was in the strike zone.

However, although sensory, motor, and physical similarity are not
necessary for counting, conceptual similarity of the events being count-
ed is basic to counting and the recognition of repetition is a funda-
mental component of counting. What is repeated may be sensory or
motor events that are nearly identical in some cases or merely possess-
ing a single common sensory, motor, or cognitive attribute in other cases.
We can count repetitions of bell rings, the number of objects found in
a box, or the number of different outcomes in five throws of a die, but
in all cases, there is an idea that classifies what is and is not to be count-
ed. It is the ability to recognize that the representative of that idea has
been activated repeatedly that lies at the base of our ability to count
events.

I would like to dispense with a tricky problem by fiat. Although it
can be argued that no two experiences are ever identical or identically
encoded, it is clear that we often encode two events as equivalent in
certain respects. I assume that in such cases there is some*aspect of

- our representation of each event that is identical, though, to be sure,

there are almost always other aspects of our encoding that are different
on the two occasions. In my model, to recognize the repetition, the
repeated part must at some point be the focus of attention, that is, be
the complete thought active at that point in time. Perhaps the human
mind is able to recognize and count repeated partial thoughts, but the
model presented here only counts repeated complete thoughts.
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Repetition, Recognition,
and Recognition Memory

I remember that as a child I read Treasure Island seven times. My memory
for that is probably no different from any other memory in how it is
stored. But my ability to update the count each time I read it points out
over how long a period of time one can count events and how extended
and temporally complex the events may be. Like Dorothy following the
yellow brick road to the Emerald City, I began at the beginning and, keep-
ing my place via bookmarks and memory for what I had recently read,
I continued to read, with frequent interruptions, to the end of the book,
whereupon I activated the concept of “‘finishing Treasure Island.”

The first time I did this, I may well have simply encoded that I had
read Treasure Island, not that I had read it once, though this is implicit.
The second time I finished reading it and activated the “finishing Treas-
ure Island’’ node, I somehow recognized that this had happened before.
I recognized a repetition.

The recognition of repetition in this case is probably identical to what
happens in recognition memory tests. We have a _fe.cl_mg«Q_f}éL\rnli_@fitY
that is greater, on the average, for events that have been encoded by our
minds in the past than for novel or unattended events. Thus, it would
appear that explaining the ability to recognize repetition is identical to
explaining recognition memory, though it is quite possible that this abil-
ity is mediated by more than a single mechanism and different mecha-
nisms predominate in different cases, such as at short versus long time
intervals between repetitions.

Familiarity/Novelty Detection Mechanisms

What are some possible mechanisms for recognizing repetitions in bio-
logical minds?

Immediate Repetition. One plausible algorithm for detecting im-
mediate repetition in neural nets is to compute the sum of the absolute

\| differences between the activation levels of each neuron at adjacent time
\,_periods as a fraction of the total activation level. Second-order immediate-
change (velocity, difference, or derivative) detectors are quite common
in real nervous systems—for example, motion, brightnEééAchangcsj_;r pitch
trgmitioqg. Often some neurons respond to increases and others to
decreases. The sum of the absolute differences would just be the sum of
activity in both positive and negative change detectors. The total activa-
tion level (for the first-order neurons) must also be computed. Comput-
ing total activation in various subsets of neurons is relatively easy for
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neural nets. The primary problem in computing total activation is han-
dling the wide range of totals, and real neural nets have obviously solved
such range problems, as witnessed by our ability to encode brightness
over an enormous range of light intensities.

A neural mechanism that encoded this sum of absolute changes over
total activation is an immediate novelty detector, where immediate means
over a time period on the order of a millisecond or few milliseconds.
This mechanism computes novelty first, with repetition bemg signaled
by very low novelty.

Clearly, this is not the sort of repetition-detection mechanism we need\w
for cognitive counting, because the likely size of a time step for immedi-
ate repetition in the nervous system is on the order of a millisecond or
a few milliseconds (basically neural communication delay times—axonal,
synaptic, dendritic, and spike-generating delay times), and we can count
events with seconds to years separating repetitions.

Long-term Repetition

Successor Thoughts. Perhaps we distinguish familiar versus novel
thoughts on the basis of the different properties of the thoughts that fol-
low the given thought. Although it may not always be true that recogni-
tion of familiarity implies some ability to recall associated ideas, it is often
the case that when we recognize a familiar event, other ideas pop into
our minds by association. Perhaps it is the immediacy and/or strength
of activation of successor thoughts to a given thought that identifies that
given thought as familiar versus novel.

For two reasons, I do not regard a mechanism based on the properties
of successor thoughts to be as likely a basis for the identification of
familiarity as 2 mechanism based on the properties of the given thought
itself. First, such a mechanism is almost necessarily slower than one based
on properties of the given thought. Second, because unfamiliar thoughts
have familiar components and familiar components have associations,
successor thoughts may well not provide much basis for distinguishing
whether or not the prior thought was familiar or unfamiliar. In any case,
1 have no clear conception of how the properties of successor thoughts
might distinguish familiar versus novel prior thoughts.

Cbunking. It is likely that the mechanism for familiarity recogni-
tion is based on different properties of familiar versus novel thoughts dur-
ing the activation of the given thought itself. The first time a particular
thought is activated, chunking adds a new idea representative to the set
of ideas and strengthens up associations from the constituents to the
chunk and down associations from the chunk to its constituents. Accord-
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ing to the basic hypothesis, a thought is judged familiar to the extent that
it is already strongly associated to a single chunk idea. There are many
possible specific mechanisms for this, three of which are discussed brief-
ly here.

First, a thought may be judged to be novel if it triggers the chunking
process, and familiar if it does not. The component of the chunking
process that selects a new idea representative seems like an all or none
event, whereas familiarity appears to come in various degrees. However,
the strengthening of up and down associations could be a graded process
that occurs to the greatest extent for novel or forgotten thoughts. Thus,
it may be that some difference in the learning processes connected with
chunking is the basis for familiarity recognition. However, because some
property of the thought itself must trigger the chunking process, it seems
more reasonable to make familiarity dependent on the earlier trigger
property than on the later learning consequence,

One such trigger property might be complexity of coding or some other
property that depends on whether or not there already is a single (chunk)
idea to encode the current thought. That is, when an attention span of
ideas is activated, retrieval may just automatically proceed to the highest,
most economical level of coding, with chunks inhibiting their constituents
after reaching full activation. If the final thought contains but a single
chunk, then the thought is judged familiar. If the thought contains more
than one idea, it is novel.

Familiar thoughts would have fewer active neurons than unfamiliar
thoughts, and hence a control neuron or set of neurons that measures
total activation would be a novelty detector. Novel thoughts would have
more active neurons than familiar thoughts. Perhaps the recognition of
novelty is based on activation of one or more neurons that innately en-
code the total activation of all neurons in some module or set of mod-
ules of the mind. Conscious recognition of novelty is limited to those
modules of the mind of which we are conscious. These are presumed
to be certain higher-order cognitive modules, and it is only in cognitive
modules that I think chunking takes place (Wickelgren, 1979b).

However, it is not clear to me that thought activation automatically
proceeds to the highest level in a single step. I think it is more likely that
this requires several steps, with a set of constituents being activated in
one step, and their chunk idea, if any, activated in the next step. It may
be that the familiarity of an activated set of ideas is determinable from
the activation of the set, before the chunk idea, if any, is activated. One
way to determine the familiarity of a thought is as follows:

First, I assume that the human mind has multiple types of associations
and can selectively enable and disable each type of idea and each type
of association during different phases of thinking. Second, I assume that
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the mind has the ability to inhibit the currently active thought. Third,
I assume that the mind has the ability to vary the maximum number of
active ideas (neurons) in any particular phase of thinking.

To judge the familiarity of the active thought at time t, do the follow-
ing for the transition to the next time step: (a) enable only the-up associ-
ations, (b) set the threshold for activation of ideas sufficiently high so
that only an idea with strong enabled input associations from all of the
ideas in the prior thought could be strongly activated, and (c) temporari-
ly inhibit the currently active thought. Then on or immediately after time
t + 1, a control idea that judges the total activation at time ¢ + 1 is a
familiarity detector. The thought whose familiarity was to be judged was
inhibited and only up associations were enabled from time 7 to ¢ + 1,
so only an idea with strong up associations from all of the ideas in the
prior thought could be strongly activated at time ¢ + 1. To the extent
that any chunk idea is activated strongly, the familiarity idea, which judges
total activation or maximum activation, will be strongly activated too.

This familiarity mechanism differs from the successor thought mecha-
nism in limiting possible successors to ideas with strong up associations
to the ideas in the current thought, whereas the successor thought
mechanism permitted successor ideas with any of a variety of relations
to the ideas in the prior thought, implicitly enabling all types of associa-
tions, including sequential associations.

Additional discriminative power is gained by setting activation
thresholds high enough so that only a single idea receiving strong inputs
from all of the ideas in the prior thought can be strongly activated.

Note that this familiarity mechanism uses the same sort of control idea
measuring total activation as was used by the novelty mechanism dis-
cussed previously. First, this familiarity mechanism ought to give graded
values of familiarity for repeated thoughts with different strengths of up
associations to the chunk idea due to differences in forgetting or degree
of learning. Second, the familiarity mechanism uses information gained
from the very next time period after inhibition of the thought, which
in a distributed neural net with attractor dynamics is generally many time
steps prior to achieving a stable next thought. Thus, the familiarity
mechanism acts fairly quickly. Third, this familiarity mechanism can be
used to decide whether or not the mind should attempt to retrieve an
existing chunk idea for this thought or select 2 new one. In my current
neural modeling, this means enabling different types of links.

Short-term Repetition

Identification of repetition via a familiarity mechanism based on chunk-
ing seems highly appropriate for long-term memory counting, such as
counting the number of times I read Treasure Island,
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However, whether or not the current thought is already represented
by a single chunk seems less appropriate for what could be called short-
term repetition, namely, recognizing repetition, not over one’s lifetime,
but over some short period on the order of a few seconds. Such short-
term repetition is still very long compared to what I referred to as im-
mediate repetition, which was based on the cycle time of the nervous
system—on the order of milliseconds. So the question is, do we need 2
third mechanism for repetition recognition over an interval of seconds?

It does not seem practical to develop a short-term repetition recogni-
tion mechanism out of the immediate repetition mechanism, because that
mechanism uses second-order change neurons that monitor the activity
of the first-order neurons and measures something approximating the
derivative of the activation of the first-order neurons. In simpler language,
such second-order neurons encode how much the first-order neurons
changed activation from time Step ¢, to time step #,. To compute such
differences between two nonadjacent activation states requires storing
a sequence of activation states. This seems impractical over more than
one or two intervening states and is highly implausible over a period as
long as several seconds. Thus, we may confidently rule out extension
of the immediate repetition mechanism to handle short-term repetition.

Consider an example of short-term repetition to see whether it can
be handled by the long-term repetition mechanism. Imagine you are walk-
ing along the street and a nearby bell tower begins to ring out the hour
of the day via a series of bongs. You count the bongs. How? You have
heard these bongs many times before. You do not start the count where
you left off last time, say at 347, and count 347, 348, 349, 350. No, you
count 1, 2, 3 4, Aha, four o’clock, you say to yourself.

There is difference in what is counted in short-term versus long-term
recognition of repetition. Indeed, if you have been in this neighborhood
on only a few occasions, you might also remember on how many prior
occasions you have heard this bell chime before, perhaps on two prior
occasions. You note that you have now heard this bell ring out the hour
on three different occasions in your lifetime.

Nevertheless, the long-term recognition mechanism based on chunk-
ing can handle short-term recognition. Analysis of this problem deepens
our appreciation of the cognitive complexities of repetition recognition
and counting. The bell ring is familiar, so we could just recognize that
and count lifetime frequency of our hearing this bell ring. But the con-
text in which we hear the bell ring is different from past contexts (that
is, the other ideas active in our mind are different), and we can form 2
chunk to represent the idea of the bell ring in this context the first time
we hear the bell in the present context and thereafter count repetitions
in just this context. The first time we hear the bell ring in the present
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context, we may just identify the bell ring as a familiar chunk in our long-
term memory or we may follow this by encoding a new chunk of the
bell ring in the present context. If we want to know what time it is, we
must do the latter and count bell rings in this context alone, not over
our whole lifetime. N

SERIAL ORDER

One basic competence that underlies counting is knowing the order of
the numbers, for example, being able to recite the sequence, ‘1, 2, 3,
4, 5, and so forth.” Gelman and Gallistel (1978) referred to a slightly more
general version of this competence by the term stable order. One might
refer to this competence as rote counting, to distinguish it from other
counting competences, such as repetition counting or object counting.

One might assume that representing the order of small positive num-
bers is more fundamental than, or at least different from, representing
the order of items in other sequences, such as letters in written words
or the alphabet or phonemes in spoken words. However, it seems more
parsimonious to make the working assumption that the representation
of ordered sets is the same in all of these cases.

I divide models of serial order into two large categories: nonhierar-
chical models that do not assume chunking to play any role in the cod-
ing of serial order and hierarchical chunking models that assume that long
sequences are broken into subsequences. Subsequences are chunks, but
these chunks have ordered sets of constituents.

Nonchunking Models

I do not regard nonchunking models of serial order as even remotely tena-
ble, but brief consideration of them uncovers relevant types of associa-
tions and sets the problem in historical perspective.

"

Item-to-Item Association. In an associative memory, the simplest
model for coding the order of the small positive numbers is to assume
that there is a strong association from the 1 idea to the 2 idea, a strong
association from the 2 idea to the 3 idea, and so forth.

However, a phenomenon often observed in children suggests this as-
sumption is, at best, only a partial account of the associations involved
in rote counting. The phenomenon purports that even children who are
Very accurate at counting from 1 to 10 often have considerable difficulty
telling you the successor of some number between 2 and 9, for example,
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giving the answer to the question, ‘“What comes after 47"’ The prior num-
ber is not the only cue to the next number in the counting sequence.

Position Coding and Grouping. Essentially the same conclusion
can be derived from a large number of studies concerned with determin-
ing the nature of the effective stimulus in serial list learning, namely, the
prior item is not the only cue (Wickelgren, 1977, PpP. 235-236; Young,
1968). People also use serial position as a cue.

Whether or not we use serial position as a cue for the next counting
number is an interesting question to contemplate. At first, it may seem
logically circular, like using an idea as a cue to itself. However, it is like-
ly that serial position ideas are different from number ideas. Studies of
serial position coding in short-term memory suggest that subjects often
use only three different serial position ideas—beginning, middle, and end.
However, they use these three position ideas in a cross-classification
scheme at two different levels—beginning, middle, and end groups, and
beginning, middle, and end positions-within-a-group (Wickelgren, 1964,
1967). In any case, it is very unlikely that we ordinarily use as many seri-
al position ideas to code the order of items in a sequence as we have dis-
tinct counting number ideas.

Remote Associations. In addition to the prior item and serial po-
sition cues, we may also make some use of earlier, more remote, items
as cues to the next item in a sequence. There is no definitive evidence
that I know of to support this, but it is introspectively compelling to as-
sign some cue value to remote prior items beyond their role in cuing serial
position. So, it may be that q rstuisabetter cue to the next letter v
in the alphabet than alone, because q, 1, s, and ¢ have remote associa-
tions to v.

Remote associations raise serious theoretical problems and have no
definitive empirical support. There are more parsimonious explanations
of the facilitatory effect of remote prior context including (a) more ef-
fective cuing of serial position, (b) inhibiting recall of the remote prior
items as the successor item, and (¢) cuing chunks representing sequences
of items.

Thus, in naming the next letter of the alphabet, g 7 s ¢ u is better than
u alone as a cue to v for any or all of the following reasons: (a) It more
effectively cues that the desired letter is at a late-middle position in the
second half of the alphabet (small effect). (b) It rules out q 1 s and ¢
as possible successors to u. (c) For all of us who know the alphabet song,
it cues the chunks for grs and tuv much better than does the single-letter
cue u, with the chunk for grs being associated to its successor chunk tuv.
There are other chunking explanations as well.
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Chunking Models

Although chunking in human learning and memory is not well under-
stood, it is clear that humans chunk sets of ideas to obtain 2 more ab-
stract representation of the entire chunk that is about as easy and simple
to think with as the constituent ideas (Miller, 1956; Wickelgren, 1979a,
1979b). Chunking undoubtedly occurs for both ordered and unordered
sets, but in the case of ordered sets (sequences), some additional property
must be specified to encode the order information.

Note that a chunk for a sequence is a plan representative for the exe-
cution of that sequence. One aspect of planning in this model is to have
a single abstract idea for a plan represent a sequence of constituent ideas.

As I'see it, any viable model for serial order in long-term memory must
assume that down associations from a chunk idea prime the chunk’s un-
ordered set of constituents. When these down associations are strong,
this restricts activation to the constituents of the chunk out of the vast
set of all possible ideas. In models of memory that assume chunking of
sequences, the lion’s share of the memory for a sequence is carried by
the associations that pick out the unordered set of constituents, but the
small remaining share that orders these constituents is essential, and there
are a number of possibilities.

Gradient of Down Associations. It is possible that there is a gra-
dient of down associative strength such that the strongest down associa-
tion from a sequence chunk is to its first constituent, then its second,
third, and so forth. Once a constituent node has been activated for some
time, I assume that it gets inhibited, so the next most strongly activated
constituent can become the most activated. Thus, when a sequence node
is activated, it first activates its first constituent, then its second, third,
and so forth. Grossberg (1978) employed a variant of this gradient model
for sequence generation.

I have never liked this alternative, because I think it would be difficult
to establish properly ordered and discriminable strength levels in learn-
ing that would correctly order the constituents in sequential retrieval.
Many factors such as the discriminability, duration, and number of repe-
titions of constituents presented as stimuli ought to affect the strength
of down associations, in addition to delay (remoteness).

It is interesting to consider what sort of learning process would estab-
lish this gradient of down associative strength. Superficially, it might seem
that a simple contiguity conditioning process would do, because after
a chunk is activated in production, the initial constituent of the chunk
is the first to be activated, followed by the second, and so forth. However,
it is logically circular to explain the ordering in production by a gradient
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in the strength of down associations and explain the gradient in the
strength of down associations by the temporal ordering of the constit-
uents in production. Some other learning process had to cause the gra-
dient in down associative strength before the constituents of the sequence
were first produced in the proper order.

The obvious candidate is the thought or perception that initially
produced the sequence. But here the contiguity is probably reversed. The
sequence of constituents is surely activated before the chunk representa-
tive is selected and activated, unless chunk representatives are selected
in advance of their constituents and thus independently of them (assum-
ing the usual forward direction of causality). If the first activation of a
chunk follows activation of its constituents, if constituents of a sequence
are activated in sequential order, and if down associations are strength-
ened in proportion to this contiguity, then it would seem that the strength
gradient would be the reverse of what is required.

However, this is by no means necessary. For one thing, behavioral clas-
sical conditioning usually has an optimum interstimulus interval on the
order of .5 s, not at 0. Perhaps all sequences that can be chunked are men- K
tally activated within this half-second window vielding the desired gra-
dient. A better argument offers that behavioral classical conditioning does -
not necessarily provide us with a direct window to observe the dynamics ~ H
of associative change. We should Dot assume that all learning processes :
have the same temporal dependencies. Indeed, if up associations (uplinks)
and down associations (downlinks) are different types of associations with
different semantics and serving different functions, it would be quite
reasonable for them to have different learning dynamics. Down associa-
tions might have a reversed strength gradient from up associations.

There is a more serious problem for the gradient model. In percep-
tion, constituents are not necessarily activated in the order of presenta-
tion. Longer, more intense, and, in general, more discriminable constit-
uents may frequently be activated earlier, even if they are presented later.
In a speed accuracy tradeoff study of speech recognition, Remington
(1977) found that the medial vowel in a consonant-vowel-consonant
(CVC) syllable is frequently recognized before the initial consonant. If
perceptual recognition dynamics measures the dynamics of activation,
this evidence suggests that neither recognizing the sequential order of
stimuli, nor learning this order is dependent on the temporal order of
activation. Although it is perfectly reasonable to permit the strength gra- %4
dient model of order coding to use any functional relation between degree 43
of learning and temporal contiguity of activation that achieves the func- ;
tionally desired strength gradient, it is not obvious that the gradient model
can survive order coding not being rigidly linked in some manner to the
temporal order of constituent ac
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The Remington (1977) study also suggested that sequentially present-
ed stimuli are often recognized in parallel. Although constituents with
earlier stimulus onsets may increase in level of excitation earlier, the
growth of excitation of all constituents of a short sequence may be heav-
ily overlapping and the constituents that reach the threshold for-activa-
tion first are often not those whose stimuli were presented first. After
a constituent is activated, its activation may be maintained while other
constituents are activated and each constituent may help to activate ad-
jacent constituents by lateral sequential associative links prior to recruit-
ing the chunk representative. Such dynamics of perception are difficult
to square with the gradient model.

There is also another negative indicator for the model. In memory for
sequences, it is almost always the middle items of the sequence that have
the lowest probability of recall in response to a name for the sequence,
suggesting, but not implying, that the down associations from the chunk
idea to its middle constituents are weaker than those to either its initial
or terminal constituents. The gradient model requires the association to
the terminal constituent to be the weakest.

Jordan (1986) had an interesting discussion of the severe problems that
the gradient model has with sequences that involve repeated elements,
for example, abcced. In such a sequence, the down association from the
chunk to the c¢ in the third, fourth, and fifth positions could easily be
stronger than the association from the chunk to the b in the second posi-
tion, causing c to be output before b erroneously. There are ways to over-
come this problem. One way is to assume that the link strength to item
i is greater than the sum of the link strengths to all items j > i. This re-
quires a very large dynamic range of discriminable strengths for sequences
of any appreciable length, but it might be viable for sequences of fewer
than three or four elements. Another way is to recode sequences with
repeated items into sequences of subsequences, where each sequence and
subsequence has no repetition. This seems reasonable. Indeed, this latter
approach may be needed to solve the problem of being able to activate
a repeated item more than once, because an item is inhibited after it has
been active for some time. )

Despite many problems, a gradient of down associations from a se-
quence chunk is a possibility, especially if all long sequences are coded
hierarchically such that no chunk has more than three or four constit-
uents and no repeated constituents. The most attractive aspect of this
alternative is the fact that only vertical associations are needed, up as-
sociations from constituents to the chunk and down associations from
the chunk to the constituents. No lateral sequential associations are need-
ed. All of the remaining models for serial order, with the possible excep-
tion of Jordan (1986), assume lateral associations somewhere, though not
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necessarily between the representatives of the elements of the sequence
themselves.

Contingent Association. As Lashley (1951) pointed out, items like
letters and numbers appear in many different sequences, so lateral associ-
ations from one such letter or number to another could hardly be relied
on to carry the order information for each and every different sequence
in which those items appeared. If the strongest associate to 1 is 2, that
is fine for recalling the order of the cardinal numbers, but not so fine
for recalling the successor digit of the first 1 in the value of pi, 3.14159.

One way to use lateral associations among constituents to mediate serial
order is to make the strength of these lateral associations contingent on
which chunk idea is active. Assume that an idea can have associations,
not just to other ideas, but also to the associations between other pairs
of ideas. Neurally, this is analogous to a link to a link, a synapse on a
synapse.

In particular, assume that a sequence chunk idea sends down associa-
tions to the lateral sequential associations among its constituents. That
is, chunks enable constituent lateral associations as well as constituent
ideas. When the cardinal number chunk node is active, the sequential
association from 1 to 2 is enabled by a down association from the cardi-
nal number chunk, but when the pi chunk node is active, it is the sequen-
tial association from 1 to 4 that is enabled.

Rumelhart and McClelland (1986) implement such contingent associ-
ations by what they called sigma-pi units. The excitation of a normal
unit (neuron) in most neural nets is the simple sum of the inputs received
from all input links. The excitation of a sigma-pi unit in the present case
would be the sum of the products of the input received from each lateral
input link multiplied by the input from the most strongly activated down
associative link from a chunk idea to that lateral link. Hence the name
“‘sigma-pi’’—the sigma is the summation operation applied to a bunch
of terms that are obtained by multiplying two or more factors (the pi
operation).

Sigma-pi units or associations to associations (links-to-links) are com-
plex to implement in a neural net in both retrieval and learning, which
is one strike against any contingent association model. A second strike
against this particular contingent association model of sequence order-
ing is clear from the 3.14159 example, namely, the model does not dis-
criminate different successors to repeated items at different positions of
the same sequence, for example, to the 1in 3.14159. Contingent associ-
ations can do anything that simple associations can do, so there is no
question that an adequate contingent association model can be devised,
if a simple association model can. The issue is whether we need to as-
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sume such more powerful and complex forms of associative memory.
At this point, I think we do not.

Position Coding. Let the sequence abc be coded as al, b2, c3. Let
the sequence cab be coded as c1, a2, b3. When the constituents of a thunk
are ordered, each constituent is itself a chunk with two constituents—a
qualitative idea and a serial order idea. In retrieval of abc, the abc chunk
excites its a1, b2, and c3 constituents. Convergent excitation comes from
a special serial order system that excites the ‘‘1"’ idea which, in turn, ex-
cites the ‘2"’ idea, and so forth. During the time the 1 idea is active, the
1 idea excites all of the chunks with a 1 constituent via up associations.
This causes al to be most strongly activated during the first time period
of reciting al, b2, c3. Via a down association from al to a, a is the first
item output in the sequence. Then via a strong innate or learned sequen-
tial association from 1 to 2, activation shifts to 2, which primes all of
the chunks with 2 constituents, and so leads to the activation of 52 and
then b, and so forth.

Lashley’s (1951) pioneering ideas concerning serial order are closer
to position coding than to any of the other models discussed here, and
MacKay (1987) developed this sort of serial order mechanism in consider-
able detail. MacKay’s serial order mechanism is elaborated to handle serial
order at each level of a multilevel hierarchy of constituent nodes. Mac-
Kay illustrated his model of sequence ordering by speech from the syn-
tactic level of organization of phrases and words down to the phonetic
levels of segments of words and features of segments. This is a necessary
extension of any model of serial order, but it goes beyond the scope of
this chapter.

Here I am concerned only with ordering the set of constituents of a
single chunk. In position-dependent coding, a chunk first primes its un-
ordered set of constituents, just as in every other model of serial order
that assumes a role for chunking. In the position-dependent coding model
the constituents of a chunk are somehow tagged for serial position, and
a general serial order mechanism then activates the most strongly primed
x1, followed by the most strongly primed x2, and so forth. The tags need
not be labeled 1, 2, 3, and so forth, they could be labeled syntactic
categories, such as “‘article,”” ‘“‘number adjective,” *‘size adjective,” “‘color
adjective,”” ““noun,”” or ‘“‘initial consonant group,” ‘‘vowel group,’’ as
discussed in MacKay (1987). However, with respect to the control of serial
order in production of a sequence, they might just as well be labeled 1,
2, 3. The labels become important when you relate these ordering ideas
to other tasks. For example, if you want to cue a subject to produce one
particular constituent of a sequence, then you need to use a label that
communicates which constituent you want.

RN
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It is important to note that the position coding model of serial order
has not eliminated sequential associations. To be sure, there are no se-
quential associations among the items of each and every learned sequence.
But there are sequential associations among the generic position ideas.
Consider the set of position ideas 1, 2, 3 used to order the sequence «,
b, ¢ by the coding a1, b2, c3. Neither the set of ideas a b ¢, nor the set
al, b2, c3 needs to have sequential associations, but the set 1, 2, 3 does
have to have sequential associations in order to impose its order on other )
sequences. There are two extant models of how this order is accom-
plished: *~

In the most obvious model, the command to produce a sequence acti-
vates the 1 idea. The 1 idea has its strongest sequential association to the
2 idea, the 2 idea has its strongest sequential association to the 3 idea,
and so forth.

The less obvious model was suggested by Estes (1972) and was also
favored by MacKay (1987). In this model the sequential associations are
inhibitory, not excitatory. The 1 idea inhibits all the later position ideas.
The 2 idea inhibits the 3, 4, and later ideas, and, in general, position idea
/ inhibits position idea j, if and only if # < j. This means that when the
command to produce a sequence activates the set of position ideas, posi-
tion 1 will win out initially. Then when the first item in the sequence
has been produced, it must be inhibited, as must the position idea that
activated it. Some active inhibition of a state to permit transition to a
next state is undoubtedly a necessary component of any model of hu-
man thinking. In this case, once position 1 has been inhibited, position
2 will dominate all of the other serial position ideas and be maximally
activated, and so forth.

Restricting the sequential links to one or more special sets of position
ideas raises the issue of whether these sequential links among position
ideas need to be learned. Clearly, they do not. The main advantage of
the position model is that the sequential links can be innate, whether ex-
citatory as in the first model or inhibitory as in the second model. In
models that employ sequential associations among the items of each se-
quence to order the items in the sequence, it is necessary that these se-
quential associations be learned, that is, associations with modifiable
strength.

Of course, while the lateral associations among the position ideas can
be innate in the aforementioned position model, the association to each
item must be learned, which completely negates any savings in number
of learnable associations to encode a s€quence compared to a2 model us-
ing lateral associations between adjacent items in the sequence,

However, there are other versions of the position model than the one
Lalready described that make even the association from the position idea
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to each item an innate, rather than a learnable, association. The trick is
to assume that each position idea is innately associated to a large set of
representatives that can be used to represent every idea that ever appears
in that position in a human’s experience. This appears to be MacKay’s
(1987) model. When the sequences are syntactically structured sentences
or phrases of words, it seems all right to assume that all noun ideas are
innately associated to the noun position idea, all color adjectives are in-
nately associated to the color adjective position idea, and so forth, though
even here some might object to having separate representations for a word
in each of the syntactic classes in which it can appear. However, this
problem of multiple representations gets uglier and more ad hoc when,
in order to learn arbitrary sequences of 5 words (the immediate memory
span for words), we need to assume that every word has a separate
representation for position 1, position 2, position 3, position 4, and po-
sition 5. And, of course, humans are capable of learning much longer ran-
dom sequences of words.

But when humans learn long sequences, they typically employ group-
ing and other mnemonic devices that piggyback the new sequence on
already learned sequences. I once studied grouping in short-term memory
and concluded that in this context humans use just three position
concepts— ‘beginning, middle, end’—but they can employ these in a cross-
classification scheme consisting of beginning, middle, and end group with
beginning, middle, and end position within a group (e.g., Wickelgren,
1964, 1967). It is important to note that the substitution errors tended
to be from either the same group or the same position within a group,
which indicates that the coding was more like a cross-classification scheme
than a simple hierarchy.

Without a more detailed specification of the position model, it is not
possible to conclude just how many different representations there would
need to be for each idea to be able to distinctively encode its position
in all of the different positions of all of the different kinds of sequences
in which it could appear. At this point I see no reason to believe that
the number of positional replications of each idea would be excessive.

My main reservation about position coding is rooted in the fact that
I-do not feel intuitively that humans use position information as much
as prior item information in some of the sequences to which MacKay
(1987) applied the position model.

Consider the issue of how we code the order of the phonemes in a
word such as ‘‘strand,’’ as discussed by MacKay (1987, p. 51). Assume
that the subject has been shown the word strand and must now answer
a yes—no question concerning a single constituent’s relative position in
the word. One could do an experiment to determine which of the fol-
lowing types of questions yields faster and more accurate retrieval (ideally
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by determining the speed-accuracy tradeoff functions for each): (a)
Is the final nasal of the vowel group n? (b) Is the sound that follows /tra/
n?

There are lots of problems to designing this experiment so as to treat the
issue of whether order is cued by position or prior items. For instance, I
chose three prior phonemes, because that is how many prior phonemes
are needed to cue a single context-sensitive allophone in the model to be
described next, but it would be interesting to know how subjects would
perform with a greater or lesser number of prior phonemes. Although
I chose the same words MacKay (1987) used to describe his position cod-
ing model, I feel sure that MacKay would deny the validity of the first
question as a test of his model on the very reasonable grounds that the
position ideas of ‘final nasal’ and ‘vowel group’ are not going to be cued
by the phrases ‘‘final nasal’’ and “‘vowel group,’’ except possibly after
some linguistic training, and not necessarily even then. There are lots
of other problems. Yet I feel that pronouncing a few prior phonemes is
a natural cue for.the next phoneme in a word, and no position cue is
equally natural.

In visual iconic memory, however, there is pretty strong evidence
favoring position coding over prior item coding for serial order (Wickel-
gren & Whitman, 1970), and intuitively I feel that something like Mac-
Kay’s syntactic categories plays an important role in ordering ideas at
the level of concepts and words.

What is a plausible position coding model for the order of the small
positive integer names that children learn when they learn rote counting
or the order of the letter names in the alphabet that children probably
learn in much the same way? The most plausible model is probably some
multilevel grouping scheme, but I doubt that the groups are innate and
invariant across all children. For numbers, no particular grouping seems
terribly compelling. For the letters, @ b ¢ seems like a group, until we
recall that in the alphabet song, the first group is abcd.

In principle, it is quite attractive to imagine that there is an innate
representation of the basic number ideas from 1 to 7 or is it1to3
orisit1to9orisit123 many or ... . ? The evidence for three basic
position cues provides some support for the 1 2 3 model, but count-
ing gets to be pretty complex if you cannot have more than three dif-
ferent position ideas at each level of grouping. Here again, as in most
other levels of coding below semantic memory, it seems intuitively wrong
to think that humans are encoding order by means of some set of posi-
tion ideas or banks of position-specific representations, except in the case
of visual iconic memory, which is a very short-lasting nonassociative
memory.
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Context-Sensitive Coding. Although a single prior item often pro-
vides inadequate information to determine its successor in an unordered
set, a sequence of two prior items is adequate in almost all cases. A plau-
sible model to provide this information is provided by context-sensitive
coding, which codes an idea context-sensitively with a differerit represen-
tation depending on prior and succeeding context (Wickelgren, 1969,
1972, 1979a). Although one might use more context, it appears to be suffi-
cient to code a sequence of items by overlapping triples. Consider the
sequence of five phonemes, /s t r u k/, composing the word ‘‘struck.”’
In overlapping triple code, this is ,s,, (., 1,, [, K, where # means junc-
ture, the boundary between two words. It is important to note that seman-
tically, each phoneme triple means the particular allophone of the central
phoneme that occurs in this left and right phonemic context. It does not
mean a chunk of three phonemes. For this reason, I prefer to call these
phoneme triples, context-sensitive allophones, or c-s allophones, to put
the emphasis on the central element.

If accent is considered a distinctive feature of vowels, then to my
knowledge, there are no ambiguities in ordering the unordered set of c-s
allophones for any word in English. In any word, there is only one ini-
tial c-s allophone, that is an allophone of the type #Xy, and only one ter-
minal allophone, that is of the type vXs. Note that the context-sensitive
coding model assumes a separate set of phoneme representatives for ini-
tial and terminal positions, as a simple position model might, but there
must be more such representatives in the context-sensitive coding model,
because each initial allophone is also conditioned by the second phoneme
and each terminal allophone is conditioned by the next-to-last phoneme.
The same internal allophone may appear in many different positions in
different words, but it is likely that c-s coding requires considerably more
phoneme representatives than any position coding model, which is a
strike against it on grounds of representational efficiency, though the num-
ber of neurons required for c-s coding of phonemes is so tiny in compar-
ison to the number of neurons in the nervous system that the force of
this argument is much attenuated. .

I believe it is useful vis-a-vis serial order to make a sharp distinction
between creative behavior, such as the activation of sentences in think-
ing, and noncreative behavior, such as the activation of the phonetic con-
stituents of words (Wickelgren, 1969). Lashley (195 1) and MacKay (1987)
do not. I think that c-s coding is simpler than position coding in learning
and retrieval, and that it evolved earlier. As MacKay (1987) illustrated,
position coding is a powerful device that can order words in novel utter-
ances. Parrots can mimic words (noncreative serially ordered behavior),
but they cannot create novel sentences. Perhaps it is precisely because
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they lack position coding capacity that birds’ linguistic capacities fall short
of ours.

I do not favor the version of position coding in which a set of units
is innately dedicated to each syntactic category (position). Rather, I favor
the version in which each concept or word has a syntactic category idea
as a constituent. Then syntactic programs, coded via vertical and lateral
associations among the syntactic categories, control the activation of con-
cepts via up associations from syntactic category ideas to the concepts.

I believe these syntactic programs themselves rely on context-sensitive
coding of syntactic categories, that is, that we use overlapping triples
of syntactic categories such as Aarticleg, ,gecives anicieSize-adjective,,,.,
size-adjectivellOUN,, tO control the order of output of the words in a phrase
such as “the large ball.” I have a hunch that the evolutionary advance
that permitted syntactically structured thinking was primarily in using
order information stored in one system to control the order of activa-
tion in another system. Doubtless, MacKay and I will continue to agree
to disagree.

Counting is not creative behavior, and, hence, I assume that our
knowledge of the order of the small positive integers is context-sensitively
coded in terms of overlapping triples of integers. Thus, the chunk ‘count’
has down associations to ol2, 125, and so forth. The chunk for the ratio
of the circumference of a circle to its diameter, pi, has down associations
to ,3., 54, .14, ,4,, and so forth. In context-sensitive coding the strong
sequential associations are assumed to be between number triples, for
example, ,3, has a strong sequential association to 345. Although the digit
sequences in some possible numbers would require richer context-
sensitive coding than overlapping triples, such digit sequences are rare.

Jordan’s Plan-State Model. Jordan (1986) proposed a neural net
to code sequences that used three layers of neurons (input, hidden, and
output), two classes of input neurons (plan neurons and state neurons),
recurrent links among the state neurons, and backward (efference copy)
links from the output neurons to the state neurons, in addition to the
usual forward links from input neurons to hidden neurons and from hid-
den neurons to output neurons. Plan neurons encode the higher-level idea
of the entire sequence, that is, an entire word, the alphabet, and so forth.
The output neurons represent the lower-level constituents of the plan,
that is, letters. State neurons represent serial order ideas, such as posi-
tions. Hidden neurons represent compounds of plans and states designed
to permit nonlinear functions linking plans and states to constituents.
Nonlinear functions are necessary to overcome the sort of associative in-
terference, as pointed out by Lashley (1951).

A task Jordan gave to his network was to learn each of the six possible
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sequences of three letters, 4, B, C, that have no repeats: ABC, ACB, BAC,
BCA, CAB, CBA.

One simple way to make such a network generate these sequences is
to have one plan neuron for each of the six different sequences, one state
neuron for each of the three positions in the sequence (first, second,
third), one output neuron for each of the three letters, and one hidden
neuron for each of the nine compound ideas: A4 first, B first, C first, A
second, B second, C second, A third, B third, C third. It is necessary to
assume an initial state for the state neurons, so we assume it to be that
in which the first state neuron is active and no other state neurons. We
assume that if the plan is to generate sequence ABC, then the ABC plan
neuron is active and no others. Let the ABC plan neuron have a + 1 link
to the three hidden neurons: A first, B second, C third, and zero or nega-
tive links to the other six hidden neurons. Let the first state neuron have
a + 1 link to the three hidden neurons: A first, B first, C first, and zero
or negative links to the other six hidden neurons. If the threshold for
activating hidden neurons is 1.5, then only the 4 first hidden neuron will
be activated to this input. Of course, we let the A first neuron have a
+ 1 link to the A output neuron and zero or negative links to the other
two output neurons, assume a threshold for all output neurons of .5, and
then only the A neuron will be active as the first output of the ABC plan.
Now if we assume that state one has a + 1 link only to state 2, then state
2 will be active next, which, along with the maintained activation of the
ABC plan neuron, activates only the B second hidden neuron, which ac-
tivates the B output neuron, and so forth.

This simple model uses specific node coding, whereas Jordan uses dis-
tributed coding for inputs and outputs, and it makes no use of the back-
ward links from outputs to state neurons, which Jordan admits are
unnecessary to account for the basic ability to generate sequences.
However, because distributed coding is simply a generalization of specific
node coding, the previous simple, but high-interference, example makes
it clear that Jordan’s neural network has sufficient capability to overcome
Lashley’s serial order interference problem.

Jordan assumed the net learns the required link strengths by supervised
" learning, namely, the error (back) propagation learning algorithm of
Rumelhart, Hinton, and Williams (1986) modified to handle recurrent
nets. Personally, I think error propagation is too complex to be likely
for real neural nets, but who can be sure of such matters? Anyhow, it
enriches understanding to have contrasting theoretical alternatives, such
as supervised versus unsupervised learning.

The specific example I described makes Jordan’s model sound like the
position coding model, but this is misleading. To be sure, Jordan’s model
can incorporate position coding ideas into the state and hidden neurons,
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but it can also incorporate prior context in a somewhat different way
from context-sensitive coding via the backward efference copy links from
output neurons to state neurons. The cue for the initial item of a sequence
is the plan idea alone. The cue for the second item is the plan idea plus
the initial item. The cue for the third item is the plan idea and the first
two items of the sequence, and so on. This is called efference copy be-
Cause some trace of the items remains active after they are output, until
activation of some ‘end’ or ‘juncture’ idea terminates all activation as-
sociated with this sequence plan.

Jordanalso used distributed coding instead of specific node coding.
This can economize on the number of neurons required to code a set of
ideas such as a set of sequences, positions, constituents, and so forth,
but economizing on neurons in this way often leads to serious interfer-
ence problems when learning many associations with the same net. [ am
quite enthusiastic about distributed coding, but I think that to avoid seri-
ous associative interference problems, it is necessary to implement chunk-
ing in distributed coding models. Hidden units in three-layer nets can
perform many of the functions of chunking. Whether or not this is the
optimal way to implement these functions remains to be seen.

COUNTING LONG-TERM REPETITIONS

A possible semantic model for counting long-term repetitions is as fol-
lows: When idea A is activated a second time, the familiarity idea is acti-
vated. If there are any associated memories for the number of prior
activations of idea 4, these are activated. Assume that the highest such
number idea inhibits the others. Imagine that it is recalled that 4 has been
activated on n prior occasions (7 > 1), then what is activated is the digit
triple ,_,7,,,. Assume that simultaneous activation of the familiarity
idea and the ,_,n,, , idea have previously been learned as the necessary
and sufficient conditions for activation of n+1,, , and so the count is
incremented by one. Then A4 is chunked with the new count idea
on+1,.,, so that the next time 4 is activated, it will activate the new
chunk and its higher count " T

Whenn = 1, the foregoing model works also, but I doubt that people
always store a memory that an idea has been activated once, the first time
it is actiyated. So one just adds to the model the proviso that if A4 is ac-
tive, the familiarity idea is active, and no number idea is active, then it
is 12, that is activated and chunked with 4. The next time A is activat-
ed ,2, will be activated along with the familiarity idea, which causes 234
to be activated and chunked with A, and so forth.

This is no more than a brief sketch of a2 model for counting long-
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term repetitions. Many problems and surprises would occur in any at-
tempt to implement this in a functioning neural net model or a more
mathematical semantic model, but some model more or less along these
lines could probably be developed.

It occurs to me now that we frequently know that we have experienced
an idea on many prior occasions without recalling any specific count.
We do not confuse such cases with cases where an item was experienced
on one prior occasion and no explicit count of one occurrence was stored.
Of course, there are ways to distinguish these cases, but until such mat-
ters are handled, the model’s development is incomplete.

Nevertheless, it seems likely to me that any model of sequential count-
ing of long-term repetitions in humans will involve submechanisms for
chunking, familiarity recognition, and serial order.
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