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Abstract This introduction to Wickelgren (1992), describes
a theory of idea representation and learning in the cerebral
cortex and seven properties of Hebb’s (1949) formulation of
cell assemblies that have played a major role in all such
neural net models.

Ideas are represented in the cerebral cortex by webs
(innate cell assemblies), using sparse coding with sparse, all-
or-none, innate linking. Recruiting a web to represent a new
idea is called chunking. The innate links that bind the
neurons of a web are basal dendritic synapses. Learning
modifies the apical dendritic synapses that associate neurons
in one web to neurons in another web.

Mind: Ideas, Thoughts, and Thinking
This section describes some basic psychological concepts and
principles that motivate the neural models described in the
rest of the paper.

Assume that the mind contains a set of N ideas. Ideas are
representational atoms, such as: a 45° line segment located
30° to the left of the fovea, the letter “p,” pressing the
rongue against the upper front teeth, a sound of 680 hz, the
word “dog,” the image of a particular dog, the concept of a
particular individual dog, the concept of a member of the set
of dogs, the concept of the set of all dogs, the proposition
that dogs eat meat, etc.

T use “idea” very generally to mean any of the fundamen-
tal units of representation in any module of the mind, not
just those modules concerned with the representation of
concepts and propositions in semantic memory. Thus, any
sensory or motor feature, segment, image, concept, proposi-
tion, action, or mental procedure is an idea.

Ideas have at least two states of activation in the mind,
active and nactive, and there may be intermediate degrees
of activation. Ideas also have various degrees of excitation,
which is the potential for future activation of an idea. Ideas
with a high degree of excitation may already be active or
may become active with a small amount of additional input
excitation from associated ideas or the external world.

Only active ideas produce associative input that may add

or subtract from the excitation of other ideas. Ideas with
levels of excitation which are below the activation threshold
do not provide associative input to other ideas. This 1s what
it means for an idea to be active, namely, that it provides
excitatory or inhibitory input to the excitation of other
ideas.

In a two-state activation model, a thought is a set of
activated ideas. In a continuous activation model, a thought
is the N-dimensional activation vector that represents the
activation of each of the N ideas in the mind. Attentional
set (nonassociative short-term memory) is the N-dimensional
excitation vector that represents the excitation of each of the
N ideas in the mind.

Thinking is a sequence of thoughts. The successor
thought is determined by a combination of sensory input,
associative input from the ideas in the prior thought, and the
persisting (decaying) excitation of each possible idea that
results from prior sensory and associative input.

For the purposes of Wickelgren (1992), one may regard
a set of active ideas as a conscious thought. In a larger
context, I would probably not want to identify conscious
thought with the entire set of active ideas, but only with the
subset of active ideas concerned with semantic memory,
language, imagery, and a subset of emotion.

The number of active ideas composing a thought is a very
tiny portion of all the ideas that the mind contains in its
long-term memory. The maximum number of ideas that
may be simultaneously active in a thought is the attention
span. Sometimes it is alleged that attention span is on the
order of four or five ideas, whereas the total number of ideas
in an adult human mind is surely in the millions or billions.
I suspect that there are separate attention spans for parts of
the mind, which I will refer to as modules. Most of
Wickelgren (1992) is concerned with modeling a single
module of the mind, but I am not prepared to specify the
nature of our limited attention capacity in either the mind
or a module, beyond the principle that the number of active
ideas is a tiny fraction of the number of ideas in the module.

The primary reason for mentioning limited attention
span is that it provides a major source of motivation for the
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chunking learning process. The chunking learning process
recruits a new idea to represent each thought and strength-
ens associations in both directions between the new chunk
idea and its constituents. Thus, the inventory of ideas in the
mind does not remain constant over time, but rather
increases due to chunking.

There are two primary reasons for chunking. First,
chunking helps us to overcome the limited attention span of
thought by permitting us to represent thoughts of arbitrary
complexity of constituent structure by a single {chunk) idea.
Second, chunking permits us to have associations to and
from a chunk idea that are different from the associations to
and from its constituent ideas. This is very important for
minimizing assoctative interference.

We might want to assume that the number of ideas in the
mind also decreases over time due to forgetting. However,
if forgetting is a continuous process, it may be better to
assume that the number of ideas is steadily growing, but
another property called the availability of an idea both
increases and decreases. Forgetting and availability are not
studied in Wickelgren (1992).

Neural Representation of Ideas and Associations
Wickelgren (1992) develops one possible neural net represen-
tation of some of these psychological concepts and princi-
ples. The theory aims to model a group of nearby pyramidal
neurons in the cerebral cortex. The most basic assumption
1s that an idea is represented by a set of strongly intercon-
nected neurons similar to a Hebbian cell assembly (Hebb,
1949).

Some terminology is as follows. Ideas are mental entities
and the set of neurons representing an idea is a cell assem-
bly. Association is a mental, not a neural, relation between
ideas, but, because of its mnemonic value, I will refer to the
synapses on the apical dendrites of cortical pyramidal
neurons as associative synapses. Neurons, synapses, connec-
tions, and links are entities in the brain or in neural net
models of the brain. A link is the set of synapses of a given
type from one neuron to another. Thus, neuron-i can have
at most one link of a given type to neuron-j, but that link
may be composed of one or more synapses. Synapses and
links can have many degrees of strength, though sometimes
they are assumed to be all-or-none, that is, having only the
values 1 or 0, respectively. Connections are always all-or-
none, that is, two neurons are either directly connected or
they are not.

CELL ASSEMBLIES

Hebb (1949) proposed that ideas are represented in the
cerebral cortex by overlapping sets of neurons called cell
assemblies. Hebb’s definition of cell assemblies was not
completely precise, but, implicitly or explicitly, Hebb’s cell
assemblies had seven properties, the first six of which have
been important parts of many subsequent hypotheses
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concerning the neural representation of ideas. The present
paper aims to develop the seventh property as well.

Some of these properties could be called structural in that
they refer only to the graph-theoretic properties of a neural
net, the types of sets of neurons that represent ideas and
their synaptic interconnections. Other properties could be
called dynamic in that they depend on assumptions concern-
ing neural excitation, persistence, thresholds, and activation
of neurons, as well as on structural properties of the net.

First, Hebb assumed overlapping set coding of ideas (see
of Hebb, 1949, p. 196). The same neuron could be a part of
many different cell assemblies. Cell assemblies are overlap-
ping sets of neurons — a structural property.

Second, Hebb implicitly assumed sparse coding of ideas,
that is, any individual cell assembly contained a very small
subset of all of the neurons in the cerebral cortex.

Third, Hebb assumed a structural integration property,
that cell assemblies are sets of neurons with a relatively high
density of excitatory synaptic interconnections. In nets with
sparse connectivity, such as the cerebral cortex, most
random sets of neurons cannot be cell assemblies and
represent ideas, because they are not sufficiently densely
interconnected by excitatory synapses.

Fourth, cell assemblies have a dynamic persistence
property, that activation of a cell assembly will persist
for a time via reverberatory feedback due to the high density
of excitatory synapses among the neurons of the cell
assembly.

Fifth, cell assemblies have a dynamic completion prop-
erty, that activation of a large enough subset of a cell
assembly results in activation of the complete cell assembly.
Completion depends both on the structure of the connec-
tions among the neurons in a net and on the rules for
activation dynamics of neurons. Legéndy (1967) was the first
to study the completion of cell assemblies within a precise
mathematical model, referring to it as ignition of a cell
assembly. Braitenberg (1978) and Palm (1982) made further
important contributions, with Palm being the first to note
that the ignition of cell assemblies is essentially the same
property as pattern completion in an associative memory.

Sixth, there is the famous Hebbian learning postulate
that correlated activation of two neurons strengthens any
synapse between them. Hebb’s associative synaptic learning
hypothesis became famous independent of its use in estab-
lishing cell assemblies.

Seventh, Hebb anticipated Miller’s (1956) chunking
learning process for the representation of complex thoughts
as unitary ideas. Hebb suggested that a new cell assembly T
for an entire triangle emerges during the course of a phase
sequence incorporating the activation of the three cell
assemblies, a, b, and ¢, representing the three vertices of the
triangle. Hebb emphasized that, “The resulting
superordinate system must be essentially 2 new one, by no
means a sum or hooking together of a, b, and ¢.”
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EXCITATION, ACTIVATION, INHIBITION, AND THRESHOLD
QOF NEURONS

The activation of a neuron is its output state, measured at
its (presynaptic) axonal terminals, which are all assumed to
be in the same state at time t. Activation is sometimes
represented on a continuous scale, e.g., real numbers
between 0 and 1, representing the neuron’s rate of firing, but
the models in Wickelgren (1992) assume all-or-none activa-
tion, namely, a spike or no-spike at time t.

The excitation of a neuron is its input state, measured at
the cell body. Excitation is represented on a continuous scale
by a nonnegative real number. In the cortical models of
Wickelgren (1992), excitation represents the summed
dendritic potential at the cell body of a pyramidal neuron
due 1o all excitatory synapses on that neuron. Total excita-
tion is divided into a basal dendritic component and an
apical dendritic component that may have different relative
weighting and different rates of decay at different phases of
thinking.

The models in the complete paper, Wickelgren (1992),
represent a very short-term memory at the level of the
individual synapse by the assumption that each basal
dendritic excitatory synapse makes its contribution to total
excitation for two consecutive time steps after receiving
input from its activated presynaptic neuron.

Inhibitory synapses are not explicitly represented as such
in any neural model in Wickelgren (1992). Some types of
inhibition may play 2 role in determining relative
weightings of apical and basal dendritic excitation and decay
rates. The primary way in which inhibition is represented
most explicitly in these models is by setting the threshold
for activation of a neuron. Greater inhibition raises the
threshold for firing — outputting a spike. The simple
threshold rule is used throughout Wickelgren (1992),
namely: activation is 1 (spike) at time ¢, if and only if
excitation equals or exceeds the threshold at time t; other-
wise, activation is O (no spike).

Excitation (potential) and activation (spiking) of a neuron
are different concepts from the excitation and activation of
an idea represented by a set of neurons. The molar psycho-
logical concepts of excitation and activation of ideas may
well be definable from the concepts of excitation and
activation of neurons. However, the relation is not identity
unless one subscribes to the specific neuron hypothesis that
each idea is represented by a single neuron.

ASSOCIATION OF IDEAS

Similarity and contiguiry. Mental associations between ideas
may derive in part from overlap in their cell assemblies (the
similarity factor) and in part from strong links between the
assemblies (the contiguity factor). It is important to remem-
ber that the psychological associative relation between ideas
need not only be represented neurally by strengthened
synapses between neurons in the associated cell assemblies,
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but may also be partially represented by the neural overlap
of associated cell assemblies. However, Wickelgren (1992)
does not use neural overlap, only learned synaptic associa-
tion, as a basis for the association between cell assemblies.

Associative link types. There is probably no more important
unsolved issue in the study of the mind than the semantics
of the association relation(s) between 1deas. How many
types of associations are there between ideas and what are
they? I have grappled with this problem for decades and
come to no firm conclusion. One possibility is that there are
only two basic semantic types of association relations
between ideas in the human cognitive mind: A is a constitu-
ent of B and B is a chunk of A. Perhaps both directions of the
constituent relation established by chunking could be
mediated by a single type of neural link. Perhaps there are
multiple types of constituent associative links. In addition to
constituent links, there may be learned sequential links for
sequential activation of the constituents of a chunk idea
representing an ordered set such as a procedure. These
questions are beyond the scope of Wickelgren (1992).

Only one type of learnable associative link between
pyramidal neurons is assumed in Wickelgren (1992), and
those associative links are not even modeled, except in a
very reduced way as the initial input to a set of neurons. The
only excitatory links to be represented by link matrices and
modeled extensively are innate links that are presumed to
bind neurons together into innate cell assemblies called
webs.

LINK TYPES, LINK MATRICES, AND NEUROMODULATION
Neurons are known to be connected by synapses of differ-
ent types — excitatory vs. inhibitory, bur also several types
of excitatory and inhibitory synapses. Dale’s Law is that any
given neuron has output synapses of only one type. Even if
a neuron secretes the same mix of transmitters from each of
its output synapses, from a functional standpoint, a synapse
type is determined as much by the response of the
postsynaptic neuron to the transmitter(s) as by the transmit-
ter(s) secreted by the presynaptic neuron. If the postsynaptic
response is different for different synaptic sites, then
functionally the synapses are of different types.

There are at least two classes of neocortical neurons,
pyramidal and stellate cells, with different neurotrans-
mitters, and several types of subcortical neurons that send
outputs to the neocortex. It is certain that cortical neurons
have input synapses (inlinks) of more than one type,
excitatory and inhibitory, and it is likely that many have
two or more types of excitatory inlinks and two or more
types of inhibitory inlinks.

In Wickelgren (1992), any single link matrix or connec-
tion matrix is restricted to representing synapses of a single
type. Thus, in general, a neural net model may require more
than a single link matrix to represent the strengths (or other
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Figure 1. Apical vs. basal dendritic excitatory synapses among pyramidal
neurons in the cerebral cortex. A cell assembly of 100-10,000 pyramidal
neurons is assumed to represent an idea. Neurons C1 and C2 are two
neurons belonging to the same cell assembly C. C1 tends to activate C2
and vice versa via the innate binding links (synapses) that connect them
into a cell assembly. The synapses on basal dendrites of pyramidal
neurons are presumed to mediate these binding links among the neurons
in each cell assembly. A set of cell assemblies that are activated in close
temporal contiguity recruit a new chunk assembly to represent the entire
set. X1 is one neuron from constituent assembly X, and Y1 is one neuron
from constituent assembly Y. Via the chunking process, assembly C has
come to represent the combination of assemblies X and Y. Assembly C is
the chunk idea that represents the combination of the ideas represented
by the constituent assemblies X and Y. The neural substrates of this
chunk-constituent relation are the learned associative links from neurons
such as X1 and Y1 in the constituent assemblies to the neurons in the
chunk assembly C and the learned associative links in the reverse
direction from the chunk neurons to the constituent neurons. Note that
it is plausible to assume a high degree of symmetry in the binding
synapses between individual neurons within a cell assembly — ie., C1
links to C2 if €2 links to C1. Such binding symmetry may be useful in
creating cell assemblies. However, it is not so plausible to assume a high
degree of symmetry in the associative synapses between individual
neurons in different assemblies, nor would this serve a useful purpose,
though it is essential that there be symmetry at the module level for
associative synapses, namely, that the constituent modules that send
associative links to some chunk module should also receive associative
links from the chunk module. In Figure 1, neuron X1 has an apical
synapse on neuron C1, but C1 does not have an apical synapse on X1,
though C1 may synapse on some other neuron in the X assembly. C11s
shown as synapsing on Y1, while Y1 does not synapse on C1. However,
C1 and C2 are shown to have symmetric binding synapses.

properties) of the synapses between the neurons in the net.

The theory presented in Wickelgren (1992) assumes two
types of excitatory links between cortical pyramidal neu-
rons: (a) innate binding links between pyramidal neurons
in the same cell assembly that cause all the neurons in the set
to be activated together and (b) learned associative links
that represent associations between cell assemblies. Binding
links are presumed to be excitatory synapses on the basal
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dendrites of pyramidal neurons, and associative links are
presumed to be synapses on the apical dendrites of pyrami-
dal neurons, as illustrated in Figure 1. Basal dendrites branch
extensively near the cell body and receive input synapses
from nearby pyramidal neurons (Braitenberg & Schuz,
1991). Apical dendrites project upward for some distance
from the cell body, usually branching extensively in the
uppermost layers of the cortex where they receive synaptic
input both from nearby neurons and from neurons in
remote areas of the cerebral cortex (Braitenberg & Schug,
1991). The derivations, calculations, and simulations of the
properties of neural nets discussed in Wickelgren (1992) use
only the binding link matrix, but the theory assumes the
existence of an independent assoctative link matrix as well.

The theory assumes two types of inhibitory links: (a)
activation threshold control links and (b} excitation
erasure links. Threshold control links raise the threshold
for activation, but do not cancel or erase the excitation of
the pyramidal neuron caused by previous excitatory input
to the dendrites. The general purpose of threshold control
links is to keep the number of active neurons in a module
within the target range for the desired size of cell assemblies,
not allowing the number of active neurons to decrease to
zero or increase in an epileptic explosion.

What has been called reciprocal inhibition and lateral
inhibition may both be implemented by control links, as
can changes in threshold control with the phase of thought.
Threshold control inhibition can often be modeled ab-
stractly in the dynamic laws of a neural net by making the
threshold of neurons vary with the phase of thought and the
total activation of neurons in the module.

Chandelier cells, which form presumably inhibitory
synapses on the initial segments of the the axon of pyrami-
dal neurons (Abeles, 1991), are in a perfect position to
control the threshold for activation of a pyramidal neuron
without affecting the state of depolarization of the cell body
or dendritic tree, which carries the memory for the excita-
tion of the pyramidal neuron.

By contrast, erasure links permanently cancel the effects
of prior excitatory input to a pyramidal neuron. Excitation
is presumed to decay passively over time in the absence of
inhibition. Why would one want active inhibitory erasure?
One wants erasure inhibition in cases where the idea
represented by a set of pyramidal neurons has had its turn
on the mental stage, and it is time to activate other ideas that
were temporarily bypassed for processing and/or that are
just now being excited. To reduce the noise level for idea
recognition, it is desirable to clear off the desk that which
has already been completely processed so that it does not
interfere with processing other ideas.

Erasure links serve the function of self-inhibition of an
idea that has already been activated. At one phase of
thought, an idea is assumed to inhibit itself so as to termi-
nate the current thought and go on to the next thought.
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Self-inhibition is easily modeled in the dynamical laws
without the need for explicit representation of inhibitory
neurons or erasure inhibitory synapses in link matrices.

Basket cells, which form presumably inhibitory synapses
on dendrites and cell bodies (Abeles, 1991}, are in a good
position to erase the prior state of excitation (depolarization)
of a pyramidal neuron. It is plausible that at low to medium
levels of activation basket cells regulate pyramidal activation
thresholds with no erasure, but at higher levels of activation
basket cells erase excitation.

The theory also assumes one or two neuromodulatory
link types that modify the strengths of all excitatory links of
a certain type in the module. Since such neuromodulation
has a common effect on all links of a certain type and does
not depend on the specific pair of neurons being linked
(though it may vary with the strength of the link), such
modulation can be abstractly modeled in dynamical laws
and does not require matrix representation of each
modulatory synapse.

APICAL VERSUS BASAL DENDRITIC SYSTEMS OF SYNAPSES

I got the idea of distinguishing the functions of apical and
basal dendrites from Braitenberg’s (1978) distinction be-
tween the A (apical) and B (basal) systems of synapses among
cortical pyramidal neurons. Braitenberg and Schuz (1991)
consider this distinction to be similar to the distinction
between an ametric and metric system of synaptic connec-
tions proposed by Palm and Braitenberg (1979), where
“metric” means that the probability of a synaptic connection
decreases with increasing distance and “ametric” means that
the probability of synaptic connection 1s independent of the
distance between the neurons. While basal synapses are
apparently entirely local and metric, some apical synapses
are local and presumably metric while others are remote and
presumably ametric. Thus, I will not identify apical with
ametric.

Braitenberg (1978) used the A system for binding together
diffuse (global) cell assemblies. Diffuse cell assemblies are
composed of neurons from many different modules (areas,
regions) of the cerebral cortex. Braitenberg used part of the
B system to bind together neurons in local cell assemblies.
Local cell assemblies are composed entirely of neurons in
the same module. Braitenberg used another part of the B
system to associate all cell assemblies (diffuse or local).

Much later I discovered that Kohonen, Lehtio, and
Rovamo (1974) had distinguished the functions of the apical
and basal dendritic systems in a manner closer to mine.
However, I assume that only apical synapses can be modi-
fied and that basal synapses are innate and unmodifiable,
whereas they assumed modifiable basal synapses and un-
modifiable apical synapses. Kohonen, Lehtio, and Rovamo
assumed that the function of basal synapses is to associate
the neurons representing parts of a pattern. They did not
refer to the set of neurons representing a pattern as a cell
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assembly, but they wanted the basal synapses to function to
complete the neural representation of any pattern starting
from a subset, just as do cell assembly theorists.

Like Braitenberg (1978), I distinguish between synapses
that bind neurons into a cell assembly (binding synapses)
and those that associate two assemblies (associative synap-
ses), but I follow Kohonen, Lehtio, and Rovamo in assum-
ing that cell assemblies are purely local, that only basal
synapses bind neurons into a cell assembly, and that apical
synapses deliver input from other modules.

However, in my model the only learning occurs at the
input apical synapses. Apical synapses are considered to be
the site for learned associations between cell assemblies.
Associative input to apical dendrites may be considered
analogous to sensory input for primary sensory areas of the
cortex. Of course, thalamic sensory input is first delivered to
spiny stellate neurons. According to Douglas and Martin
(1990), spiny stellates project to basal dendrites rather than
apical dendrites. If this is so, then sensory input to cortical
pyramidal neurons must be handled differently from cortical
associative input, and the analogy is flawed.

Finally, I assume that associations can be learned between
cell assemblies in the same module as well as between cell
assemblies in different modules. Thus, the model assumes
that pyramidal neurons within a cortical module form apical
synapses with other pyramidal neurans in the same module,
as well as basal synapses. All of this is consistent with
current knowledge of synaptic connections in the cerebral
cortex (Douglas & Martin, 1990).

In my model, basal dendritic synapses integrate neurons
of the same cell assembly so that they will have the proper-
ties of persistence and completion in retrieval. Persistence
means that, once all the neurons of a cell assembly are
activated, they will remain active for a period of time until
fatigue or specific inhibition terminates activation.

Completion in retrieval means that associative synaptic
links from other ideas to a target idea need not be numerous
enough and strong enough to activate all of the neurons in
the cell assembly representing a target idea. Associative input
need only activate a subset of the target assembly. This
subset of the target assembly is part of the initial set from
which retrieval completion starts. The initial set will
probably also contain activated (noise) neurons that do not
belong to the target assembly. For completion to be success-
ful the initial set must be informationally sufficient to
specify one and only one target assembly by having greater
overlap with the target assembly than with any other
assembly. The basal dendritic synapses then mediate the
activation of the remaining neurons in the target assembly
and the deactivation of the noise neurons.

Associative input to apical synapses activates initial sets
of pyramidal neurons that serve as the starting point for
both chunking and retrieval by the basal system, but the
apical system is not investigated in Wickelgren (1992).
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Coding of Thought

SPECIFIC NEURON CODING — GRANDMOTHER CELLS

The simplest way for neurons to code ideas is specific
neuron coding, so called in honour of Johannes Miiller’s
doctrine of specific nerve energies, of which it is a simple
generalization. This is what Horace Barlow and others have
called the grandmother cell theory of coding in the brain,
because it asserts that the internal representative of any idea,
including a grandmother, is the activation of a single cell
(neuron) (Barlow, 1972). Thinking of grandmother means
that the grandmother neuron is firing at a high rate.

MULTIPLE NEURON CODING — GIANT NEURONS

One possible alternative to specific neuron coding of ideas
is multiple neuron coding of ideas, where a set of neurons
represents an idea, but each neuron is only used in one cell
assembly (Feldman 8 Ballard, 1983). That 1s, the sets of
neurons representing any two different ideas do not overlap
— cell assemblies are nonoverlapping. Multiple neuron
coding of ideas can be called giant neuron coding, because
the set of neurons encoding an idea acts much the same as if
a single giant neuron were encoding that idea. The proper-
ties of multiple neuron coding are very similar to specific
neuron coding, but there are some important differences.

First, giant neuron coding has greater fault tolerance
since the loss of one or a few neurons would presumably
only shightly diminish the representation of an idea and the
strength of its associations to other ideas, rather than
completely abolishing an idea and all of its associations.

Second, each giant neuron has much greater input and
output connectivity to other giant neurons than the connec-
tivity of single neurons. If the average number of synapses
per neuron is m, and g neurons are combined into each giant
neuron, then, on average, each giant neuron has mg input
synapses and mg output synapses.

Third, greater connectivity is obtained at the expense of
less representational capacity, since n neurons can code at
most n/g ideas with giant neuron coding, whereas the
maximum number of ideas is n with specific neuron coding.

If each giant neuron required only a single synapse from
any other giant neuron in order to activate it, and if there
are 10" neurons in the cerebral cortex and 10* synapses per
neuron, it would require at least 10° neurons per giant
neuron to provide complete connectivity of every giant
neuron with every other giant neuron. This would reduce
the maximum number of representable ideas to 107, which
might or might not be sufficient to represent all the
thoughts a human being can have available at any point in
time. However, such limited connectivity provides no fault
tolerance for any given association, since it is carried by a
single synapse.

To provide 100 synapses between each pair of giant
neurons, 10? neurons are required for each giant neuron.
This reduces the number of possible ideas to 10°, which
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seems too small for human thinking. Multiple neuron
coding seems unlikely to be the correct model for the
representation of ideas in human cognitive thought. With
giant neuron coding, it seems likely that there would not be
enough idea representation capacity to chunk every thought
into a single giant idea, and most thoughts could only be
represented as sets of giant neurons. The arguments in
favour of chunking given in Wickelgren (1992) argue against
such a model, but, of course, I don’t know what percentage
of our thoughts get chunked. It makes an elegant model to
assume that all thoughts get chunked automatically, though,
in such a model, one assumes that most chunks see little
subsequent use, and so the learned associative links that gave
meaning to these chunks are forgotten. In any case, giant
neurons have no role in the model developed in Wickelgren
(1992), whose focus is to provide a mechanism for chunking,

OVERLAPPING SET CODING — CELL ASSEMBLIES

More promising than multiple (nonoverlapping set) coding
is overlapping set coding of ideas. As with giant neuron
coding, each idea is represented by a set of g neurons, but
the sets for different ideas can overlap, perhaps extensively.
Overlapping set coding was employed by Hebb (1949) in his
cell assembly model. However, Legéndy (1967) was the first
to develop systematically the theory of overlapping set
coding and analyze its properties using powerful probabilis-
tic methods.

Overlapping set coding has the same advantages as giant
neuron coding with respect to fault tolerance and enhanced
connectivity, but without a reduction in idea representa-
tional capacity (Legéndy, 1967, 1968).

Sparse coding of ideas. With extensive overlap in the represen-
tation of ideas, one might think there would be problems in
discriminating different ideas based on proper subsets of the
assemblies representing ideas. However, Legéndy (1967),
Palm (1980, 1986, 1987, 1991), and Meunier, Yanai, and
Amari (1991) have demonstrated that there can be a high
degree of discriminability in the representation of different
ideas with overlapping set coding.

As Palm (1980, 1986, 1987, 1991), and Meunier et al.
(1991) show, the greatest number of discriminable cell
assemblies is obtained by using sparse overlapping coding
of ideas in a neural net, that is, representing each idea by 2
small subset of all the neurons in the net. Sparse overlapping
coding can represent as many or more ideas as there are
neurons in the net, with a high degree of discriminability in
the representation of different ideas. Sparse overlapping
codes are essentially error-correcting codes for ideas that
provide a high probability of determining which idea was
intended by choosing the idea with the greatest overlap with
any activated set of neurons.

Some of the properties of overlapping set coding can be
illustrated with a simple example. Consider a net with 10
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neurons (labelled 0,1, ... ,9). Represent each idea by a subset
of three neurons.

There are 120 different (unordered) sets of 3 neurons,
which would allow us to code 120 different ideas, an order
of magnitude more than the 10 ideas that could be coded by
specific neuron coding. However, if we were to try to use all
of these different 3-neuron codes to represent 120 different
ideas, no proper subset (of say 2 neurons) would be logically
sufficient to communicate an intended idea. Thus, the
system would have minimal ability to discriminate one idea
from another in the presence of any noise in the form of
deleted or added neurons. There is no error correction (fault
tolerance) in the code.

So we give up on the possibility of making maximum use
of the combinatorial possibilities of distributed coding and
ask how many ideas can be represented by cell assemblies
with 3 neurons each, such that any subset of 2 neurons is
sufficient to identify uniquely which idea (set of 3 neurons)
was “intended.” This is not all of the error correction
capability that one wants, but this is a toy example designed
to communicate the basic idea. The answer is that one can
represent 12 ideas with this degree of idea discriminability,
by choosing the following 12 cell assemblies: (012), (034),
(056), (078), (135), (146), (179), (236), (247), (258), (389),
(459). This is slightly more ideas than can be represented
with specific neuron coding, and the idea discriminability
(error correction, fault tolerance) is better than for specific
neuron coding.

For larger nets and larger cell assemblies, the representa-
tional capacity of sparse overlapping coding is probably also
greater than specific neuron coding. Other considerations
beyond idea discriminability may limit the aumber of
represented ideas to be on the order of the number of
neurons in the net, but this is beyond the scope of
Wickelgren (1992).

Thoughts. In overlapping set coding, each idea is represented
by a cell assembly. Each thought is represented by the union
of its constituent cell assemblies. Thus, both thoughts and
ideas are represented by sets of neurons.

Chunking. Since humans seem capable of thinking thoughts
composed of ideas that are themselves thoughts composed of
ideas, to no known limit, except total memory capacity, we
probably need a mechanism to prevent enormous variation
in the size of the set representing each idea. Chunking is
such a mechanism. As I envisage chunking, a new cell
assembly is recruited to represent a thought (set of cell
assemblies), with the new chunk assembly being of approxi-
mately the same size as each constituent assembly. The
meaning of the new chunk idea might be established in
either or both of two ways: chunk-constituent overlap and
chunk-constituent association.

First, when a chunk assembly is in the same module as
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one of its constituent assemblies, the chunk assembly may
overlap (share neurons with) the constituent assemblies
more than with a random cell assembly. This could provide
information relevant to decoding a chunk into its constitu-
ents and to reactivating a familiar chunk from its constitu-
ents.

Second, and of more general importance, chunks are
assumed to be associated to their constituents by learnable
links in both directions. Thus, when a chunk assembly is
activated to represent the prior thought, a Hebbian learning
process is assumed to strengthen apical synapses connecting
the neurons representing the constituent assemblies and the
neurons representing the chunk assembly.

It is important to note that, both psychologically and
neurally, chunking involves something more than associa-
tive learning. A new idea representative must be activated to
represent a novel chunk. From the standpoint of traditional
associative memory, this activation is a fundamentally new
process that permits the learning of hierarchical (up and
down) associations. Recruiting new idea representatives and
hierarchical association was not a feature of traditional
models of associative memory prior to the theoretical
advances of psychologists such as Miller (1956) and Hebb
(1949).

WEBS — INNATE CELL ASSEMBLIES

Sparse linking and innate versus learned cell assemblies. Using
a graph-theoretic approach, Palm (1982) made a major
advance in the precise formulation of the concept of overlap-
ping cell assemblies. A pure graph-theoretic approach would
use only the two-valued (0 or 1) connection matrix that
specifies which neurons synapse with which other neurons.
In actual fact, Palm permitted a weighted (multivalued) link
matrix, but rarely made use of more than two values.

Palm also followed Hebb in assuming that cell assemblies
result from learned strengthening of connections between
neurons that are contiguously activated, and Palm (1991) has
done extensive investigations of Hebbian learning. How-
ever, there is actually no role for learning in Palm’s (1982)
graph-theoretic definition of cell assemblies — a set of
neurons either is or is not a cell assembly based on the
current state of the connection matrix, which typically had
only 0 and 1 entries.

Palm (1986) believes that the real connection matrix that
defines cell assemblies is generated by a learning process, but
he acknowledges the principal difficulty with this assump-
tion, namely, that each cortical neuron only connects to a
tiny fraction of all of the other neurons in the cerebral
cortex. In a fully connected net or in a net where new
connections can be established between any pair of neurons,
cell assemblies can gradually develop as a function of
learning in the manner envisaged by Hebb. However, in a
relatively sparsely connected net, such as the cerebral cortex,
which is currently assumed to have only a very limited
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capacity to form new connections, I think it is more
reasonable to assume that cell assemblies are innate.

Palm (1986) has a clever suggestion for escaping this
dilemma. He assumes that the neurons of the cerebral cortex
are partitioned into modules, with the neurons having a
high connection probability, about .5, to each neuron in the
same module, but a very low connection probability to any
neuron in another module. Each pyramidal neuron in the
human temporal and frontal cortex is estimated by Cragg
(1975) to have an average of about 40,000 synapses with
other pyramidal neurons. If each assembly-module con-
tained fewer than 10,000 neurons, the required number of
binding synapses for each neuron (<5,000) would not
unduly deplete the total number of synapses available for
associating cell assemblies across different modules.

Assembly-modules are surely all local, that is, within a
small compact region of the cortex, which means that if
there are any global assemblies, they must be unions of local
assemblies, which appears to be what Palm and Braitenberg
assume. I think chunking removes the need for global cell
assemblies, and I give some arguments against global assem-
blies as set unions of smaller assemblies in a later section.
However, the resolution of this argument is largely irrele-
vant to the plausibility of Palm’s assumption of assembly-
modules in which connection probability is high enough to
support learned cell assemblies.

The most negative evidence against learned cell assemblies
is contained in Braitenberg and Shuz’s (1991) mathematical-
anatomical study of the connection probabilities of pyrami-
dal neurons in the mouse cortex. They found that the
connection probability of nearby pyramidal neurons was on
the order of .02. From my reading of Palm’s work on this
matter, I conclude that this is too small a connection
probability to support learned cell assemblies, but I am not
certain of this. Furthermore, I do not know the connection
probability within clusters of 1,000 or so nearby neurons in
the human neocortex.

However, Palm’s graph-theoretic definition of cell
assemblies can also be interpreted as a definition of innate
cell assemblies at least as easily as it can be interpreted as a
definition of learned cell assemblies, and I do so interpret it.
This does not assert that there is no learning in the cerebral
cortex, which would be absurd, only that learning plays no
role in which sets of neurons are potential cell assemblies,
that is, sets of neurons with the potential to represent ideas.

It may be that only some of the cell assemblies with the
potential to represent ideas, ever actually get activated and
come to represent ideas. Once activated, a cell assembly
comes to represent an idea by Hebbian strengthening of the
modifiable apical synapses on its pyramidal neurons from
the neurons in the previously activated constituent assem-
blies and by Hebbian strengthening of the apical synapses
from the chunk assembly to the neurons of its constituent
assemblies. I currently assume that there is no modification

Figure 2. A tiny neural net with 9 neurons that contains the 6 webs
shown in Table 1. This net is symmetric, and each line between neurons
represents two links, one in each direction. Each web has a minint of 2
and a maxext of 1, so it will be an equilibrium state using a threshold
activation function with a threshold of 1.5 active inlinks.

of the basal synapses that bind together the neurons within
a cell assembly. Note that some basal synapses may be
modifiable, and all basal synapses may be modifiable during
development — indeed Wickelgren (1992) used the hypothe-
sis of modifibility during development to provide a plausible
neural mechanism for the development of a symmetric
connection matrix for the web-defining basal synapses. What
is essential for the theory is that there be some class of basal
synapses that are unmodifiable after some stage of develop-
ment.

Precise characterization of the role of learning versus
innate structure in the mind and the brain is a central
problem in psychology and neuropsychology. Legéndy
(1967) began the process of emphasizing the role of innate
structure in the definition of cell assemblies by using only
innate weak links to bind together the neurons of “minor
compacta,” which are essentially subassemblies of larger cell
assemblies called “major compacta.” The present theory
takes Legéndy’s approach one step farther by using only
innate synapses to define cell assemblies. Since this could be
a mistake and since clear understanding of the brain includes
knowing what is learned and what is innate, it is well to
acknowledge explicitly the assumption that my cell assem-
blies use synapses that are innately equal in strength (after
some stage of development).

Palm’s definition of cell assemblies. Although Palm’s (1982)
approach is primarily structural, his actual definition of an
assembly relied on activation dynamics, rather than being
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TABLE 1
Webs in 9-Neuron Net of Figure 2
Web Neurons in Web
1 1 3 4 8
2 1 5 6 8
3 2 3 4 7
4 4 5 7 8
5 1 2 3 6 9
6 2 5 6 7 9

purely structural. Some auxiliary definitions are necessary to
define a Palm-assembly. A set X ignites a set Y, if activation
of X eventually produces activation of Y. A persistent set is
a set of neurons that, once activated, remains activated at a
given threshold. An invariant set is a persistent set of
neurons that does not recruit additional neurons to the
activated set. A set X supports a set Y (X helps Y to be
persistent), if Y is not persistent, but XuUY is persistent. A
Palm-assembly is an invariant set such that every persistent
subset either supports or ignites the remainder of the
neurons in the assembly (at a fixed threshold).

Structural definition of cell assemblies. The minint (minimum
internal connectivity) of a set of neurons is the minimum
number of innate links that any neuron in the set receives
from other neurons in the set. The maxext (maximum
external connectivity) of a set of neurons is the maximum
number of innate links that any neuron outside the set
receives from neurons in the set. A web is a set of neurons
whose minint is greater than its maxext. “Web” is a short,
elegant name for a cell assembly.

Figure 2 shows an example neural net with nine neurons
and an average of 2.9 (bidirectional) links per neuron. Each
line between neurons in Figure 2 represents two links, one
in each direction. Thus, the net is symmetric. The net in
Figure 2 contains the six webs listed in Table 1. For each
web, the minint is two, and the maxext is one. Assume the
threshold activation rule that a neuron is activated whenever
its excitatory input exceeds a threshold. Set the activation
threshold at some value between one and two active inlinks.
Then, once any of these webs is activated, it will remain
active, because, at each time step, each neuron in the web
receives input from two other active neurons. In addition,
no neuron outside the web will become active, because each
outside neuron receives input from no more than 2 single
active neuron. Thus, each of these webs is an invariant set.
Furthermore, each of these webs is a Palm-assembly. There
are no persistent proper subsets of any of these webs.

You can check that each of the six alleged webs is indeed
a web by putting your fingers on the neurons in a web,
checking that each fingered-neuron receives at least two
inlinks from other fingered-neurons, and that each of the
unfingered-neurons receives one or fewer inlinks from the
fingered neurons.
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Note that the six webs overlap extensively, and, thus,
each neuron belongs to more than one web. In fact, every
neuron belongs to three different webs, except neuron-9,
which belongs to two webs.

My definition of cell assemblies is purely structural. The
advantages of a structural definition are: (a} It is clear from
the properties of the connection matrix alone what kinds of
sets are asserted to be cell assemblies. (b) It is easier to
determine whether or not any given type of net has cell
assemblies, and, if so, how many. One must then study how
well any such structural definition fares in achieving the
desired dynamic properties with different dynamical models.

The advantage of a dynamic definition is that it incorpo-
rates one or more desired dynamic properties into the
definition of cell assemblies. One must then demonstrate
that such cell assemblies exist and estimate the number for
any given type of net with specified structure and dynamics.
This is what Palm (1982) refered to as “the main problem in
the theory of cell assemblies.” This problem is considerably
simplified by using a purely structural definition, and,
although he didn’t say so, it is likely that Palm (1982)
employed a purely structural definition when he determined
the number of cell assemblies in various systematically
constructed graphs. I presume that definition was nearly
equivalent to the one given here.

Webs are equilibrium states (invariant sets). A web is an
equilibrium state (invariant set) of a neural net with all-or-
none links, a (noise-free) threshold activation function, and
the threshold value between the maxext and the minint.
That is, once a web is activated in such a dynamical system,
1t will remain activated and no other neurons will become
activated. Webs are innate resonances of such a neural net.
Each of the six webs in Figure 2 is an equilibrium state with
the activation threshold set at 1.5 (or anywhere between 1
and 2).

An equilibrium state is one in which one of Palm’s
invariant sets is activated. Thus, if Palm’s definition had
been simply that an assembly was an invariant set, then for
the case of all-or-none links and a threshold activation
function with a properly chosen threshold, the two defini-
tions would have been equivalent. Informally, Palm’s more
complex definition serves to rule out as assemblies certain
sets that are unions of cell assemblies and have very few
links between any pair of subassemblies.

Completion — basins of attraction, ignition, discriminability.
To my knowledge, everyone who has studied cell assemblies
has wanted cell assemblies to have the dynamic property
that a sufficiently large subset of the assembly has the
capacity to activate the entire assembly. I too wish my cell
assemblies, called webs, to have this property. However, 1
do not want to define webs by this dynamic property. I
want to understand exactly what kinds of sets define a web
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purely structurally as a set of neurons whose connections to
other neurons have certain properties. Then I want to find
out whether such sets have the desired dynamic property
that a sufficiently large subset of activated neurons from the
cell assembly can activate the entire cell assembly, making
some assumptions concerning the dynamics of the neural
net.

If we assume an activation dynamics model in which each
activated neuron fires twice (in two consecutive time
periods), then each of the six webs for the net in Figure 2
will be completed from an initially activated subset that is
missing any one of the neurons in the web. That is, for any
web with four neurons, any subset of three neurons suffices
to ignite the entire web, and for any web with five neurons,
any subset of four neurons will ignite the web. For each web
with four neurons, two initial sets of two neurons will ignite
the entire web and four initial sets of two neurons will not.
For the webs with five neurons, 45% of the subsets of three
neurons will ignite the entire web and 55% will not.

For example, consider web 4 consisting of five neurons:
1,2,3,6,and 9. If neurons 1, 3, and 9 are active at t = 0,
then, at t = 1, neurons 1 and 9 will activate neuron 6 and
neurons 3 and 9 will activate neuron 2. By the assumption
that activated neurons fire for two consecutive time steps
after activation, neurons 1, 3, and 9 will also fireatt = 1, so
the entire web is active at t = 1, and once the entire web is
active it remains active and no additional neurons become
active.

By contrast, if we take a different subset of three neurons
from web 4 to be active at t = 0, namely, neurons 1, 6, and
9, no new neurons will be activated at t = 1, and only
neuron 6 will be have its threshold exceeded at t = 1,
though neurons 1, 6, and 9 will all fire at t = 1. However, at
t = 2, only neuron 6 will fire and neurons 1 and 9 will cease
firing. At t = 3, no neurons will fire, because no neuron
received input from two or more active inlinks on either
t = 2ort = 3, so even the assumption that each neuron fires
twice cannot prevent activity from dying out when the
initially active subset is neurons 1, 6, and 9.

A basin of attraction for a web is the set of initial states
which will ultimately lead to activation of the web as an
equilibrium state, i.e., for which the web is an attractor. For
larger nets, the basins of attraction around webs are much
larger than in the previous example, but the problem of
determining the extent of these basins beyond the equilib-
rium state is largely beyond the scope of Wickelgren (1992).
A large basin of attraction around a web means that the idea
represented by that web has a large range of generalization
in terms of what sets of initially activated neurons will
converge upon it.

A set of webs all of which have large basins of attraction
has considerable coding redundancy that makes the ideas
represented by the webs highly discriminable from each
other. Associations from other ideas to such webs need not
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require learned synapses from the other idea to every
neuron in the target web, but only to a (perhaps small)
proper subset of the neurons in the target web. That is,
many subsets of the web have the often-desired Hebbian
completion property.

Toward a structural definition of Palm-assemblies. Palm’s
definition of cell assemblies prohibits persistent subsets that
neither ignite nor support each other. For example, the
following is a web by my definition, but not a Palm-assem-
bly: a web of 60 neurons composed of two nonoverlapping
subwebs of 30 neurons that have no links from neurons in
one subweb to those in the other subweb. Why would one
want to disallow such sets as cell assemblies, if they are
equilibrium states (invariant sets)? It is not clear to me that
one does want to disallow such sets, in the definition of cell
assemblies, and that is the main reason I did not exclude
them from being webs.

Such “composite webs” and other webs that are not
Palm-assemblies probably have much smaller basins of
attraction than Palm-assemblies, so they would have a
narrower range of generalization in the initial sets that could
converge on them. This probably makes composite webs
less adequate for representing ideas than webs that are Palm-
assemblies, because they would have a poorer degree of
completion in retrieval starting from noisy, incomplete
initial sets.

Of course, if this is so, then it is also less likely that such
a nonPalm-web would ever get recruited in the chunking
phase to represent an idea. In practice, I doubt that one
needs to worry about webs that are not Palm-assemblies,
because in neural net models of activation dynamics, I doubt
that such sets get recruited very often to represent ideas, and
this low frequency may well match what happens in real
cortical networks. Note that in my model of chunking,
recruiting a web to be a chunk idea requires that it be
converged upon in the chunking phase of learning. I don’t
see how one could assume any other method of recruiting a
web to represent an idea using innate binding links, except
divine intervention.

If it proves necessary to rule out these webs, I would
prefer a purely structural definition, one that required only
the connection matrix, not the connection matrix plus a
model of activation dynamics. My inclination would be to
place a requirement that all subsets of a certain size or
greater have some minimum number of links to neurons in
the complement subset of a web. We really want a// large
subsets of cell assemblies to have the capacity to ignite the
entire cell assembly during completion phases, not just the
persistent subsets. This ignition capacity depends on there
being a sufficient number of links to the complementary
subset. We also want large subsets to have a large number of
internal links, so that they will persist long enough to ignite
the entire web and thus be persistent. It isn’t just the
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persistent subsets that we want to be able to ignite the
remainder of the cell assembly, and to demand only a
support relation seems far too weak. What we want is for al
large subsets of assemblies both to be reasonably persistent
and to ignite the entire assembly. However, my working
assumption is that we ought not to incorporate these
dynamic properties into the definition of cell assemblies, but
rather define assemblies more simply in terms of minint and
maxext connectivity and then study completion (ignition)
in chunking and retrieval.

ICONIC, ELABORATIVE, ABSTRACTIVE, AND ELABSTRACTIVE
CODING

In iconic coding, any simultaneously active set of neurons
becomes a cell assembly, perhaps excluding a set that is a
subset of some previously learned cell assembly. Iconic
coding is possible for learned cell assemblies. However, as
noted previously, for any set of neurons to be capable of
forming a cell assembly without addition or subtraction of
any neurons, any pair of neurons in the set must have a high
probability of being synaptically connected or growing such
synapses as a result of Hebbian learning. This does not
appear reasonable for the cerebral cortex as a whole, but it
might be possible within a module.

In elaborative coding, the formation of a cell assembly
to represent an idea involves the addition of “binding”
neurons to the cell assembly that were not directly activated
by the sensory or associative input, but were strongly
interconnected to those that were. With elaborative coding,
any set of simultaneously active neurons in the same module
can be incorporated as a subset of its representing cell
assembly.

In abstractive coding, the representation of an input set
of simultaneously active neurons is by a subset of those
neurons, a subset of neurons that are sufficiently densely
interconnected {or which become so via learning) that they
form a cell assembly to represent the original input via this
abstractive process.

Elabstractive coding is both elaborative and abstractive,
so that the representative of an input set of activated
neurons involves both the loss of some neurons from the
original input set in the representing cell assembly and the
addition of some new “binding” neurons in the cell assembly
that were not in the input set.

It is not clear which of these types of coding Hebb
assumed for his cell assemblies. Neural net models have
often used iconic coding with fully or almost fully con-
nected neural nets {(Anderson et al., 1977; Hopfield, 1982;
Kohonen, 1972; Meunier, Yanai, & Amari, 1991; Palm,
1991). When iconic coding is used in conjunction with
Hebbian learning and considerably less than full connectiv-
ity, completion of learned sets (patterns) from subsets is
degraded, when the number of patterns to be learned
becomes a substantial fraction of the number of neurons in
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the net (Kohonen, Lehtio, & Rovamo, 1974; Kohonen et al.,
1977).

Web theory assumes elabstractive coding, since it would
be extraordinarily improbable for a randomly selected input
set to be a web. With web coding, the total number of
possible ideas is the number of webs, and the basin of
attraction around each web represents, in some sense, the
range of generalization of that idea. All active sets within
one basin of attraction are represented by the attractor web
of that basin.

Learned cell assemblies in fully connected nets also have
basins of attraction beyond the cell assembly itself, but, with
iconic coding, the net has the capability to define the
“central” attractor states of the basins to be identical to input
sets. In and of itself, this would appear to be an advantage
for learned versus innate assemblies, but it is my guess that
innate assemblies have an advantage in representational
capacity under conditions of sparse connectivity,

There is also an additional flexibility of learned assem-
blies which leads to an additional problem, namely, how
different an input set must be before it becomes a new
attractor cell assembly, rather than being coerced to the
most similar existing cell assembly. Innate cell assemblies
don’t have this problem, because their basins of attraction
are not modifiable. It is not clear whether this rigidity is an
advantage or a disadvantage.

CHUNK ASSEMBLIES ARE NEW WEBS NOT SET UNIONS

I share Hebb’s bias that a chunk idea be represented by a
new cell assembly, not merely the set union of the assem-
blies representing its constituents or the set union plus some
additional relational or binding neurons. Either set union
alternative assumes that the assemblies representing higher
order chunks are substantially larger than the assemblies
representing lower order chunks.

Though the human cerebral cortex is estimated to
contain on the order of 10'° neurons, constructing complex
cell assemblies to be unions of constituent assemblies is an
exponential growth process. So, for example, if the basic
ideas were represented by only 10 neurons, and thoughts
consisted of an attention span of four ideas, the second-level
ideas would be represented by 40 neurons. This ignores set
overlap, as we may until set sizes become a sizable fraction
of all of the neurons in the net. Third-level ideas that are
unions of second-level ideas would require 160=10 - 42
neurons. After reaching about level 15, this process requires
the set union to be represented by all of the neurons in the
human cerebral cortex.

If basic ideas are represented by s neurons, then the
largest sets of k™ level ideas would contain s * 4! neurons. As
discussed by Legéndy (1968), for cell assemblies to be
directly associated to each other, s=10 to 10* neurons for
each basic idea is a more reasonable guess than s=10 for
human cognitive minds. This limits human conceptual
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depth to about 10-13 levels using set unions to represent
more complex ideas.

Human capacity for idea representation must be limited
by total memory in any case, and it is possible that the
hierarchy of human ideas is no more than 10-15 levels deep,
though this seems unlikely. However, there are other
problems with pure set union models of thought representa-
tion.

I have never seen a way to avoid intractable associative
interference problems, if more complex ideas are represented
by set unions of their constituent ideas (Wickelgren, 1979).
It also seems difficult, perhaps impossible, to give even
approximately equal importance in a thought to constituent
ideas represented by vastly different numbers of neurons.

For these reasons, I believe a chunking process is needed
by overlapping set coding to maintain the set size for idea
representation within a reasonable range. Thoughts consist-
ing of a union of say four ideas are chunked to an idea
represented by a set of neurons no bigger on the average
than any of the sets representing the constituent ideas.

Though the chunk assembly may or may not overlap
more extensively with its constituent assemblies than with
randomly chosen assemblies, there must be sufficient
discriminability in the representation of any two cell
assemblies to permit different ideas to have different associa-
tions.

The strength of association from idea A to idea B depends
on the number and strength of apical synaptic links from
neurons in A to neurons in B. On average, larger cell
assemblies would have more potential input and output
synapses than smaller cell assemblies, and more familiar
(frequently used) ideas may be represented by slightly larger
cell assemblies. However, I think it is likely that the size of
cell assemblies is restricted to a modest range, e.g., less than
a factor of two in the number of neurons in the smallest
versus the largest cell assemblies, at least within a module.

Webs are especially suitable for representing ideas that are
derived by chunking a set of constituent ideas, with the
constituents also being chunks of sets of constituents, to an
arbitrary and variable depth. The web theory of the repre-
sentation of ideas places no limit on the hierarchical depth
of chunking beyond the total memory capacity of the
cerebral cortex, and maintaining about the same number of
neurons in a chunk regardless of depth makes economical
use of that memory capacity.

In the present model, the number of neurons in the web
representing an idea is assumed neither to increase nor
decrease with its hierarchical depth. In particular, a web
representing a set of constituent ideas is not the union of the
webs representing the constituent ideas, though the chunk
for the set may have greater overlap with any constituent
idea that is in the same module as the chunk idea than with
unrelated ideas in that module. All webs are roughly the
same size, irrespective of their position in any kind of
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semantic hierarchy. It is possible that more frequently used
ideas are represented by slightly larger webs, but I have not
pursued this possibility.

CELL ASSEMBLIES ARE LOCAL, NOT GLOBAL (DIFFUSE)
Braitenberg (1978) and Palm (1981) assume the existence of
diffuse (global) cell assemblies, that is, assemblies with
neurons from different modules possibly all over the cortex.
Contrariwise, I assume that all cell assemblies are local, that
is, confined to a single module, probably within a small
region of that module. I do not envisage there being any cell
assemblies that have neurons in more than one module.

Global cell assemblies are less plausible than local assem-
blies for at least three reasons. First, cell assemblies require
a dense interconnection of their neurons, and nearby
pyramidal neurons are known to have this property, while
distant pyramidal neurons are not, and some special innate
or learned long-distance guidance process would be required
1o achieve this.

Second, as is demonstrated in Wickelgren (1992), symme-
try in synaptic CONNections on a neuron-to-neuron basis is
very desirable (though not essential) in achieving cell
assemblies by my definition of cell assemblies {(which is very
nearly identical to Palm’s). As will be shown later, there is
a neurally plausible mechanism for achieving symmetry for
nearby neurons, but, once again, this mechanism is much
less plausible for neurons in different modules.

Third, the activation dynamic process of converging on
a cell assembly probably requires a number of time steps,
and the synaptic delay time between modules is substantially
larger than the synaptic delay time between nearby neurons
in the same module. Besides local assemblies having faster
convergence than global assemblies, there would be far
greater problems in achieving synchronous activation of the
neurons in a global assembly. Of course, synchronous
activation may be unnecessary, though I have found it to be
helpful in physiologically reasonable models of activation
dynamics.

I avoid global cell assemblies by assuming that sets of cell
assemblies, whether in the same or different modules, are
chunked into a single assembly that may be in the same
module as one or more of its constituents or may be in a
different module from any of its constituents.

CHUNKING BETWEEN AND WITHIN MODULES

The cerebral cortex can doubtless be decomposed into
modules, with the ideas in each module being in the same
functional (semantic) category. Braitenberg (1978) advanced
the elegant hypothesis that the human cerebral cortex is
divided into square root compartments — that is, the 10'°
cortical neurons are partitioned into 10° modules with 10’
neurons in each. Perhaps it is 10* modules with 10° neurons
in each or 10> modules with 107 neurons in each or 10?
modules with 10° neurons in each. In any case, the number
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of modules is not likely to be larger than the number of
neurons in the average module.

I assume that there are about 10’ neurons in each cell
assembly and that the number of cell assemblies is approxi-
mately the same as the number of neurons (between .1 and
10 times as many). Assuming 10'° neurons in the cerebral
cortex, this means that each neuron is a member of 100-
10,000 different cell assemblies.

It is unlikely that cortical modules connect equally to all
other cortical modules. More likely, the average module
sends connections to between .1 and .001 of all the other
modules.

I like to organize these modules into the following
categories: sensory feature modules, motor feature modules,
segment modules, object modules, concept modules,
proposition modules, and procedure modules. A set of cell
assemblies that represents edges and slits of different orienta-
tion, spatial frequency, and position might constitute a
single visual feature module.

My current hypothesis is that it makes little difference to
the chunking process whether the constituent assemblies
associated to a chunk assembly come from the same or
different modules. However, consideration of this question
raises a number of difficult issues which I have not resolved:
What is the definition of a module? How big are modules?
Are modules overlapping or nonoverlapping? Can more
than a single idea be active in a module at one time, and, if
so, under what circumstances and what are the consequences
of this? Do different modules operate synchronously or
asynchronously?

I am unsure whether there is a difference berween
chunking in which the chunk is in a different module from
all of its constituents (remote chunking) and chunking in
which the chunk is in the same module as one or more of its
constituents (local chunking). Plausible examples of remote
chunking are: a set of visual feature ideas form the constitu-
ents of a letter chunk or a set of words being constituents of
a concept. It is not likely that letters are represented in the
same module as visual features or that concepts are repre-
sented in the same module as words. Plausible examples of
local chunking abound in semantic memory: “Commutative
group” is a concept that is likely to be in the same module as
1ts constituent concept “group,” though perhaps in a differ-
ent module from its constituent concept “commutative.”

Although one can make the structural distinction as to
whether or not a chunk is in the same module as any of its
constituents, it is not clear what difference that makes to
thinking, Pyramidal neurons make local apical and perhaps
basal (associative) synapses as well as remote apical synapses,
so local apical synapses can associate chunks to constituents
in the same module in the same way as remote apical
synapses associate chunks to remote constituents. The model
for the dynamics of thinking presented in Wickelgren (1992)
makes no distinction between these cases.

Wickelgren

This chapter contains material from W. Wickelgren’s article in
Concepts in Neuroscience (1992) which is reproduced here with
permission of World Scientific Publishing Co.

Send correspondence to Wayne Wickelgren, Department of
Psychology, Columbia University, New York NY 10027.
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Sommaire

Ceci est une introduction a Wickelgren (1992), décrivant une
théorie de la représentation d'une idée et de 1'apprentissage
dans le cortex cérébral et la formulation des sept propriétés
de Hebb (1949) sur les ensembles de cellules qui ont joué un
role prépondérant de la représentation des idées, de
I'apprentissage et de la pensée dans les modéles de réseaux
neuronaux.

Les idées sont représentées dans le cortex cérébral par des
entrelacs (ensembles des cellules innées), utilisant un codage
peu dense, avec un enchalnement inné, rare si ce n'est pas
inexistant. L'excitation d'un entrelacs pour représenter une
nouvelle idée est désignée par le terme de composition en
modules compilés. Les liens innés qui lient les neurones
d'un entrelacs sont des synapses dendritiques basales.
L'apprentissage modifie les synapses dendritiques apicales
qui associent des neurones d'un entrelacs a des neurones
d'un autre entrelacs.

Le minint (ou connectivité interne minimale) d'un
groupe de neurones est le nombre minimal de liens innés
que n'importe lequel des neurones du groupe regoit de la
part d'autres neurones du groupe. Le maxext (ou connectivi-
té externe maximale) d'un groupe de neurones est le nombre
maximal de liens innés que n'importe lequel des neurones se
trouvant hors du groupe regoit d'autres neurones se trou-
vant dans le groupe. Un entrelacs est un groupe de neurones
dont le minint est plus grand que son maxext. Un entrelacs
assume le role d'attracteur dans un systéme dynamique
composé d'un réseau neuronal  lien binaire ayant un seuil
de fonction d'activation et dont le seuil de consigne se
trouve entre le maxext et le minint.

La pensée comprend quatre phases: deux phases principa-
les - le repérage d'idées familiéres et la composition en
modules d'idées nouvelles, et deux phases sous-jacentes a
chacune soit: les processus de sélection et
d'accomplissement. Dans la phase de sélection-repérage, les
synapses apicales d'apprentissage sélectionnent un premier
ensemble de neurones actifs dans un module. Dans la phase
de repérage et d'accomplissement, 'activation converge sur
un ensemble de terminaison asymptotique de neurones actifs
qui, idéalement, constitue l'entrelacs commun ayant la plus
grande similarité avec le premier ensemble. Si la phase de
repérage-accomplissement échoue, la phase de sélection-
composition en modules entre en jeu et toutes les synapses
apicales (non pas seulement celles qui ont été apprises) sont
utilisées pour sélectionner un ensemble premier pour la
phase d'accomplissement et de composition en modules.
Dans la phase de composition en modules-accomplissement,
le module converge sur un ensemble de terminaison asymp-
totique de neurones qui, idéalement, constitue un nouvel
entrelacs représentant |'ensemble de toutes les composantes
des entrelacs qui ont produit I'entrée apicale au module au
cours de la phase de sélection. Pour faire cela, dans la phase
d'accomplissement et de composition en modules, le
conditionnement de la contiguité hebbienne, renforce toutes
les entrées des synapses actives apicales vers les neurones
dans I'entrelacs afin que des sous-ensembles assez grands de
ces synapses apicales apprises puissent, 2 l'avenir, étre
capable de sélectionner un premier ensemble pour la
recherche, ce qui réactivera le méme entrelacs lors de la
phase de repérage et d'accomplissement.
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