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A Convex Optimization Approach to Modeling

Consumer Heterogeneity in Conjoint Estimation1

Abstract

We propose and test a new approach for modeling consumer heterogeneity in con-

joint estimation based on convex optimization and statistical machine learning. We

develop methods both for metric and choice data. Like hierarchical Bayes (HB), our

methods shrink individual-level partworth estimates towards a population mean.

However, while HB samples from a posterior distribution that is influenced by ex-

ogenous parameters (the parameters of the second-stage priors), we minimize a

convex loss function that depends only on endogenous parameters. As a result,

the amounts of shrinkage differ between the two approaches, leading to different

estimation accuracies. In our comparisons based on simulations as well as empirical

data sets, the new approach overall outperforms standard HB (i.e., with relatively

diffuse second-stage priors) both with metric and choice data.

Keywords: Bayesian Analysis, Data Mining, Econometric Models, Estimation and

Other Statistical Techniques, Hierarchical Bayes Analysis, Marketing Research, Regres-

sion and Other Statistical Techniques.
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1 Introduction

A number of optimization-based approaches to conjoint estimation have been proposed

in the past. Examples include methods based on linear programming (Srinivasan and

Shocker 1973; Srinivasan 1998) or statistical machine learning (Cui and Curry 2005;

Evgeniou et al., 2005a), and polyhedral methods (Toubia et al., 2003; Toubia et al., 2004).

While these optimization approaches have proven fruitful, they have been exclusively

limited to individual level estimation and have not modeled heterogeneity.2 They have

therefore underperformed relative to methods such as hierarchical Bayes (HB) (Toubia

et al., 2003; Toubia et al., 2004; Evgeniou et al., 2005a).

In this paper we propose and test a new approach to modeling consumer heterogene-

ity in both metric and choice-based conjoint estimation using convex optimization and

statistical machine learning. We compare our approach with hierarchical Bayes (HB)

both theoretically and empirically. Both our methods and HB shrink individual-level

partworth estimates towards a population mean (in HB shrinkage is done towards the

mean of the first-stage prior on the partworths). However, while HB samples from a pos-

terior distribution that is influenced by a set of exogenous parameters (the parameters

of the second stage priors), the proposed approach minimizes a convex loss function that

is influenced by a parameter set endogenously (determined from the calibration data)

using cross-validation. As a result, the amounts of shrinkage differ between HB and our

2The only exception of which we are aware is an add-hoc heuristic briefly discussed by Toubia et al.
(2004), which is impractical because it requires the use of out-of-sample data. In contrast, our goal is to
develop a general theoretical framework for modeling heterogeneity.

3



approach. Moreover, we show that the second-stage prior parameters in HB could in

theory be set to give rise to HB estimates identical to our estimates, or possibly of higher

performance. However, this would require a method for systematically and optimally

selecting the second-stage prior parameters in HB. Such selection raises both theoretical

and practical issues which we discuss.

We use simulations as well as two empirical data sets (one for ratings and one for

choice) to compare the performance of our approach to that of a standard HB imple-

mentation with relatively diffuse second-stage priors (Allenby and Rossi 1999; Rossi and

Allenby 2003). The proposed approach overall outperforms HB with both metric and

choice data. We empirically show that the differences in performance between our ap-

proach and HB may be linked to differences in the amounts of shrinkage, as suggested by

our theoretical comparisons. Moreover, we provide evidence that selecting the parame-

ters of the second-stage priors in HB endogenously (e.g., using cross-validation as in the

proposed approach) has the potential to greatly improve the predictive performance of

HB.

Our approach builds upon and combines ideas from four literatures: statistical learn-

ing theory and kernel methods, convex optimization theory, hierarchical Bayes estima-

tion, and the “learning to learn” literature in machine learning. “Learning to learn”

methods were initially developed mainly using neural networks (Baxter 1997; Caruana

1997; Thrun and Pratt 1997) and recently studied using kernel methods (Jebara 2004;

Ando and Zhang 2005; Evgeniou et al., 2005b; Micchelli and Pontil 2005). The central
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problem addressed by these methods is that of simultaneously estimating regression func-

tions from many different but related datasets. Our work is novel first by its focus on

conjoint estimation, second by the particular loss functions and the convex optimization

method used to minimize them, and third by the theoretical and empirical comparison

with HB.

The paper is organized as follows. We present our approach for metric as well as

choice-based conjoint analysis in Section 2. In Section 3, we discuss the theoretical

similarities and differences between our approach and HB. We then empirically compare

the accuracy and predictive performance of our methods with HB using simulations in

Section 4 and two (one for ratings and one for choice) field datasets in Section 5. In

Section 6 we illustrate empirically the theoretical differences between our approach and

HB outlined in Section 3, and we conclude in Section 7.

2 Presentation of the Approach

For ease of exposition, we describe the metric version of our approach first and the choice

version second.
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2.1 Metric Conjoint Estimation Method

2.1.1 Setup and notation

We assume I consumers (indexed by i ∈ {1, 2, . . . , I}) each rating J profiles (with J

possibly different across respondents), represented by row vectors xij, j ∈ {1, 2, . . . , J}.

We assume that the number of partworths is p, i.e., each vector xij has p columns. We note

with Xi the J × p design matrix for respondent i (each row of this matrix corresponds to

one profile); with wi the p×1 column vector of the partworths for respondent i; and with

Yi the J×1 column vector containing the ratings given by respondent i. For simplicity we

make the standard assumption of additive utility functions: the utility of the profile xij

for respondent i is Ui(xij) = xijwi+εij. It is important to note that the proposed method

can be extended to include large numbers of interactions between attributes, using for

example the kernel approach (Wahba 1990; Vapnik 1998) introduced to marketing by Cui

and Curry (2005) and Evgeniou et al. (2005a). We discuss this in details in the online

technical appendix. In agreement with previous research on individual level conjoint

estimation (Cui and Curry, 2005; Evgeniou et al., 2005a), the presence of interactions in

the model specification enhances the relative performance of our methods compared to

HB.
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2.1.2 Individual-level partworth estimation using statistical machine learn-

ing: A brief review

We build upon a particular individual-level statistical estimation method known as Ridge

Regression (RR), or Regularization Networks. This individual-level method (and various

extensions, for example to the estimation of general nonlinear functions) has been exten-

sively studied in the statistics and machine learning literatures (see for example Tikhonov

and Arsenin 1977; Wahba 1990; Girosi et al., 1995; Vapnik 1998; Hastie et al., 2003, and

references therein), and more recently in the theoretical mathematics literature (see for

example Cucker and Smale 2002).

RR estimates individual-level partworths for respondent i by minimizing a convex loss

function with respect to wi. This loss function is parameterized by a positive weight γ

that is typically set using cross-validation:

Problem 2.1

min
wi

1

γ

J∑
j=1

(yij − xijwi)
2 + ‖wi‖2 (1)

γ set by cross− validation

The loss function 1
γ

∑J
j=1 (yij − xijwi)

2 + ‖wi‖2 is composed of two parts. The first,

∑J
j=1 (yij − xijwi)

2, measures the fit between the estimated utilities and the observed

ratings. For a fixed γ, this may be interpreted as the log of the likelihood corresponding
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to a normal error term with mean 0 and variance γ (Hastie et al., 2003). The second

part, w>
i wi = ‖wi‖2, controls the shrinkage (or complexity) of the partworth solution wi

(Vapnik 1998; Cucker and Smale 2002; Hastie et al., 2003). The term “shrinkage” (Hastie

et al., 2003) comes from the fact that we effectively “shrink” the partworths towards zero

by penalizing deviations from zero (‖wi‖2 may be viewed as the distance between wi and

0). The term ”complexity control” (Vapnik 1998) comes from the fact that this essentially

limits the set of possible estimates, making this set less complex (e.g., smaller). The

positive parameter γ defines the trade-off between fit and shrinkage, and is typically set

using cross-validation (Wahba 1990; Efron and Tibshirani 1993; Shao 1993; Vapnik 1998;

Hastie et al., 2003). We will provide a detailed description of cross-validation below, but

let us already stress that cross-validation does not use any out-of-sample data.

We note that the RR loss function (1) can be generalized by replacing the square

error (yij − xijwi)
2 with other error functions, hence retrieving other individual-based

estimation methods – the loss function remains convex as long as the error function is

convex. For example, for choice data we will use below the logistic error − log( exijq∗wiPQ
q=1 exijqwi

)

(where xijq∗ represents the profile chosen by respondent i in choice j which consists of

Q alternatives xijq, q ∈ {1, . . . , Q}). Using the hinge loss θ(yij − xijwi)(yij − xijwi)

(where θ(x) = 1 if x > 0, and 0 otherwise) leads to the widely used method of Support

Vector Machines (Vapnik 1998), introduced to marketing by Cui and Curry (2005) and

Evgeniou et al. (2005a). Finally, note that the solution when γ → 0 (hence removing the

complexity control ‖wi‖2) converges to the OLS solution wi = (X>
i Xi)

−1XT
i Yi, where

8



the pseudo-inverse is used instead of the inverse when (X>
i Xi) is not invertible (Hastie

et al., 2003).

2.1.3 Modeling heterogeneity: formulation of the loss function

We now extend the RR loss function to model consumer heterogeneity. Individual-level

RR estimation does not pool information across respondents, and involves minimizing a

separate loss function for each respondent. Inspired by HB (Lenk et al., 1996; Allenby and

Rossi 1999; Rossi and Allenby 2003; Rossi et al., 2005), we propose modeling heterogene-

ity and pooling information across respondents by shrinking the individual partworths

towards the population mean.

In particular, we consider the following convex optimization problem (if D is not

invertible, we replace D−1 with the pseudo-inverse of D – see Appendix A for details):

min
{wi},w0,D

1
γ

∑I
i=1

∑J
j=1 (yij − xijwi)

2 +
∑I

i=1(wi −w0)>D−1(wi −w0) (2)

subject to D is a positive semidefinite matrix scaled to have trace 1

Let us note that this is not the complete method proposed, which includes the estimation

of the positive weight γ endogenously and is summarized in Section 2.1.5, Problem 2.2.

Like the RR loss function (1), this loss function consists of two parts. The first part

reflects fit and the second part shrinkage (complexity control). Unlike the individual-level

RR loss function (1), the loss function (2) involves solving a single convex optimization

problem and estimating all the partworths jointly. Moreover, instead of shrinking the
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partworths towards 0 as in individual-level RR, it shrinks them towards a vector w0 (as

will be seen below, the value of w0 that minimizes the loss function is the the population

mean) through (wi−w0)
>D−1(wi−w0). Matrix D is related to the covariance matrix of

the partworths (see Appendix A for details on the estimation of D based on calibration

data), such that the shrinkage penalty is greater for partworths that are distant from

the mean w0 along directions in which there is less variation across respondents. The

parameter γ operates the same function as in individual-level RR, namely, achieving a

proper trade off between fit and shrinkage. Higher values of γ result in more homogenous

estimates (i.e., more shrinkage). Notice that we scale D by fixing its trace, keeping the

problem convex – otherwise the optimal solution would be to simply set the elements of

D to ∞ and to only maximize fit.

We consider next the minimization of the loss function (2) given γ, and in Section 2.1.5

the selection of γ using cross-validation. The complete method proposed is summarized

in Section 2.1.5, Problem 2.2.

2.1.4 Modeling heterogeneity: minimization of the loss function given γ

For a fixed γ, the loss function (2) is jointly convex with respect to the wi’s, w0, and

matrix D.3 Hence one can use any convex optimization method (Boyd and Vandenberghe,

2004) to minimize it.

We choose to solve the first order conditions directly, which reveals some similarities

with HB that will be discussed in Section 3. For a given value of γ we use the following

3This can be seen, for example, from the Hessian which is positive semidefinite.
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iterative method to find the global optimal solution, initializing D to a random positive

definite matrix:

1. Solve the first-order conditions for {wi} and w0 given γ and D.

2. Solve the first order conditions for D given {wi}, w0, and γ.

In our empirical applications, convergence to a set of parameters ({wi}, w0, D) that

minimizes the loss function (2) (i.e., solves the entire system of first-order conditions) for

a given γ was always achieved in fewer than 20 iterations.

We show in Appendix A how to solve the above two steps in closed form. We show

that the individual partworths in step 1 (for fixed γ and D – replacing inverses with

pseudo-inverses if D is not invertible, as described in Appendix A) can be written as:

wi = (X>
i Xi + γD−1)−1X>

i Yi + (X>
i Xi + γD−1)−1γD−1w0 (3)

where the optimal w0 is shown to be the population mean of the partworths, that is,

w0 = 1
I

∑
i wi. We will see in Section 3 how this relates to the mean of the conditional

posterior in HB.

2.1.5 Modeling heterogeneity: setting γ using cross-validation

We now describe the estimation of the trade off parameter γ. Selecting this parameter by

minimizing the loss function (2) would be inappropriate as it would lead to γ = ∞ and all

other parameters equal to 0. Instead, we select this parameter like in individual-level RR,
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by minimizing the cross-validation error. This standard technique has been empirically

validated, and its theoretical properties have been extensively studied (see for example

Wahba 1990; Efron and Tibshirani 1993; Shao 1993; Vapnik 1998; Hastie et al., 2003,

and references therein). It is important to stress that cross-validation does not require

any data beyond the calibration data. In particular, we measure the cross-validation error

corresponding to a given parameter γ as follows:

1. Set Cross-Validation(γ) = 0.

2. For k = 1 to J :

(a) Consider the subset of the calibration data

Z(−k) =
⋃I

i=1{xi1, . . .xi(k−1),xi(k+1), . . .xiJ}. That is, consider the subset of

the calibration data that consists of all questions except the kth one for each

of the I respondents.4

(b) Using only this subset of the calibration data Z(−k), estimate the individual

partworths {w(−k)
i }, population mean w

(−k)
0 , and matrix D(−k) for the given γ

using the method described in the previous section.

(c) Using the estimated partworths {w(−k)
i }, compute the ratings on the I ques-

tions (one per respondent) left out from the calibration data {x1k,x2k, . . . ,xIk}

and let CV (k) be the sum of squared differences between the estimated and

4Variations exist. For example one can remove only one question in total from all I respondents and
iterate I × J times instead of J – leading to the so-called leave-one-out cross-validation error – or more
than one questions per respondent. Our particular choice was driven by computational simplicity.
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observed ratings for these I calibration questions. (Note that any other per-

formance metric may be used.)

(d) Set Cross-Validation(γ) = Cross-Validation(γ) + CV (k).

We simply select the parameter γ that minimizes the cross-validation error by using a

line search.

The cross-validation error is, effectively, a “simulation” of the out-of-sample error

without using any out-of-sample data. We refer the reader to the above references for de-

tails regarding its theoretical properties, such as its consistency for parameter selection.5

We will later confirm empirically that selecting γ using cross-validation leads to values

very close to optimal (i.e., maximizing estimation accuracy).

To summarize, the proposed method, which we label as RR-Het, is as follows:6

Problem 2.2

γ∗ = argminγ Cross− V alidation(γ)

({w∗
i },w∗

0, D
∗) = argmin{wi},w0,D

1
γ∗

∑I
i=1

∑J
j=1 (yij − xijwi)

2 +
∑I

i=1(wi −w0)>D−1(wi −w0)

subject to D is a positive semidefinite matrix scaled to have trace 1

5We say that parameter selection is consistent if the probability of selecting the parameter with
optimal out-of-sample performance converges to 1 as the amount of calibration data increases.

6A matlab version of the code, for the metric and choice formats, is available from the authors.
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It is important to note that if γ were set exogenously, RR-Het would be equivalent to

maximum likelihood estimation (MLE), with the likelihood function proportional to the

inverse of the exponential of the loss function (2) – multiplied by an indicator function

that would enforce the constraints on D. However, because γ is set using cross-validation

and the overall estimation method is given by Problem 2.2 and not by the minimization

of the loss function (2), the comparison of RR-Het with MLE is not straightforward.

2.2 Choice-Based Conjoint Estimation Method

We now show how our approach may be used with choice data. Choice-based conjoint

analysis has become very popular both among practitioners and academics (Carson et

al., 1994; Louviere, Hensher, and Swait 2000; Hauser and Toubia 2005). As discussed

above, our choice-based method is developed by replacing the square error loss in RR-Het

with the logistic error, hence we call the proposed method LOG-Het. In particular, with

choice data, the optimization problem solved to estimate the partworths becomes:

Problem 2.3

γ∗ = argminγ Cross− V alidation(γ)

({w∗
i },w∗

0, D
∗) = argmin{wi},w0,D

− 1
γ∗

I∑

i=1

J∑

j=1

log
exijq∗wi

∑Q
q=1 exijqwi

+
I∑

i=1

(wi −w0)>D−1(wi −w0)

subject to D is a positive semidefinite matrix scaled to have trace 1
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where xijq is the qth alternative presented to respondent i in question j, and xijq∗ is the

chosen alternative. (Question j for respondent i consists of choosing among the Q profiles

(xijq){q=1···Q}). The parameter J represents the number of choice questions and Q the

number of alternatives per question (they do not need to be constant across respondents

or questions). Cross-validation for estimating parameter γ is implemented as for RR-Het,

with the difference that the cross-validation performance in step (2c) is now measured

by the logistic error − log
(
exijq∗wi/

∑Q
q=1 exijqwi

)
on the left out questions. The other

major difference from RR-Het is that the minimization of the loss function given γ and

D may no longer be performed by solving the first order conditions directly. Instead,

we use Newton’s method (see Appendix B for details and references to other possible

estimation methods). As a result, unlike RR-Het, we do not have closed-form solutions

for the conditional partworth estimates for LOG-Het.

In the previous section, we have presented an approach for modeling consumer het-

erogeneity in conjoint estimation, and shown how this approach may be used with both

metric and choice data. In the following section, we highlight some theoretical similarities

and differences between our approach and hierarchical Bayes.
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3 Theoretical Similarities and Differences with HB

We consider the following hierarchical Bayes model for metric data (we assume a standard

diffuse prior on w0, symbolically equivalent to w0 ∼ N(0, V −1) with V = 0):

Likelihood: yij = xijwi + εij

εij ∼ N(0, σ2)
First-stage prior: wi ∼ N(w0, D)

Second-stage priors: σ2 ∼ IG(r0/2, s0/2)
D−1 ∼ W (η0, η0 ×∆0)

We consider the following HB model for choice data (again assuming a standard diffuse

prior on w0):

Likelihood: Prob(xijq∗ is chosen) = exijq∗wiPQ
q=1 exijqwi

First-stage prior: wi ∼ N(w0, D)
Second-stage prior: D−1 ∼ W (η0, η0 ×∆0)

Our standard HB implementations, throughout the rest of the paper, follow the liter-

ature and use fairly diffuse second-stage priors (see for example Allenby and Rossi 1999;

Rossi and Allenby 2003): η0=p+3, ∆0 = I for metric and choice HB, and r0=s0=1 for

metric HB.

Table 1 summarizes some key characteristics of HB and the proposed approach.
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HB RR-Het and LOG-Het
Shrinks towards the mean of the first-stage prior Shrink towards the population mean

Samples from posterior distribution Minimize a convex loss function
Posterior distribution is a function of Loss function is a function of
parameters of the second-stage priors the trade-off parameter γ

The parameters of the second-stage priors γ is determined
are set exogenously endogenously using cross-validation

Table 1: Some characteristics of HB versus RR-Het and LOG-Het.

3.1 Similarities

The main similarity between the proposed approach and HB is that they both shrink

individual estimates towards a population mean. With metric data, the existence of

closed form expressions enables us to clearly identify the individual-specific estimates, the

population means towards which these estimates are shrunk, and the shrinkage weights.

Such explicit comparisons are not readily available with choice data.

In particular, the mean of the conditional posterior distribution of wi in metric HB

is (see Lenk et al., 1996 for details):7

E(wi|w0, σ,D, data) = (X>
i Xi + σ2D−1)−1X>

i Yi + (X>
i Xi + σ2D−1)−1(σ2D−1w0)

Compare this expression to the minimizers of the RR-Het loss function (2) given γ

7In Bayesian decision theory, the optimal point estimate corresponding to a quadratic loss function
(or to the loss function used to compute RMSE) is the mean of the posterior (Chaloner and Verdinelli
1995; Rossi and Allenby 2003).
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and D (see Equation (3)):

wi = (X>
i Xi + γD−1)−1X>

i Yi + (X>
i Xi + γD−1)−1(γD−1w0)

These expressions may also be written as follows (if the matrix Xi is not full rank, for

the sake of this argument use the pseudo-inverse instead of the inverse):

HB:

E(wi|w0, σ,D, data) = [(X>
i Xi + σ2D−1)−1(X>

i Xi)]((X
>
i Xi)

−1X>
i Yi)+

+[(X>
i Xi + σ2D−1)−1(σ2D−1)]w0

= α
(i)
HB((X>

i Xi)
−1X>

i Yi) + (I − α
(i)
HB)w0

RR-Het:

wi = [(X>
i Xi + γD−1)−1(X>

i Xi)]((X
>
i Xi)

−1X>
i Yi) + [(X>

i Xi + γD−1)−1(γD−1)]w0

= α
(i)
RR((X>

i Xi)
−1X>

i Yi) + (I − α
(i)
RR)w0

where α
(i)
HB = (X>

i Xi + σ2D−1)−1(X>
i Xi) and α

(i)
RR = (X>

i Xi + γD−1)−1(X>
i Xi). These

expressions show clearly that the mean of the conditional posterior in HB and the point

estimate in RR-Het are both weighted averages between the individual-level OLS estimate

(X>
i Xi)

−1X>
i Yi and a population mean (in RR-Het w0 is equal to the population mean;
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in HB w0 is the mean of the first-stage prior on the partworths, and if we assume a diffuse

prior on w0 then the mean of the conditional posterior distribution on w0 is the population

mean). The individual-specific weights (i.e., amounts of shrinkage) are a function of

σ2D−1 in HB and of γD−1 in RR-Het. The mean of the full posterior distribution of wi

in HB is also a weighted average between the OLS estimate and a population mean, the

weights being given by integrating α
(i)
HB over the posterior distributions of σ and D.

Note that if the parameters η0, ∆0, r0, and s0 in HB were selected to yield a strong

prior on σ2 and D around the values of γ and D obtained by RR-Het estimation, the

posterior means provided by HB would converge to the point estimates provided by RR-

Het (α
(i)
HB → α

(i)
RR). Hence in theory the set of point estimates achievable by RR-Het

is a subset of those achievable by HB by varying the parameters of the second-stage

priors. Therefore, the maximum potential performance achievable by HB is at least that

achievable by RR-Het. However this does not guarantee higher performance in practice.

In particular, any poorer performance observed for HB can be attributed to a suboptimal

selection of the second-stage prior parameters. We will suggest later that endogenizing the

selection of these parameters, although it raises a number of issues that we will discuss,

has the potential to improve performance.

3.2 Differences

Two important differences emerge from Table 1. First, HB samples from a posterior

distribution while RR-Het and LOG-Het minimize a loss function and hence only produce
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point estimates. Confidence intervals and hypothesis testing are also possible with RR-

Het and LOG-Het, using for example bootstrapping (Efron and Tibshirani 1993 and

references therein). See the online technical appendix for a brief review and an example.

Second, while the posterior in HB is a function of a set of exogenous parameters

(the parameters of the second-stage priors, η0, ∆0, r0, s0 in the case of metric data and

η0 and ∆0 in the case of choice data), the loss functions in RR-Het and LOG-Het are

a function of an endogenous parameter γ (determined from the calibration data using

cross-validation). The difference between the way the second-stage priors are set in HB

and γ is set in RR-Het and LOG-Het translates into differences in the way the amount

of shrinkage is determined, as will be confirmed empirically in Section 6. For example,

in the case of metric data, shrinkage is a function of σ2D−1 in HB and γD−1 in RR-Het.

In HB, the posterior distributions on σ and D are influenced both by the data and by

the second-stage priors σ2 ∼ IG(r0/2, s0/2) and D−1 ∼ W (η0, η0 ×∆0). The exogenous

parameters η0, ∆0, r0, and s0 are often selected to induce fairly diffuse and uninformative

second-stage priors. Other values could yield different second-stage priors, resulting in

different amounts of shrinkage. For example, strong priors around the ”true” values of

σ and D would clearly lead to maximal estimation accuracy. While such an extreme

case may be studied hypothetically using simulations, in field settings where the truth

is unknown, one typically has to revert to fairly diffuse second stage priors. On the

other hand, in RR-Het (respectively LOG-Het), the amount of shrinkage is a function

of endogeneous parameters determined by the minimization of the loss function and by
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cross-validation: D and γ are obtained by solving Problem 2.2 (respectively Problem

2.3).

It is important to note that this second difference is not intrinsic, and that the second-

stage prior parameters in HB could be set in practice endogenously, for example using

cross-validation as well. The systematic incorporation of cross-validation in a Bayesian

framework raises several issues and is beyond the scope of this paper. We discuss these is-

sues briefly in the next section and demonstrate the potential of this approach empirically

in Section 4.

3.3 Using cross-validation to select the parameters of the second-

stage priors in HB

Our empirical comparisons will suggest that our approach usually significantly outper-

forms a standard HB implementation (with fairly diffuse second-stage priors). However

such comparison may be perceived as unfair because the posterior in HB is a function

of exogenous parameters while the loss function in our approach is a function of an en-

dogenous parameter set using cross-validation. 8 It seems reasonable to hypothesize that

selecting the parameters of the second-stage priors in HB using cross-validation may yield

a performance level comparable to RR-Het and LOG-Het. For example, we have shown

above that the set of point estimates achievable by RR-Het by changing γ is a subset of

those achievable by HB by changing η0, ∆0, r0, and s0. However, let us first note that the

8Note however that our approach does not use any additional data compared to HB: all methods only
use the calibration data and use the same calibration data.
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fact that the set of point estimates achievable by RR-Het is a subset of those achievable

by HB does not guarantee that endogenously selecting the second-stage priors will im-

prove performance relative to RR-Het. For example, because the number of parameters

of the second-stage priors in HB is much larger than the number of parameters set using

cross-validation in RR-Het or LOG-Het (p2 + 3 versus 1 in the metric case and p2 + 1

versus 1 in the choice case), there is a risk of overfitting.

Moreover, at least three potential issues arise regarding the use of cross-validation to

select the parameters of the second-stage priors in HB.

First, Bayesian analysis obeys the likelihood principle (Fisher 1922; Rossi and Allenby

2003; Allenby, Otter and Liu, 2006) which states that all the information relevant for

inference is contained in the likelihood function. It is not clear whether cross-validation

satisfies this principle, as it appears that the data are used both to set some parameters

and to make some inference based on these parameters. It may be possible to construct an

alternative HB specification that would include cross-validation, i.e., cross-validation and

estimation would be part of the same comprehensive model and the likelihood principle

would be satisfied (to the best of our knowledge this is an open problem). At this point

we are agnostic on whether cross-validation can be justified in a Bayesian framework. Our

goal in this paper is only to explore whether it has the potential to improve the predictive

performance of HB, not to justify its use theoretically which we leave for future research.

Second, a practical issue arises due to the number of parameters of the second-stage

priors in HB. Indeed, in the case of metric data the number of parameters is p2 + 3, and
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in the case of choice data it is p2 + 1. Setting the values of all these parameters directly

using cross-validation in a hierarchical Bayes framework would be intractable in most

practical applications given the set of candidate values.

Third, another practical issue arises from the fact that the computation of the cross-

validation error associated with each set of values of the second stage prior parameters

usually requires sampling from the corresponding posterior distribution in order to obtain

point estimates. This is again a computational issue given the set of candidate parameter

values.

We hope that future research will address these two practical issues. In this paper we

are able to assess the potential of using cross-validation in Bayesian estimation by consid-

ering a simpler, non-hierarchical, metric model with only one hyperparameter (therefore

avoiding the first practical issue) and by taking advantage of the existence of closed form

expressions for the posterior means in the metric case (therefore avoiding the second

practical issue).

In particular, we first run metric HB with standard second-stage priors in order to

obtain initial point estimates for w0 and D, and then consider the following simple (non

hierarchical) model:

Likelihood: yij = xijwi + εij

εij ∼ N(0, σ2
0)

First-stage prior: wi ∼ N(w0, D)
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where σ0 is a parameter set using cross-validation. This specification is a special case of

the metric HB specification in which ∆0 = D, η0 →∞, s0 = r0 × σ0, and r0 →∞. The

full posterior mean of wi has the same expression as the conditional mean in the general

model:

E(wi|data) = (X>
i Xi + σ2

0D
−1)−1X>

i Yi + (X>
i Xi + σ2

0D
−1)−1(σ2

0D
−1w0)

Because the full posterior mean of wi is given in closed form, there is no need to sample

from the posterior in order to obtain point estimates, and the cross-validation error

associated with a given value of σ0 may be estimated conveniently fast. Note that varying

σ0 directly varies the amount of shrinkage characterized by σ2
0D

−1. Note also that unlike

in RR-Het, w0 and D are fixed here. We label this model Metric Bayes-CV.9

Unfortunately, such closed-form expressions are only available for metric data and not

for choice data. Hence we are unable to test an equivalent model for choice (note that

the second practical problem would remain even if we were able to address the first).

In the previous section, we have shown that although both our approach and hier-

archical Bayes shrink individual-level estimates towards a population mean, the amount

of shrinkage is partly exogenous in HB while it is completely endogenous in our ap-

proach. Endogenizing the amount of shrinkage in HB (by endogenizing the selection of

9This model is in the spirit of the empirical Bayes approach of Rossi and Allenby (1993), to the extent
that w0 and D are based on a preliminary analysis of the data. However Rossi and Allenby do not use
cross-validation.
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the second-stage prior parameters) raises some theoretical and practical issues. Despite

these issues, we explore the potential of such modification with a simple, non-hierarchical,

metric Bayesian model. In the following two sections, we compare the estimation accuracy

and predictive performance of our approach to that of hierarchical Bayes.

4 Simulation Experiments

We first compare our approach with HB both for metric and choice data using simulations.

We compare the methods using two field data sets (one for ratings and one for choice) in

Section 5.

4.1 Metric-Based Simulations

We compare RR-Het to the following methods:

1. A standard HB implementation using typical values for the parameters of the

second-stage priors (resulting in fairly diffuse second-stage priors): η0=p+3, ∆0 = I,

r0=s0=1.

2. The Metric Bayes-CV method described above.

We used a 2 (low vs. high heterogeneity) × 2 (low vs. high response error) ×

2 (low vs. high number of questions) simulation design. We simulated ratings-based

conjoint questionnaires with 10 binary features (plus an intercept). The true partworths

were drawn from wi ∼ N(w0, σw × I) where w0 = [5, 5..., 5] and σw = 2 in the “low
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heterogeneity” case and σw = 4 in the “high heterogeneity” case. The profiles were

obtained from an orthogonal and balanced design with 16 profiles, and the ratings were

equal to yij = xijwi+εij where εij ∼ N(0, σe) with σe = 2 in the “low response error” case

and σe = 4 in the “high response error” case. In the “low number of questions” conditions,

8 profiles were drawn randomly without replacement from the orthogonal design for each

simulated respondent. In the “high number of questions” conditions, all 16 profiles were

rated by each simulated respondent. We simulated 5 sets of 100 respondents in each

condition, estimation being performed separately for each set. Our performance metric

was the root mean square error (RMSE) between the estimated and true partworths.

We note that the model used to generate the data follows the distributional assump-

tions of HB. If strong second-stage priors around the true values of σ and D were used,

then we would clearly expect HB to perform best. We focus on a more realistic and

practical setting in which no prior information on the values of σ and D is available to

either method.

Table 2 reports the average RMSE across respondents in each magnitude × hetero-

geneity × number of questions cell.

We see the following:

1. RR-Het performs significantly better than standard HB in 7 out of 8 conditions.

Overall, it is best or non-significantly different from best (at p < 0.05) in 7 out of

8 conditions.

2. Metric Bayes-CV performs significantly better than standard HB in all 8 conditions

26



(these significance tests are not reported in the table). This suggests that select-

ing the parameters of the second-stage priors in HB using cross-validation has the

potential to greatly improve predictive ability.

Heterogeneity Response Error Questions Standard HB Metric Bayes-CV RR-Het
Low Low 8 1.502 1.453 1.459

16 0.989 0.941 0.920
Low High 8 1.751 1.736 1.861

16 1.485 1.414 1.417
High Low 8 3.189 2.479 2.358

16 1.026 1.005 0.993
High High 8 3.363 2.909 2.839

16 2.465 1.898 1.834

Table 2: RMSE (lower numbers indicate higher performance) of estimated versus true
partworths for the metric-based simulations. Bold numbers in each row indicate best or
not significantly different from best at the p < 0.05 level. The proposed method, RR-Het,
is significantly better than standard HB in 7 out of 8 conditions. It is overall best or
non-significantly different from best (at p < 0.05) in 7 out of 8 conditions.

4.2 Choice-Based Simulations

We extended the simulation setup above to compare choice HB to LOG-Het. As discussed

in Section 3, we were unable to test a choice version of the Metric Bayes-CV method. We

used again a 2 (low vs. high heterogeneity) × 2 (low vs. high response error) × 2 (low vs.

high number of questions) design, assumed 10 binary features, and used 8 and 16 as our

low and high numbers of questions. We assumed two profiles per choice set and derived

our orthogonal design by applying the shifting method of Bunch, Louviere and Anderson

(1994) (see also Huber and Zwerina, 1996; Arora and Huber, 2001) to the orthogonal

27



design used for the metric simulations (if Xi is the ith row of the effects-coded orthogonal

design, then choice i is between Xi and 1−Xi). Following the tradition of choice-based

conjoint simulations (Arora and Huber 2001; Evgeniou et al., 2005a; Toubia et al., 2004),

we drew the true partworths from normal distributions with mean [mag,mag,...mag] and

variance σ2 = het×mag where the parameter mag controls the amount of response error

and the paramater het the amount of heterogeneity. We set the parameters mag and het

to capture the range of response error and heterogeneity used in the previous simulations

in the aforementioned studies. In particular, we set mag=1.2 and 0.2 respectively in the

low and high response error conditions,10 and het=1 and 3 respectively in the low and

high heterogeneity conditions. We used logistic probabilities to simulate the answers to

the choice questions. We measure performance using the RMSE between the true and

estimated partworths, normalized to have a norm of 1.

The results of the simulations (based on 5 sets of 100 respondents) are summarized in

Table 3. We see that the proposed method LOG-Het performs significantly better than

standard HB in 6 out of 8 conditions.11 HB outperforms LOG-Het only in the case of

low response error and low heterogeneity.

10Because our number of features (10) is 2.5 times the number (4) used by previously published
simulations using the same simulation design, we divide the values of typical mag parameters used in
previously published simulations (0.5 and 3) by 2.5 in order to make the overall utilities, and hence the
level of response error, comparable.

11Note that the numbers from Tables 2 and 3 are not comparable because they are not on the same
scale.
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Het Response Error Quest HB LOG-Het
Low Low 8 0.5933 0.6235

16 0.4486 0.4600

Low High 8 0.9740 0.9609
16 0.8050 0.7946

High Low 8 0.7389 0.7289
16 0.4970 0.4827

High High 8 0.9152 0.9013
16 0.6935 0.6878

Table 3: RMSE (lower numbers indicate higher performance) of estimated versus true
partworths for the choice simulations. LOG-Het is the proposed method, HB is Hierar-
chical Bayes. Bold numbers in each row indicate best or not significantly different from
best at the p < 0.05 level. LOG-Het performs significantly better than HB in 6 out of 8
conditions.

5 Comparisons Based on Field Data

5.1 Comparison of the Metric-Based Methods Using Field Data

We compared RR-Het, HB, and Metric Bayes-CV on a field data set used in a previously

published paper (Lenk et al., 1996).12 The data come from a ratings-based conjoint study

on computers, with 180 consumers rating 20 profiles each. The first 16 profiles form an

orthogonal and balanced design and are used for calibration; the last four are holdouts

used for validation. The independent variables are 13 binary attributes and an intercept

(see Table 2 in Lenk et al., 1996 for a description). The dependent variable is a rating

on an 11-point scale (0 to 10). We measured performance using the root mean square

error (RMSE) between the observed and predicted holdout ratings. We estimated the

12We would like to thank Peter Lenk for kindly sharing this data set with us.
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partworths using 8 (randomly selected) and 16 questions.

We report the results in Table 4. Both RR-Het and Metric Bayes-CV perform signif-

icantly better than standard HB with both 8 and 16 questions. RR-Het performs overall

best or non-significantly different from best with both 8 and 16 questions. This further

confirms the potential of RR-Het, as well as the potential of using cross-validation in

Bayesian estimation. Note that our numbers are comparable but not equal to the ones

reported by Lenk et al. for the following reasons. First, in order to perform signifi-

cance tests, we compute the RMSE for each respondent and report the averages across

respondents, as opposed to computing an aggregate metric as in Lenk et al. Second, we

assume homoskedasticity (same σ for all respondents). Third, we do not use demographic

variables in the model. We show in the online technical appendix how RR-Het can be

extended to include such covariates, and compare the performance of this extension to

that of HB with covariates and Metric Bayes-CV with covariates. The same conclusions

apply.

Questions Standard HB Metric Bayes-CV RR-Het
8 1.905 1.851 1.794
16 1.667 1.610 1.608

Table 4: RMSE for holdout questions from the metric field data of Lenk et al., (1996).
(Lower numbers indicate higher performance.) Bold numbers in each row indicate best
or not significantly different from best at the p < 0.05 level. Both RR-Het and Metric
Bayes-CV perform significantly better than standard HB with both 8 and 16 questions.
RR-Het performs overall best or non-significantly different from best with both 8 and 16
questions.
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5.2 Comparison of the Choice-Based Methods Using Field Data

We compared LOG-Het to HB on an empirical conjoint data set kindly made available

to us by Research International.13 Note that we were not involved in the design of the

conjoint study that lead to this data set.

The product in this study was carbonated soft drinks. 3 attributes were included:

Brand (6 levels), Size (7 levels), and Price (7 levels), for a total of 20 partworths per

respondent. A pseudo-orthogonal design was first generated with 76 choice tasks each

involving 8 alternatives. This design was divided into 4 subsets of 18 questions, plus 4

additional questions. 192 respondents were subjected to one of the four 22-question sets

(presented in a randomized order). We used 8 (randomly selected from the first 16) or

16 questions to estimate the models, and the last 6 as holdouts.

We compare performance in Table 5. LOG-Het is not significantly different from HB

with 8 questions and significantly better with 16 questions. As a reference, a homogeneous

estimate obtained by logistic regression achieved a hit rate error of 21.7% (note that, as

each question involved 8 products, a random model would achieve a hit rate of 12.5%).

The empirical comparisons reported in the previous two sections indicate that our

approach overall outperforms standard hierarchical Bayes (with relatively diffuse second-

stage priors), and show that endogenizing the selection of the second-stage prior param-

eters in hierarchical Bayes has the potential to greatly improve estimation accuracy and

predictive performance. In the following section, we further explore the relation between

13The data are proprietary but are available from the authors and Research International upon request.
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Questions Standard HB LOG-Het
8 48.37% 47.76%
16 51.04% 52.34%

Table 5: Holdout hit rates (higher numbers indicate higher performance) from the choice
field data set. LOG-Het is the proposed method, HB is Hierarchical Bayes. Bold numbers
in each row indicate best or not significantly different from best at the p < 0.05 level.
LOG-Het performs overall best or non-significantly different from best in both cases, and
significantly better than HB with 16 questions.

the amount of shrinkage and performance, and assess the validity of using cross-validation

for parameter selection.

6 The Relation Between Shrinkage and Estimation

Accuracy

We have argued in Section 3 that RR-Het and LOG-Het differ from HB in the approach

used to determine the parameters on which the posterior distribution (respectively, the

loss function) depend (parameters of the second-stage priors exogenous in HB versus

γ endogenously estimated using cross-validation in RR-Het and LOG-Het), and that

these differences translate into differences in the amounts of shrinkage performed by

the estimators. We have also argued, based on past literature, that cross-validation is

an effective way of selecting the parameter γ on which the RR-Het and LOG-Het loss

functions depend, and hypothesized that it could be an effective way of selecting the

second-stage prior parameters on which the HB posterior distribution depends. This
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raises the following two sets of questions, which we address empirically:

1. What is the relation between the amount of shrinkage and performance? Are dif-

ferences in performance between methods systematically coupled with differences

in the amount of shrinkage?

2. Does cross-validation in RR-Het, LOG-Het, and Metric Bayes-CV yield parameter

values (γ and σ0 respectively) close to the ones that maximize estimation accuracy?

We addressed these questions both with metric and choice data. We report the case

of metric data here because of the availability of Metric Bayes-CV. The conclusions with

choice data are identical – details and graphs are available from the authors.

In order to explore the relation between shrinkage and performance, we manually

varied the parameters γ and σ0 in RR-Het and Metric Bayes-CV and assessed the corre-

sponding performance. See Figure 1 for the simulations and Figure 2 for the field data

(we only report the graphs based on 16 questions. The graphs based on 8 questions yield

similar results and are available from the authors). The parameters γ and σ0 are not on

the same scale, however there is a one-to-one mapping between each of these parameters

and the amount of shrinkage. Hence we report the realized amount of shrinkage on the

x-axis, measured by
∑I

i=1
||wi−w0||2

I
. Performance, measured by the RMSE of the true vs.

estimated partworths for the simulations and by the holdout RMSE for the field data (as

in Tables 2 and 4), is reported on the y-axis. The solid and dotted curves represent the

amount of shrinkage and the corresponding performance achieved respectively by Metric

Bayes-CV and RR-Het as σ0 (respectively γ) is varied. The labels “RR-Het” and “Bayes-
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CV” correspond to the amount of shrinkage and corresponding performance achieved by

the two methods when γ and σ0 are selected using cross-validation (i.e., they correspond

to the numbers reported in Tables 2 and 4).14 We also report the amount of shrinkage

and performance achieved by standard HB.

Figures 1 and 2 illustrate the existence of a U-shaped relationship between the amount

of shrinkage and performance. Moreover, they confirm that differences in performance

between the different methods are systematically coupled with differences in the amount

of shrinkage: the smaller the difference in the amount of shrinkage, the smaller the

difference in performance. This confirms that the approach used to determine the amount

of shrinkage may be viewed as a key difference between our approach and HB.

14For each set of simulated respondents, the labels “Bayes-CV” and “RR-Het” lie exactly on the
corresponding curves. However this does not necessarily hold for our graphs because they are based on
averages across the five sets of simulated respondents. Note also that the differences between the two
curves are due to differences in D and w0.
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Figure 1: Performance as a function of the amount of shrinkage - metric simulated
data. Estimates are based on 16 questions. The amount of shrinkage is measured by∑I

i=1
||wi−w0||2

I
. The solid lines represent the amount of shrinkage and corresponding

RMSE (estimated versus actual partworths) performance achieved by Metric Bayes-CV
as σ0 is varied, and the labels “Bayes-CV” represent the amount of shrinkage and per-
formance achieved when σ0 is selected using cross-validation. The dotted lines represent
the amount of shrinkage and performance achieved by RR-Het as γ is varied, and the
labels “RR-Het” represent the amount of shrinkage and performance achieved when γ is
selected using cross-validation. “Standard HB” corresponds to HB with standard second-
stage priors, as in Table 2.
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Figure 2: Performance as a function of the amount of shrinkage - field metric data. Esti-

mates are based on 16 questions. The amount of shrinkage is measured by
∑I

i=1
||wi−w0||2

I
.

The solid line represents the amount of shrinkage and corresponding performance (hold-
out RMSE) achieved by Metric Bayes-CV as σ0 is varied, and the label “Bayes-CV”
represents the amount of shrinkage and performance achieved when σ0 is selected using
cross-validation. The dotted line represents the amount of shrinkage and performance
achieved by RR-Het as γ is varied, and the label “RR-Het” represents the amount of
shrinkage and performance achieved when γ is selected using cross-validation. “Standard
HB” corresponds to HB with standard second-stage priors, as in Table 4.
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Finally, Figures 1 and 2 also suggest that the amount of shrinkage and performance

achieved by RR-Het and Metric Bayes-CV when selecting parameters using cross-validation

is close to the bottom of the corresponding curves, i.e., it is close to what would be

achieved if the true partworths (or holdout ratings) were used to calibrate the parame-

ters γ and σ0. In particular, for the simulations (respectively ratings field data) the RMSE

achieved by RR-Het or Metric Bayes-CV when γ or σ0 is selected using cross-validation

is on average only 0.59% (respectively 0.38%) higher than the minimum achievable if the

true partworths (respectively holdout ratings) were used to select γ and σ0. This confirms

that cross-validation is an effective method for parameter selection, both for RR-Het and

Metric Bayes-CV, and hence potentially for all the second-stage prior parameters in HB.

7 Conclusions and future research

Our main results may be summarized as follows:

• We have proposed a novel approach for handling consumer heterogeneity in conjoint

estimation based on convex optimization and machine learning, and applied it to

both metric and choice data. (Section 2)

• This approach shares some similarities with hierarchical Bayes. However, one of

the major differences is that while the amount of shrinkage is influenced by a set

of exogenous parameters in HB (the parameters of the second-stage priors), it is

completely endogenous in our approach. (Section 3)
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• Simulations as well as two empirical data sets suggest that the approach overall

outperforms a standard HB implementation (with relatively diffuse second-stage

priors). (Sections 4 and 5)

• Selecting the second-stage prior parameters in HB endogenously like in our approach

raises some practical and theoretical issues. However we show the potential of this

modification with a simple, metric, non-hierarchical model. (Sections 3.3, 4, and 5)

• There exists a U-shaped relation between amount of shrinkage and performance, and

differences in performance may be traced to differences in the amounts of shrinkage.

Selecting some of the shrinkage parameters using cross-validation gives rise to an

amount of shrinkage that is close to optimal. (Section 6)

The experimental results suggest that an important and challenging area for future

research is to develop systematic and computationally efficient ways of selecting the pa-

rameters of the second-stage priors in HB more optimally. A second area for future

research would be to explore the use of population based complexity/shrinkage control

in other individual level optimization based methods (e.g., Srinivasan and Shocker 1973;

Srinivasan 1998; Toubia et al., 2003; Toubia et al., 2004), for estimation and possibly as

well for adaptive questionnaire design. Third, we have focused in this paper on unimodal

representations of heterogeneity. Future research may introduce and model segments of

consumers. This may be achieved by modifying the form of the complexity control in

loss function (2), to reflect for example the existence of multiple clusters of respondents.

Finally, optimization and statistical learning methods may be used to capture and model
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other phenomena beyond consumer heterogeneity. For example, our methods could be

extended to capture recently researched learning phenomena in conjoint analysis (Liechty,

Fong and DeSarbo 2005; Bradlow, Hu, and Ho 2004). Another potential area of appli-

cation is modeling the formation of consideration sets (Gilbride and Allenby 2004, 2006;

Jedidi and Kohli 2005; Hauser, Tellis, and Griffin 2006).
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Appendix

A Minimization of the RR-Het Loss Function (2)

Given γ

A.1 Estimating {wi} and w0 given D

We first transform the data as x̃ij = xijD
1
2 and define w̃i = D− 1

2wi and w̃0 = D− 1
2w0

(see the case of a non-invertible D below). Note that with this transformation we can

estimate first the w̃i’s and w̃0 using the transformed data x̃ij and the modified cost

function

min
{w̃i},w̃0

1

γ

I∑
i=1

J∑
j=1

(yij − x̃ijw̃i)
2 +

I∑
i=1

(w̃i − w̃0)
>(w̃i − w̃0), (4)

and then get the final solution as wi = D
1
2 w̃i and w0 = D

1
2 w̃0. This is because x̃ijw̃i =

xijD
1
2 D− 1

2wi = xijwi and (w̃i − w̃0)
>(w̃i − w̃0) = (wi −w0)

>D−1(wi −w0). With this

transformation we never compute the inverse of matrix D.

Note that (4) is jointly convex with respect to the pair of variables {w̃i} and w̃0.

Taking the derivative with respect to w̃0 we see that

w̃0 =
1

I

I∑
i=1

w̃i.
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Taking the derivative with respect to w̃i we have that

2

γ
X̃>

i X̃iw̃i − 2

γ
X̃>

i Yi + 2(w̃i − w̃0) = 0 ⇒

w̃i = (X̃>
i X̃i + γIp)

−1X̃>
i Yi + (X̃>

i X̃i + γIp)
−1γw̃0 (5)

= ŵi + γZiw̃0,

where Ip is the p-dimensional identity matrix, X̃i is the matrix with rows x̃ij, ŵi =

(X̃>
i X̃i + γIp)

−1X̃>
i Yi and Zi = (X̃>

i X̃i + γIp)
−1.

Finally, substituting w̃i into the equation for w̃0 we get:

w̃0 =
1

I

∑
i

(ŵi + γZiw̃0)

which implies

w̃0 =

(
Ip − γ

1

I

∑
i

Zi

)−1
1

I

∑
i

ŵi

If the matrix
(
Ip − γ 1

Ip

∑
i Zi

)
is not invertible, we follow the individual RR literature

and take its pseudo-inverse. It can be shown, like in the individual-level RR case discussed

in Section 2.1.2, that using the pseudo-inverse is equivalent to adding to the loss function

(2) an extra term δw>
0 D−1w0 with δ → 0.

Having estimated w̃i and w̃0 we then get wi = D
1
2 w̃i and w0 = D

1
2 w̃0. Finally, to

get (3) – which we no not need to compute in practice – we just have to replace X̃i with

XiD
1
2 in (5) and use the fact that wi = D

1
2 w̃i.
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If D is not invertible we replace D− 1
2 with the square root of the pseudo-inverse of

D and follow the exact same computations above – note that we never have to compute

D−1. In this case, the projections on D
1
2 (computed using only the non-zero eigenvalues

of D) above also ensure that {wi} and w0 are in the range of D – otherwise notice that

the complexity control can be set to 0 by simply considering {wi} and w0 in the null

space of D. We can also get (3) – which we do not need to compute in practice again –

with all inverses being pseudo-inverses by replacing again X̃i with XiD
1
2 in (5) and use

the fact that wi = D
1
2 w̃i.

Note that we have closed form solutions for both {wi} and w0. Moreover, the esti-

mation of the partworths wi is decomposed across the individuals and only requires 2I

inversions of p-dimensional (small) matrices.

A.2 Estimating D given {wi} and w0

We assume for simplicity that the covariance of the wi’s, and hence the matrix

(∑I
i=1(wi −w0)(wi −w0)

>
)
, has full rank (which is typically the case in practice when

we have many respondents). If the covariance matrix is not full rank, we replace the

inverse of the solution D below with the pseudo-inverse. It can be shown, like in the

individual-level RR case discussed in Section 2.1.2, that using the pseudo-inverse is equiv-

alent to adding to the loss function (2) the term εTrace(D−1) with ε → 0, keeping the

loss function convex.

48



Given {wi} and w0 we solve:

min
D

∑I
i=1(wi −w0)

>D−1(wi −w0)

subject to D is a positive semidefinite matrix scaled to have trace 1

Using a Lagrange multiplier ρ for the trace constraint and taking the derivative with

respect to D we have that:

−1

2
D−1

(
I∑

i=1

(wi −w0)(wi −w0)
>
)

D−1 + ρI = 0 ⇒

⇒ D =
1

2ρ

(
I∑

i=1

(wi −w0)(wi −w0)
>
) 1

2

(6)

which is positive definite; ρ is simply selected so that D has trace 1.

B Newton’s Method for LOG-Het

Notice that for given {wi} and D, assuming D is invertible (otherwise, as for RR-Het, use

the pseudo-inverse of D) we get as before that w0 = 1
I

∑
i wi. Similarly, given {wi} and

w0 we can solve for D like for RR-Het above - since D appears only in the complexity

control. Hence, we only need to show how to solve for {wi} given D and w0, and

then iterate among the conditional estimations like for RR-Het (in all our experiments,

fewer than 20 iterations were required for convergence). As for RR-Het above, to avoid

computing the inverse of D, we first transform the data as x̃ijq = xijqD
1
2 and define
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w̃i = D− 1
2wi and w̃0 = D− 1

2w0. Note that with this transformation we can estimate first

w̃i minimizing the modified cost function

− 1

γ∗

I∑
i=1

J∑
j=1

log
ex̃ijq∗w̃i

∑Q
q=1 ex̃ijqw̃i

+
I∑

i=1

(w̃i − w̃0)
>(w̃i − w̃0) (7)

and then get the final solution as wi = D
1
2 w̃i.

Notice that for a fixed w̃0, problem (7) is decomposable into I separate sub-problems,

one for each respondent, each of them being a standard (widely studied) regularized kernel

logistic regression problem (Jaakkola and Haussler 1999; Hastie et al., 2003; Keerthi et al.,

2005; Minka 2003; Zhu and Hastie 2005). We can solve (7) for w̃i using various standard

methods used for logistic regression (e.g., see (Minka 2003)). We use here a standard

Newton’s method implemented based on the matlab code of Minka (2003) available at

http://research.microsoft.com/∼minka/papers/logreg/. For this purpose we only need

the gradient and Hessian of the loss function (7). These are given as:

G =
J∑

j=1

(
x̃>ijq∗ −

∑Q
q=1 ex̃ijqw̃ix̃>ijq∑Q

q=1 ex̃ijqw̃i

)
+ γ(w̃i − w̃0)

for the gradient and

H = −
J∑

j=1

Q∑
q=1


−ex̃ijqw̃ix̃>ijqx̃ijq∑Q

q′=1 ex̃ijq′w̃i
+

ex̃ijqw̃ix̃>ijq
(∑Q

q′=1 ex̃ijq′w̃ix̃ijq′

)

(
∑Q

q′=1 ex̃ijq′w̃i)2


 + γIp

for the Hessian. At each Newton step the new w̃i (for each respondent i independently)

is given by w̃new
i = w̃old

i −H−1G.
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