by the proliferation of genetically altered loblolly pine, exotic eucalyptus, or plantation Douglas-fir. The silvicultural trends described by Wernick et al. (4) are welcome not only if they can provide timber and fiber or sequester carbon but also if they can help stop the bleeding in our final few ancient forests.

David W. Stahle
Tree-Ring Laboratory, University of Arkansas, Fayetteville, AR 72701, USA. E-mail: dstahle@comp.uark.edu

References

Hominid Brain Volume

Homing calculated the brain volumes of several australopithocene and early Homo fossil hominid brain endocasts (1–3), and I read with considerable interest the report by Glen C. Conroy et al. (12 June, p. 1730) and the commentary by Dean Falk (Perspectives, Science’s Compass, 12 June, p. 1714). Reexamination of these older specimens by other scientists is a welcome enterprise and, needless to say, I hope that my early attempts will be validated. However, it is important to note that my earlier volume estimations were, in fact, significantly smaller than those previously published. The Sts 71 specimen, for which I obtained a value of 428 cubic centimeters (cm³), had been estimated as somewhere between 480 and 520 cm³. My estimate of the Taung child was 404 cm³ (4), a drop from Raymond Dart’s earlier value of 525 to 562 cm³.

The following facts should be noted by readers. First, Conroy et al.’s citation of my 1983 article (5) is rather late. The original volumes were published in 1970 (1), again in 1972 (2), with specific discussion of Sts 71, and again in 1973 (3). Second, as I pointed out in the 1972 article in particular (2), the Sts 71 cranium was distorted in the occipital region, and the volume I determined was based on correcting the original endocast. I also graded my attempts according to methods used and found Sts 71 to have the lowest rating (C2-3). Neither Conroy et al. nor Falk mentions the plastic deformation that causes the planum occipitale to be at right angles to the endocast, the mastoid process is practically at the same plane as the occipital planum, a condition I have seen only on this cranium. Third, pouring one-half of 370 cm³ of water into a cast of Sts 71 without correcting for the distortions and shrinkage is, mildly put, without scientific rigor. In 1970 (4), I wrote, “The standard deviation and coefficient of variation I calculated for the gracile forms are possibly too low, and can be attributed to the small sample size and bias created by using certain gracile values and dimensions to reconstruct less complete specimens.” Fourth, those who have access to the casts of Sts 5 and Sts 71 will find that the facial measurements (undistorted) of the two crania are nearly identical, while Sts 5 has a cranial volume of 480 cm³; I know of no evidence disputing that figure. It seems highly unlikely that its cranial volume will be some 110 cm³ more than that for Sts 71.

I look forward to the use of better technology to pursue these difficult reconstructions, but hope that the attempts to do so will be truly scientific.

Ralph L. Holloway
Department of Anthropology, Columbia University, New York, NY 10027, USA. E-mail: rh2@columbia.edu

References

Response
Holloway has made many important contributions to paleoneurology, and we are therefore pleased that his comment finds our work to be of "considerable interest." He correctly reminds readers that he was one of the first to realize that many of the early endocranial estimates were overestimates, a situation he corrected in a series of important studies, many of which he cites in his comment. Because Holloway reserves his more specific comments for Sts 71, a specimen not particularly germane to the main focus of our report,
CORRECTIONS AND CLARIFICATIONS

In the issue of 11 December, in the article "Genome sequence of the nematode C. elegans: A platform for investigating biology" by The C. elegans Sequencing Consortium (Special Section, "C. elegans: Sequence to biology," p. 2012), figure 3 (p. 2016) was printed incorrectly (see http://www.sciencemag.org/feature/data/5396-2012.pdf for correct figure). In the same issue, in the article "Caenorhabditis elegans is a nematode" by Mark Baxter (Special Section, "C. elegans: Sequence to biology," p. 2041), figure 2 (p. 2043) was printed incorrectly (see http://www.sciencemag.org/feature/data/5396-2041.pdf for correct figure).

In the issue of 4 December, in the Research Article "X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution" by J.W. Peters et al. (p. 1853), the top of figure 1A (p. 1854) was cut off (the correct figure can be seen at http://www.sciencemag.org/feature/data/5395-1853.pdf). In the same issue, in the report "Oxygen isotope exchange between refractory inclusion in Allende and solar nebula gas" by H. Yurimoto et al. (p. 1874), figure 1 was not printed in half tones (see correct figure at http://www.sciencemag.org/feature/data/5395-1874.pdf). In the same issue, in the report "Single-molecule enzymatic dynamics" by H. P. Lu et al. (p. 1877), two lines of text were covered by figure 1A (p. 1878). Those lines should have read, "the gel. With excess amounts of cholesterol (0.2..."

And, again, in the same issue, in the report "Coupling of mitosis to the completion of S phase through Cdc34-mediated degradation of Weel" by W. M. Michael and J. Newport (p. 1886), the top three parts of figure 1A (p. 1887) and all of figure 1C were missing. And parts of figure 3 (A, B, and C) (p. 1888) were missing (the correct figure can be seen at http://www.sciencemag.org/feature/data/5395-1886.pdf).

In the Policy Forum "The science and technology—bequeath Department of State" by Anne Keatley Solomon (Science's Compass, 27 Nov., p. 1649), the last paragraph in the third column of page 1649 (carrying over onto page 1650) should have read, "Finally, basic S&T literacy for all State Department personnel is fundamental. Department leadership must make clear the relevance of this basic knowledge to Foreign Service officers. A clear signal early would be the inclusion in the entrance examination of questions testing a basic understanding of fundamental scientific concepts and the nature of scientific inquiry."

Glenn C. Conroy
Department of Anatomy and Neurobiology and of Anthropology, Washington University School of Medicine, St. Louis, MO 63110, USA. E-mail: conroy@thalamus.wustl.edu

Gerhard W. Weber
Horst Seidler
Institute of Human Biology, University of Vienna, A-1090 Vienna, Austria

Phillip V. Tobias
Department of Anatomical Sciences, University of the Witwatersrand Medical School, Johannesburg, South Africa

Look at These Images.

Chick embryo
Bovine pulmonary artery
Human tongue tissue
Polarized image of Groopla

Now, Look at the Price: $1195.*

The 1-Million-Pixel Digital Camera System
No matter what your photomicroscopy application, you cannot get better image quality at a lower price than with a Pixera digital camera system. In fact, to match Pixera's million-pixel resolution, you would have to spend at least 5 times as much. And Pixera gives you everything you need including a full suite of application software so you can visualize, create and communicate.

*US list price

All images were captured at 1280 x 1024 pixels with a Pixera Professional Digital Camera mounted on a microscope with a standard C-mount adapter. 140 Knowles Drive, San Leandro, Calif 94566 www.pixera.com ©1998 Pixera Corporation.

CALL FOR SYMPOSIUM PROPOSALS

AAAS Annual Meeting and Science Innovation Exposition

February 17-22, 2000 • Washington, D.C.

You are invited to propose a symposium for the AAAS annual meeting.

Symposium Proposal forms, meeting theme track, and additional information available at:

www.aaas.org/meetings/symposia

AAAS Meetings Office
1200 New York Avenue, NW
Washington, DC 20005
Phone: 202-326-6450
Fax: 202-289-4021
E-mail: confinfo@aaas.org

March 22, 1999
Deadline for AAAS

www.scienccemag.org SCIENCE VOL 283 1 JANUARY 1999