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Brownian motion and normal distribution have been widely used in the Black–Scholes
option-pricing framework to model the return of assets. However, two puzzles emerge

from many empirical investigations: the leptokurtic feature that the return distribution of
assets may have a higher peak and two (asymmetric) heavier tails than those of the normal
distribution, and an empirical phenomenon called “volatility smile” in option markets. To
incorporate both of them and to strike a balance between reality and tractability, this paper
proposes, for the purpose of option pricing, a double exponential jump-diffusion model.
In particular, the model is simple enough to produce analytical solutions for a variety of
option-pricing problems, including call and put options, interest rate derivatives, and path-
dependent options. Equilibrium analysis and a psychological interpretation of the model are
also presented.
(Contingent Claims; High Peak; Heavy Tails; Interest Rate Models; Rational Expectations; Overre-
action and Underreaction)

1. Introduction
Despite the success of the Black–Scholes model based
on Brownian motion and normal distribution, two
empirical phenomena have received much attention
recently: (1) the asymmetric leptokurtic features—in
other words, the return distribution is skewed to the
left, and has a higher peak and two heavier tails than
those of the normal distribution, and (2) the volatility
smile. More precisely, if the Black–Scholes model is
correct, then the implied volatility should be constant.
In reality, it is widely recognized that the implied
volatility curve resembles a “smile,” meaning it is a
convex curve of the strike price.
Many studies have been conducted to mod-

ify the Black–Scholes model to explain the two
empirical phenomena. To incorporate the asymmet-
ric leptokurtic features in asset pricing, a variety
of models have been proposed:1 (a) chaos theory,

1 Although most of the studies focus on the leptokurtic features
under the physical measure, it is worth mentioning that the
leptokurtic features under the risk-neutral measure(s) lead to the
“volatility smiles” in option prices.

fractal Brownian motion, and stable processes; see, for
example, Mandelbrot (1963), Rogers (1997), Samorod-
nitsky and Taqqu (1994); (b) generalized hyperbolic
models, including log t model and log hyperbolic
model; see, for example, Barndorff-Nielsen and
Shephard (2001), Blattberg and Gonedes (1974);
(c) time-changed Brownian motions; see, for exam-
ple, Clark (1973), Madan and Seneta (1990), Madan
et al. (1998), and Heyde (2000). An immediate prob-
lem with these models is that it may be difficult to
obtain analytical solutions for option prices. More
precisely, they might give some analytical formulae
for standard European call and put options, but any
analytical solutions for interest rate derivatives and
path-dependent options, such as perpetual American
options, barrier, and lookback options, are unlikely.
In a parallel development, different models are

also proposed to incorporate the “volatility smile” in
option pricing. Popular ones include: (a) stochastic
volatility and ARCH models; see, for example, Hull
and White (1987), Engle (1995), Fouque et al. (2000);
(b) constant elasticity model (CEV) model; see,
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for example, Cox and Ross (1976), and Davydov
and Linetsky (2001); (c) normal jump models pro-
posed by Merton (1976); (d) affine stochastic-volatility
and affine jump-diffusion models; see, for example,
Heston (1993), and Duffie et al. (2000); (e) models
based on Lévy processes; see, for example, Geman
et al. (2001) and references therein; (f) a numerical
procedure called “implied binomial trees”; see, for
example, Derman and Kani (1994) and Dupire (1994).
Aside from the problem that it might not be easy
to find analytical solutions for option pricing, espe-
cially for path-dependent options (such as perpet-
ual American options, barrier, and lookback options),
some of these models may not produce the asymmet-
ric leptokurtic feature (see §2.3).
The current paper proposes a new model with

the following properties: (a) It offers an explana-
tion for two empirical phenomena—the asymmetric
leptokurtic feature, and the volatility smile (see §§3
and 5.3). (b) It leads to analytical solutions to many
option-pricing problems, including European call and
put options (see §5); interest rate derivatives, such
as swaptions, caps, floors, and bond options (see
§5.3 and Glasserman and Kou 1999); path-dependent
options, such as perpetual American options, bar-
rier, and lookback options (see §2.3 and Kou and
Wang 2000, 2001). (c) It can be embedded into a ratio-
nal expectations equilibrium framework (see §4). (d) It
has a psychological interpretation (see §2.2).
The model is very simple. The logarithm of the

asset price is assumed to follow a Brownian motion
plus a compound Poisson process with jump sizes
double exponentially distributed. Because of its sim-
plicity, the parameters in the model can be easily
interpreted, and the analytical solutions for option
pricing can be obtained. The explicit calculation is
made possible partly because of the memoryless
property of the double exponential distribution.
The paper is organized as follows. In §2, the model

is proposed, is evaluated by four criteria, and is com-
pared with other alternative models. Section 3 studies
the leptokurtic feature. A rational expectations equi-
librium justification of the model is given in §4. Some
preliminary results, including the Hh functions, are
given in §5.1. Formulae for option-pricing problems,
including options on futures, are provided in §5.2.

The “volatility smiles” phenomenon is illustrated in
§5.3. The final section discusses some limitations of
the model.

2. The Model
2.1. The Model Formulation
The following dynamic is proposed to model the asset
price, S�t�, under the physical probability measure P:

dS�t�

S�t−�
= �dt+� dW�t�+d

(
N�t�∑
i=1

�Vi−1�

)
� (1)

where W�t� is a standard Brownian motion, N�t� is
a Poisson process with rate 
, and �Vi� is a sequence
of independent identically distributed (i.i.d.) nonneg-
ative random variables such that Y = log�V � has an
asymmetric double exponential distribution2� 3 with
the density

fY �y� = p ·�1e
−�1y1�y≥0�+ q ·�2e

�2y1�y<0��

�1 > 1��2 > 0�

where p� q ≥ 0, p+q = 1, represent the probabilities of
upward and downward jumps. In other words,

log�V �= Y
d=
{
�+, with probability p

−�−, with probability q

}
� (2)

where �+ and �− are exponential random variables
with means 1/�1 and 1/�2, respectively, and the nota-
tion

d= means equal in distribution. In the model,
all sources of randomness, N�t�, W�t�, and Y s, are
assumed to be independent, although this can be
relaxed, as will be suggested in §2.2. For notational
simplicity and in order to get analytical solutions
for various option-pricing problems, the drift � and
the volatility � are assumed to be constants, and
the Brownian motion and jumps are assumed to be

2 If �1 = �2 and p= 1/2, then the double exponential distribution is
also called “the first law of Laplace” (proposed by Laplace in 1774),
while the “second law of Laplace” is the normal density.
3 Ramezani and Zeng (1999) independently propose the same jump-
diffusion model from an econometric viewpoint as a way of
improving the empirical fit of Merton’s normal jump-diffusion
model to stock price data.
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one dimensional. These assumptions, however, can be
easily dropped to develop a general theory.
Solving the stochastic differential equation (1) gives

the dynamics of the asset price:

S�t�= S�0�exp
{(

�− 1
2
�2

)
t+�W�t�

}N�t�∏
i=1

Vi� (3)

Note that E�Y �= p

�1
− q

�2
, Var�Y �= pq� 1

�1
+ 1

�2
�2+ � p

�21
+

q

�22
�, and

E�V � = E�eY �

= q
�2

�2+1
+p

�1

�1−1
� �1 > 1� �2 > 0� (4)

The requirement �1 > 1 is needed to ensure that
E�V � < � and E�S�t�� < �; it essentially means that
the average upward jump cannot exceed 100%, which
is quite reasonable.
There are two interesting properties of the dou-

ble exponential distribution that are crucial for the
model. First, it has the leptokurtic feature; see Johnson
et al. (1995). As will be shown in §3, the leptokur-
tic feature of the jump size distribution is inherited
by the return distribution. Secondly, a unique fea-
ture (also inherited from the exponential distribution)
of the double exponential distribution is the memo-
ryless property. This special property explains why
the closed-form solutions for various option-pricing
problems, including barrier, lookback, and perpet-
ual American options, are feasible under the dou-
ble exponential jump-diffusion model while it seems
impossible for many other models, including the nor-
mal jump-diffusion model (Merton 1976); see §2.3 for
details.

2.2. Evaluating the Model
Because essentially all models are “wrong” and rough
approximations of reality, instead of arguing the
“correctness” of the proposed model I shall evalu-
ate and justify the double exponential jump-diffusion
model by four criteria.
1. A model must be internally self-consistent. In

the finance context, it means that a model must be
arbitrage-free and can be embedded in an equilibrium
setting. Note that some of the alternative models may

have arbitrage opportunities, and thus are not self-
consistent (to give an example, it is shown by Rogers
1997 that models using fractal Brownian motion may
lead to arbitrage opportunities). The double exponen-
tial jump-diffusion model can be embedded in a ratio-
nal expectations equilibrium setting; see §4.
2. A model should be able to capture some impor-

tant empirical phenomena. The double exponential
jump-diffusion model is able to reproduce the lep-
tokurtic feature of the return distribution (see §3)
and the “volatility smile” observed in option prices
(see §5.3). In addition, the empirical tests performed
in Ramezani and Zeng (1999) suggest that the double
exponential jump-diffusion model fits stock data bet-
ter than the normal jump-diffusion model. Andersen
et al. (1999) demonstrate empirically that, for the S&P
500 data from 1980–1996, the normal jump-diffusion
model has a much higher p-value (0.0152) than those
of the stochastic volatility model (0.0008) and the
Black–Scholes model �<10−5�. Therefore, the combina-
tion of results in the two papers gives some empiri-
cal support of the double exponential jump-diffusion
model.4

3. A model must be simple enough to be amenable
to computation. Like the Black–Scholes model, the
double exponential jump-diffusion model not only
yields closed-form solutions for standard call and
put options (see §5), but also leads to a variety
of closed-form solutions for path-dependent options,
such as barrier options, lookback options, and perpet-
ual American options (see §2.3 and Kou and Wang
2000, 2001), as well as interest rate derivatives (see
§5.3 and Glasserman and Kou 1999).
4. A model must have some (economical, physical,

psychological, etc.) interpretation. One motivation for
the double exponential jump-diffusion model comes
from behavioral finance. It has been suggested from
extensive empirical studies that markets tend to have

4 However, we should emphasize that empirical tests should not be
used as the only criterion to judge a model good or bad. Empirical
tests tend to favor models with more parameters. However, models
with many parameters tend to make calibration more difficult (the
calibration may involve high-dimensional numerical optimization
with many local optima), and tend to have less tractability. This is
a part of the reason why practitioners still like the simplicity of the
Black–Scholes model.
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both overreaction and underreaction to various good or
bad news (see, for example, Fama 1998 and Barberis
et al. 1998, and references therein). One may interpret
the jump part of the model as the market response
to outside news. More precisely, in the absence of
outside news the asset price simply follows a geo-
metric Brownian motion. Good or bad news arrives
according to a Poisson process, and the asset price
changes in response according to the jump size dis-
tribution. Because the double exponential distribu-
tion5 has both a high peak and heavy tails, it can be
used to model both the overreaction (attributed to the
heavy tails) and underreaction (attributed to the high
peak) to outside news. Therefore, the double expo-
nential jump-diffusion model can be interpreted as an
attempt to build a simple model, within the tradi-
tional random walk and efficient market framework,
to incorporate investors’ sentiment.
Incidently, as a by-product, the model also suggests

that the fact of markets having both overreaction and
underreaction to outside news can lead to the lep-
tokurtic feature of asset return distribution.

2.3. Comparison with Other Models
There are many alternative models that can satisfy at
least some of the four criteria listed above. A main
attraction of the double exponential jump-diffusion
model is its simplicity, particularly its analytical tractabil-
ity for path-dependent options and interest rate derivatives.
Unlike the original Black–Scholes model, many alter-
native models can only compute prices for stan-
dard call and put options, and analytical solutions
for other equity derivatives (such as path-dependent
options) and some most liquid interest rate deriva-
tives (such as swaption, caps, and floors) are unlikely.
Even numerical methods for interest rate derivatives
and path-dependent options are not easy, as the con-
vergence rates of binomial trees and Monte Carlo
simulation for path-dependent options are typically
much slower than those for call and put options (for
a survey, see Boyle et al. 1997).

5 Interestingly enough, the double exponential distribution has been
widely used in mathematical psychology literature, particularly in
vision cognitive studies; see, for example, the list of papers on the
web page of David Mumford at the computer vision group, Brown
University.

This makes it harder to persuade practitioners to
switch from the Black–Scholes model to more realis-
tic alternative models. The double exponential jump-
diffusion model attempts to improve the empirical
implications of the Black–Scholes model while still
retaining its analytical tractability. Below is a more
detailed comparison between the proposed model
and some popular alternative models.
(1) The CEV Model. Like the double exponential

jump-diffusion model, analytical solutions for path-
dependent options (see Davydov and Linetsky 2001)
and interest rate derivatives (e.g., Cox et al. 1985 and
Andersen and Andersen 2000) are available under the
CEV model. However, the CEV model does not have
the leptokurtic feature. More precisely, the return dis-
tribution in the CEV model has a thinner right tail
than that of the normal distribution. This undesirable
feature also has a consequence in terms of the implied
volatility in option pricing. Under the CEV model the
implied volatility can only be a monotone function of
the strike price. Therefore, if the implied volatility is
a convex function (but not necessarily a decreasing
function), as frequently observed in option markets,
the CEV model is unable to reproduce the implied
volatility curve.
(2) The Normal Jump-Diffusion Model. Merton

(1976) was the first to consider a jump-diffusion
model similar to (1) and (3). In Merton’s paper
Y s are normally distributed. Both the double expo-
nential and normal jump-diffusion models can lead
to the leptokurtic feature (although the kurtosis
from the double exponential jump-diffusion model
is significantly more pronounced), implied volatil-
ity smile, and analytical solutions for call and put
options, and interest rate derivatives (such as caps,
floors, and swaptions; see Glasserman and Kou 1999).
The main difference between the double exponen-
tial jump-diffusion model and the normal jump-
diffusion model is the analytical tractability for the
path-dependent options.
Here I provide some intuition to understand why

the double exponential jump-diffusion model can lead
to closed-form solutions for path-dependent options,
while the normal jump-diffusion model cannot. To
price perpetual American options, barrier options,
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and lookback options for general jump-diffusion pro-
cesses, it is crucial to study the first passage time of
a jump-diffusion process to a flat boundary. When a
jump-diffusion process crosses a boundary sometimes
it hits the boundary exactly and sometimes it incurs
an “overshoot” over the boundary.
The overshoot presents several problems for option

pricing. First, one needs to get the exact distribution
of the overshoot. It is well known from stochastic
renewal theory that this is only possible if the jump
size Y has an exponential-type distribution, thanks to
the special memoryless property of the exponential
distribution. Secondly, one needs to know the depen-
dent structure between the overshoot and the first
passage time. The two random variables are condi-
tionally independent, given that the overshoot is big-
ger than 0, if the jump size Y has an exponential-type
distribution, thanks to the memoryless property. This
conditionally independent structure seems to be very
special to the exponential-type distribution and does
not hold for other distributions, such as the normal
distribution.
Consequently, analytical solutions for the perpet-

ual American, lookback, and barrier options can be
derived for the double exponential jump-diffusion
model. However, it seems impossible to get similar
results for other jump-diffusion processes, including
the normal jump-diffusion model.
(3) Models Based on t-Distribution. The

t-distribution is widely used in empirical studies
of asset pricing. One problem with t-distribution
(or other distributions with power-type tails) as a
return distribution is that it cannot be used in models
with continuous compounding. More precisely, sup-
pose that at time 0 the daily return distribution X has
a power-type right tail. Then in models with continu-
ous compounding, the asset price tomorrow A��t� is
given by A��t� = A�0�eX . Since X has a power-type
right tail, it is clear that E�eX�=�. Consequently,

E�A��t��= E�A�0�eX�=A�0�E�eX�=��

In other words, the asset price tomorrow has an infi-
nite expectation. This paradox holds for t-distribution
with any degrees of freedom, as long as one considers
models with continuous compounding. Furthermore,

if the risk-neutral return also has a power-type right
tail, then the call option price is also infinite:

E∗��A��t�−K�+�≥ E∗�A��t�−K�=��

Therefore, the only relevant models with
t-distributed returns are models with discretely com-
pounded returns. However, in models with discrete
compounding, closed-form solutions are in general
impossible.6

(4) Stochastic Volatility Models. The double expo-
nential jump-diffusion model and the stochastic
volatility model complement each other: The stochas-
tic volatility model can incorporate dependent struc-
ture better, while the double exponential jump-
diffusion model has better analytical tractability,
especially for path-dependent options and complex
interest rate derivatives. One empirical phenomenon
worth-mentioning is that the daily return distribu-
tion tends to have more kurtosis than the distribution
of monthly returns. As Das and Foresi (1996) point
out, this is consistent with models with jumps, but
inconsistent with stochastic volatility models. More
precisely, in stochastic volatility models (or essentially
any models in a pure diffusion setting) the kurtosis
decreases as the sampling frequency increases, while
in jump models the instantaneous jumps are indepen-
dent of the sampling frequency.
(5) Affine Jump-Diffusion Models. Duffie et al.

(2000) propose a very general class of affine jump-
diffusion models which can incorporate jumps,
stochastic volatility, and jumps in volatility. Both nor-
mal and double exponential jump-diffusion mod-
els can be viewed as special cases of their model.
However, because of the special features of the
exponential distribution, the double exponential
jump-diffusion model leads to analytical solutions
for path-dependent options, which are difficult for
other affine jump-diffusion models (even numeri-
cal methods are not easy). Furthermore, the dou-
ble exponential model is simpler than general affine

6 Another interesting point worth mentioning is that, for a sam-
ple size of 5,000 (20-years-daily data), it may be very difficult to
distinguish empirically the double exponential distribution from
the power-type distributions, such as t-distribution (although it is
quite easy to detect the differences between them and the normal
density).
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jump-diffusion models: It has fewer parameters that
makes calibration easier. The double exponential
jump-diffusion model attempts to strike a balance
between reality and tractability.
(6) Models Based on Lévy Processes (the pro-

cesses with independent and stationary increments).
Although the double exponential jump-diffusion
model is a special case of Lévy processes, because of
the special features of the exponential distribution it
has analytical tractability for path-dependent options
and interest rate derivatives, which are difficult for
other Lévy processes.

3. Leptokurtic Feature
Using (3), the return over a time interval �t is given
by:

�S�t�

S�t�
= S�t+�t�

S�t�
−1

= exp

{(
�− 1

2
�2

)
�t+��W�t+�t�−W�t��

+
N�t+�t�∑
i=N�t�+1

Yi

}
−1�

where the summation over an empty set is taken to
be zero. If the time interval �t is small, as in the case
of daily observations, the return can be approximated
in distribution, ignoring the terms with orders higher
than �t and using the expansion ex ≈ 1+x+x2/2, by

�S�t�

S�t�
≈ ��t+�Z

√
�t+B ·Y � (5)

where Z and B are standard normal and Bernoulli
random variables, respectively, with P�B = 1� = 
�t
and P�B = 0�= 1−
�t, and Y is given by (2).
The density7 g of the right-hand side of (5), being

an approximation for the return �S�t�/S�t�, is plotted

7 The density

g�x� = 1−
�t

�
√
�t

$

(
x−��t

�
√
�t

)
+
�t

{
p�1e

��2�21�t�/2e−�x−��t��1%

(
x−��t−� 2�1�t

�
√
�t

)
+ q�2e

��2�22�t�/2e�x−��t��2

×%

(
−x−��t+� 2�2�t

�
√
�t

)}
�

in Figure 1 along with the normal density with the
same mean and variance. The parameters are �t =
1 day = 1/250 year, � = 20% per year, � = 15% per
year, 
= 10 per year, p = 0�30, 1/�1 = 2%, and 1/�2 =
4%. In this case, E�Y �=−2�2%, and SD�Y �= 4�47%. In
other words, there are about 10 jumps per year with
the average jump size −2�2%, and the jump volatil-
ity 4�47%. The jump parameters used here seem to
be quite reasonable, if not conservative, for the U.S.
stocks.
The leptokurtic feature is quite evident. The peak

of the density g is about 31, whereas that of the nor-
mal density is about 25. The density g has heav-
ier tails than the normal density, especially for the
left tail, which could reach well below −10%� while
the normal density is basically confined within −6%.
Additional numerical plots suggest that the feature of
having a higher peak and heavier tails becomes more
pronounced if either 1/�i (the jump size expectations)
or 
 (the jump rate) increases.

4. Equilibrium for General
Jump-Diffusion Models

Consider a typical rational expectations economy
(Lucas 1978) in which a representative investor
tries to solve a utility maximization problem
maxc E'

∫ �
0 U�c�t�� t� dt), where U�c�t�� t� is the util-

ity function of the consumption process c�t�. There is
an exogenous endowment process, denoted by *�t�,
available to the investor. Also given to the investor is
an opportunity to invest in a security (with a finite
liquidation date T0, although T0 can be very large)
which pays no dividends. If *�t� is Markovian, it can
be shown (see, for example, pp. 484–485 in Stokey
and Lucas 1989) that, under mild conditions, the ratio-
nal expectations equilibrium price (also called the

with

Eg�G� = ��t+


(
p

�1
− q

�2

)
�t�

Varg�G� = � 2�t+
{
pq

(
1
�1

+ 1
�2

)2

+
(

p

�2
1

+ q

�2
2

)}

�t

+
(

p

�1
− q

�2

)2


�t�1−
�t��

where $�·� is the standard normal density function.
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Figure 1
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Notes. The first panel compares the overall shapes of the density g and the normal density with the same mean and variance, the second one details the
shapes around the peak area, and the last two show the left and right tails. The dotted line is used for the normal density, and the solid line is used for the
model.

“shadow” price) of the security, p�t�, must satisfy the
Euler equation

p�t�= E�Uc�*�T ��T �p�T � � �t�

Uc�*�t�� t�
� ∀T ∈ 't�T0)� (6)

where Uc is the partial derivative of U with respect
to c. At this price p�t�, the investor will never change
his/her current holdings to invest in (either long
or short) the security, even though he/she is given
the opportunity to do so. Instead, in equilibrium the
investor finds it optimal to just consume the exoge-
nous endowment; i.e., c�t�= *�t� for all t ≥ 0.
In this section I shall derive explicitly the implica-

tions of the Euler equation (6) when the endowment
process *�t� follows a general jump-diffusion process
under the physical measure P:

d*�t�

*�t−�
= �1 dt+�1 dW1�t�+d

[
N�t�∑
i=1

�Ṽi−1�

]
� (7)

where the Ṽi ≥ 0 are any independent identically dis-
tributed, nonnegative random variables. In addition,
all three sources of randomness, the Poisson process
N�t�� the standard Brownian motion W1�t�, and the
jump sizes Ṽ � are assumed to be independent.

Although it is intuitively clear that, generally
speaking, the asset price p�t� should follow a similar
jump-diffusion process as that of the dividend pro-
cess *�t�, a careful study of the connection between
the two is needed. This is because p�t� and *�t�

may not have similar jump dynamics (see the remark
after Corollary 1). Furthermore, deriving explicitly the
change of parameters from *�t� to p�t� also provides
some valuable information about the risk premiums
embedded in jump-diffusion models.
The work in this section builds upon and extends

the previous work by Naik and Lee (1990), in which
the special case that Ṽi has a lognormal distribution
is investigated. Another difference is that Naik and
Lee (1990) require that the asset pays continuous div-
idends and there is no outside endowment process,
while here the asset pays no dividends and there is an
outside endowment process. Consequently, the pric-
ing formulae are different even in the case of lognor-
mal jumps.
For simplicity, as in Naik and Lee (1990), I shall

only consider the utility function of the special forms
U�c� t�= e−-t c.

.
if 0<.< 1� and U�c� t�= e−-t log�c� if

.= 0, where - > 0 (although most of the results below

1092 Management Science/Vol. 48, No. 8, August 2002



KOU
A Jump-Diffusion Model for Option Pricing

hold for more general utility functions). Under these
types of utility functions, the rational expectations
equilibrium price of (6) becomes

p�t�= E�e−-T �*�T ��.−1p�T � � �t�

e−-t�*�t��.−1
� (8)

Assumption. The discount rate - should be large
enough so that

- >−�1−.��1+
1
2
�2
1 �1−.��2−.�+
/�.−1�

1 �

where the notation /�a�
1 means /�a�

1 1= E'�Ṽ �a−1).

As will be seen in Proposition 1, this assumption
guarantees that in equilibrium the term structure of
interest rates is positive.

Proposition 1. Suppose /�.−1�
1 < �. (1) Letting

B�t�T � be the price of a zero coupon bond with maturity
T , the yield r 1= −�1/�T − t��log�B�t�T �� is a constant
independent of T ,

r = -+ �1−.��1−
1
2
�2
1 �1−.��2−.�

−
/�.−1�
1 > 0� (9)

(2) Let Z�t� 1= ertUc�*�t�� t� = e�r−-�t�*�t��.−1. Then
Z�t� is a martingale under P,

dZ�t�

Z�t−�
= −
/�.−1�

1 dt+�1�.−1� dW1�t�

+d

[
N�t�∑
i=1

�Ṽ .−1
i −1�

]
� (10)

Using Z�t�, one can define a new probability measure P∗:
dP∗/dP 1= Z�t�/Z�0�� Under P∗, the Euler Equation (8)
holds if and only if the asset price satisfies

S�t�= e−r�T−t�E∗�S�T � � �t�� ∀T ∈ 't�T0)� (11)

Furthermore, the rational expectations equilibrium price of
a (possibly path-dependent) European option, with the pay-
off 3S�T � at the maturity T , is given by

3S�t�= e−r�T−t�E∗�3S�T � � �t�� ∀ t ∈ '0�T )� (12)

Proof. See Appendix A. �

Given the endowment process *�t�, it must be
decided what stochastic processes are suitable for the
asset price S�t� to satisfy the equilibrium requirement
(8) or (11). I now postulate a special jump-diffusion
form for S�t�,

dS�t�

S�t−�
= �dt+�

{
4dW1�t�+

√
1−42 dW2�t�

}
+d

(
N�t�∑
i=1

�Vi−1�

)
� Vi = Ṽ 5

i � (13)

where W2�t� is a Brownian motion independent of
W1�t�. In other words, the same Poisson process
affects both the endowment *�t� and the asset price
S�t�, and the jump sizes are related through a power
function, where the power 5∈ �−���� is an arbitrary
constant. The diffusion coefficients and the Brownian
motion part of *�t� and S�t�, though, are totally differ-
ent. It remains to determine what constraints should
be imposed on this model so that the jump-diffusion
model can be embedded in the rational expectations
equilibrium requirement (8) or (11).

Theorem 1. Suppose /�.+5−1�
1 <� and /�.−1�

1 <�. The
model (13) satisfies the equilibrium requirement (11) if and
only if

� = r+�1�4�1−.�−
�/�.+5−1�
1 − /�.−1�

1 �

= -+ �1−.�

{
�1−

1
2
�2
1 �2−.�+�1�4

}
−
/�.+5−1�

1 � (14)

If (14) is satisfied, then under P∗,

dS�t�

S�t−�
= r dt−
∗E∗�Ṽ 5

i −1� dt

+� dW ∗�t�+d

[
N�t�∑
i=1

�Ṽ 5
i −1�

]
� (15)

Here, under P∗, W ∗�t� is a new Brownian motion, N�t� is
a new Poisson process with jump rate 
∗ = 
E�Ṽ .−1

i � =

�/�.−1�

1 + 1�, and {Ṽi� are independent identically dis-
tributed random variables with a new density under P∗:

f ∗
Ṽ
�x�= 1

/�.−1�
1 +1

x.−1fṼ �x�� (16)
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Proof. See Appendix A. �

The following corollary gives a condition under
which all three dynamics, *�t� and S�t� under P and
S�t� under P∗, have the same jump-diffusion form,
which is very convenient for analytical calculation.

Corollary 1. Suppose the family � of distributions
of the jump size Ṽ for the endowment process *�t� satisfies
that, for any real numbers a ∈ '0�1� and b ∈ �−����,

Ṽ b ∈ � and const ·xa−1fṼ �x� ∈ � � (17)

where the normalizing constant, const, is �/�a−1�
1 + 1�−1

(provided that /�a−1�
1 < �). Then the jump sizes for the

asset price S�t� under P and the jump sizes for S�t� under
the rational expectations risk-neutral measure P∗ all belong
to the same family � .

Proof. Immediately follows from (7), (13), and
(16). �

Condition (17) essentially requires that the jump
size distribution belongs to the exponential family.
It is satisfied if log�V � has a normal distribution or
a double exponential distribution. However, the log
power-type distributions, such as log t-distribution,
do not satisfy (17).

5. Option Pricing
In this section I will compute the rational expectations
equilibrium option-pricing formula (12) explicitly for
the European call and put options. For notational sim-
plicity, I will drop ∗ in the risk-neutral notation, i.e.,
write �1 instead of �∗

1, etc. To compute (12), one has to
study the distribution of the sum of the double expo-
nential random variables and normal random vari-
ables. Fortunately, this distribution can be obtained
in closed form in terms of the Hh function, a special
function of mathematical physics.

5.1. Hh Functions
For every n ≥ 0, the Hh function is a nonincreasing
function defined by:

Hhn�x� =
∫ �

x
Hhn−1�y�dy = 1

n!
∫ �

x
�t−x�ne−t2/2 dt ≥ 0�

n= 0�1�2� � � � (18)

Hh−1�x� = e−x2/2 =√
28$�x�� Hh0�x�=

√
28%�−x�9

see Abramowitz and Stegun (1972, p. 691). The Hh
function can be viewed as a generalization of the
cumulative normal distribution function.
The integral in (18) can be evaluated very fast by

many software packages (for example, Mathematica).8

In addition,

Hhn�x� = 2−n/2√8e−x2/2

×
{

1F1�
1
2n+ 1

2�
1
2�

1
2x

2�√
2;�1+ 1

2n�
−x

1F1�
1
2n+1� 3

2�
1
2x

2�

;� 12+ 1
2n�

}
�

where 1F1 is the confluent hypergeometric function.
A three-term recursion is also available for the Hh
function (see pp. 299–300 and p. 691 of Abramowitz
and Stegun 1972):

nHhn�x�=Hhn−2�x�−xHhn−1�x�� n≥ 1� (19)

Therefore, one can compute all Hhn�x��n ≥ 1, by
using the normal density function and normal dis-
tribution function. The Hh function is illustrated in
Figure 2.

5.2. European Call and Put Options
Introduce the following notation: For any given prob-
ability P, define

<�����
�p��1��29a�T � 1= P�Z�T �≥ a��

where Z�t� = �t + � W�t� +∑N�t�
i=1 Yi�Y has a dou-

ble exponential distribution with density fY �y� ∼ p ·
�1e

−�1y1�y≥0� + q · �2e
y�21�y<0�, and N�t� is a Poisson

process with rate 
. The pricing formula of the call
option will be expressed in terms of < , which in
turn can be derived as a sum of Hh functions. An
explicit formula for < will be given in Theorem B.1 in
Appendix B.

8 A short code (about seven lines) can be downloaded from
the author’s Web page. Note that the integrand in (18) has
a maxima at �x + √

x2+4n�/2; therefore, to numerically com-
pute the integral, one should split the integral more around the
maxima.
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Figure 2 The Hh Function for n = 1�3�5 with the Steepest Curve for n = 5 and the Flattest Curve for n = 1
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Theorem 2. From (12), the price of a European call
option 9 is given by

3c�0� = S�0�<
(
r+ 1

2
�2−
/��� 
̃� p̃� �̃1� �̃29

log�K/S�0���T
)

−Ke−rT ·<
(
r− 1

2
�2−
/���
�p��1��29

log�K/S�0���T
)
� (20)

where

p̃ = p

1+ /
· �1

�1−1
� �̃1 = �1−1�

�̃2 = �2+1� 
̃= 
�/+1�� / = p�1

�1−1
+ q�2

�2+1
−1�

The price of the corresponding put option, 3p�0�, can be
obtained by the put-call parity:

3p�0�−3c�0� = e−rTE∗��K−S�T ��+− �S�T �−K�+�

= e−rTE∗�K−S�T ��= Ke−rT −S�0��

9 To give a numerical example, if �1 = 10��2 = 5�
= 1� p= 0�4�� =
0�16� r = 5%� S�0� = 100�K = 98�T = 0�5� then (20) yields the call
price 9.14732. Although in the pricing formula < involves infinite
series, my experience suggests that numerically only the first 10 to
15 terms in the series are needed for most applications.

The result (20) resembles the Black-Scholes for-
mula for a call option under the geometric Brown-
ian motion model, with < taking the place of %. The
proof of Theorem 2 is similar to that of Theorem 3 in
Kou and Wang (2001), hence is omitted.
Now I consider the problem of pricing options on

futures contracts. Assume, for now, that the term
structure of interest rate is flat, and r is a constant.
Then the futures price, F �t�T ∗�, with delivery date T ∗,
is given by F �t�T ∗�= E∗�S�T ∗� � �t�= er�T

∗−t�S�t�.

Corollary 2. The price of the European call option on
a futures contract is given by

3c�F �D�F �0�T ∗��T �

=D ·
{
F �0�T ∗�<

(
1
2
�2−
/��� 
̃� p̃� �̃1� �̃29

log
(

K

F�0�T ∗�

)
�T

)
− K<

(
−1
2
�2−
/���


�p��1��29 log
(

K

F�0�T ∗�

)
�T

)}
�

where D= e−rT . The put option can be priced according to
the put-call parity:

3p�F �D�F �0�T ∗��T �−3c�F �D�F �0�T ∗��T �

= e−rT �K−F �0�T ∗���
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Proof. Since �F �T �T ∗� − K�+ = er�T
∗−T��S�T � −

Ke−r�T ∗−T��+, we have

E'e−rT �F �T �T ∗�−K�+)

= er�T
∗−T�

{
S�0�<

(
r+ 1

2
�2−
/��� 
̃� p̃� �̃1� �̃29

log�Ke−r�T ∗−T�/S�0���T
)

−Ke−r�T ∗−T�e−rT<

(
r− 1

2
�2−
/���
�p�

�1��29 log�Ke
−r�T ∗−T�/S�0���T

)}
= e−rT

{
F �0�T ∗�<

(
r+ 1

2
�2−
/��� 
̃� p̃� �̃1� �̃29

log�K/F �0�T ∗��+ rT �T

)
−K<

(
r− 1

2
�2−
/���
�p��1��29

log�K/F �0�T ∗��+ rT �T

)}
�

from which the conclusion follows by noting that
P��r + ��T + �W�T� +∑N�T�

i=1 Yi ≥ a + rT � = P��T +
�W�T�+∑N�T�

i=1 Yi ≥ a�. �

Using the fact that for every t ≥ 0, Z�t� converges in
distribution to �t+�W�t� as both �1 →� and �2 →
�, one easily gets the following corollary.

Corollary 3. (1) As the jump size gets smaller and
smaller, the pricing formulae in Theorem 2 and Corollary
2 degenerate to the Black–Scholes formula and Black’s
futures option formula. More precisely, as both �1 → �
and �2 →� while all other parameters remain fixed,

3c�0� → S�0�%�b′+�−Ke−rT%�b′−��

3c�F �0� → e−rT �F �0�T ∗�%�b′+� F �−K%�b′−� F ���

where

b′± 1= log�S�0�/K�+ �r± ��2/2��T

�
√
T

�

b′±� F 1= log�F �0�T ∗�/K�±�2T/2

�
√
T

�

(2) If the jump rate is zero, i.e., 
= 0, then the pricing
formulae again degenerate to the Black–Scholes and Black’s
futures option formulae, respectively.

Figure 3 Midmarket and Model-Implied Volatilities for Japanese
LIBOR Caplets in May 1998

Notes. The parameters used in the fitted model are: for the two-year caplet
��1� = 3�7� ��2� = 1�8� p= 0�04� 	= 1�4� 
 = 0�21; and for the nine-year caplet
��1� = 2�3� ��2� = 1�8� p = 0�09� 	= 0�2� 
 = 0�09.

5.3. The “Volatility Smile”
To illustrate that the model can produce “implied
volatility smile,” I consider a real data set used first
in Andersen and Andreasen (2000) for two-year and
nine-year caplets in the Japanese LIBOR market as of
late May 1998. Figure 3 shows both observed implied
volatility curves and calibrated implied volatility
curves derived by using the futures option formula
in Corollary 2, with the discount parameter D being
the corresponding bond prices and the underlying
asset being the LIBOR rate. For details of calibration
and the theoretical justification of using the futures
option formula for caplets; see Glasserman and Kou
(1999).
I should emphasize that this example is not meant

to be an empirical test of the model; it only serves as
an illustration to show that the model can produce a
close fit even to a very sharp volatility skew.

6. Limitations of the Model
There are several limitations of the model. First,
one disadvantage of the model is that the pricing
formulae, although analytical, appear quite compli-
cated. This perhaps is not a major problem because
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the Hh function can be computed easily, and what
appears to be lengthy to human eyes might make lit-
tle difference in terms of computer programming, as
long as it is a closed-form solution.
Secondly, a more serious criticism is the difficul-

ties with hedging. Due to the jump part, the mar-
ket is incomplete, and the conventional riskless hedg-
ing arguments are not applicable here. However, it
should be pointed out that the riskless hedging is
really a special property of continuous-time Brownian
motion, and it does not hold for most of the alterna-
tive models. Even within the Brownian motion frame-
work, the riskless hedging is impossible if one wants
to do it in discrete time. For some suggestions about
hedging with jump risk, see, for example, Grünewald
and Trautmann (1996), Merton (1976), and Naik and
Lee (1990).
Finally, just like all models based on Lévy processes,

one empirical observation that the double exponential
jump-diffusion model cannot incorporate is the pos-
sible dependence structure among asset returns (the
so-called “volatility clustering effect”), simply because
the model assumes independent increments. Here a
possible way to incorporate the dependence is to use
some other point process, Ñ �t�� with dependent incre-
ments, to replace the Poisson process N�t�, while still
retaining the independence between the Brownian
motion, the jump sizes, and Ñ �t�. The modified model
no longer has independent increments, yet is simple
enough to produce closed-form solutions, at least for
standard call and put options. However, it seems dif-
ficult to get analytical solutions for path-dependent
options by using the new process Ñ �t� instead
of N�t�.
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Appendix A: Derivation of the Rational
Expectations

Proof of Proposition 1.
(1) Since B�T�T �= 1, Equation (8) yields

B�t�T �= e−-�T−t� E��*�T ��
.−1 � �t �

�*�t��.−1
� (A1)

Using the facts that

(
*�T �

*�t�

).−1
= exp

{
�.−1�

(
�1−

1
2
� 2
1

)
�T − t�

+�1�.−1��W1�T �−W1�t��

} N�T�∏
i=N�t�+1

Ṽ .−1
i �

E

(
N�T�∏

i=N�t�+1
Ṽ .−1

i

)
=

�∑
j=0

e−
�T−t� '
�T − t�)j

j! �/�.−1�
1 +1�j

= exp�
/�.−1�
1 �T − t���

Equation (A1) yields

B�t�T � = exp
[
−�T − t�

{
-− �.−1�

(
�1−

1
2
� 2
1

)
−1
2
� 2
1 �.−1�2−
/�.−1�

1

}]
�

from which (9) follows.
(2) Note that (A1) implies

e−r�T−t� = E�Uc�*�T ��T �/Uc�*�t�� t� � �t �� (A2)

which shows that Z�t� is a martingale under P. Furthermore,
(7) and (9) lead to

Z�t� = �*�0��.−1e�r−-�t exp
{
�.−1�

(
�1−

1
2
� 2
1

)
t

+�1�.−1�W1�t�

} N�t�∏
i=1

Ṽ .−1
i

= �*�0��.−1 exp
{{

−1
2
� 2
1 �.−1�2−
/�.−1�

1

}
t

+�1�.−1�W1�t�

} N�t�∏
i=1

Ṽ .−1
i �

from which (10) follows. Now by (8) and (A2),

3S�t� =
E�Uc�*�T ��T �3S�T � � �t �

Uc�*�t�� t�
= e−rTE

{
Z�T�

Z�t�
3S�T � � �t

}
= e−rTE∗�3S�T � � �t �� �

Proof of Theorem 1. The Girsanov theorem for jump-diffusion
processes (see Björk et al. 1997) tells us that under P∗�W ′

1�t� 1=
W1�t�− �1�.− 1�t is a new Brownian motion, and under P∗ the
jump rate of N�t� is 
∗ = 
E�Ṽ .−1

i �= 
�/�.−1�
1 +1�� and Ṽi has a new
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density f ∗
Ṽ
�x�= �1/�/�.−1�

1 +1��x.−1fṼ �x�� Therefore, the dynamics of
S�t� is given by

dS�t�

S�t−�
= �dt+��4dW1�t�+

√
1−42 dW2�t��+�

[
N�t�∑
i=1

�Ṽ 5
i −1�

]

= ��+�1�4�.−1�� dt+��4dW ′
1�t�+

√
1−42 dW2�t��

+�

[
N�t�∑
i=1

�Ṽ 5
i −1�

]
�

Because

E∗�Ṽ 5
i � =

∫ �

0
x5 1

/�.−1�
1 +1

x.−1fṼ �x�dx

= 1

/�.−1�
1 +1

E�Ṽ .+5−1�= /�.+5−1�
1 +1

/�.−1�
1 +1

�

we have 
∗�E∗�Ṽ 5
i �−1�= 
�/�.+5−1�

1 − /�.−1�
1 �. Therefore,

dS�t�

S�t−�
= ��+�1�4�.−1�+
�/.+5−1− /.−1�� dt

−
∗�E∗�Ṽ 5
i �−1� dt+��4dW ′

1�t�+
√
1−42 dW2�t��

+�

[
N�t�∑
i=1

�Ṽ 5
i −1�

]
�

Hence, to satisfy the rational equilibrium requirement S�t� =
e−r�T−t�E∗�S�T � � �t �� we must have �+ �1�4�.− 1�+ 
�/.+5−1 −
/.−1� = r� from which (14) follows. If (14) is satisfied, under the
measure P∗, the dynamics of S�t� is given by

dS�t�

S�t−�
= r dt−
∗�E∗�Ṽ 5

i �−1� dt+��4dW ′
1�t�+

√
1−42 dW2�t��

+�

[
N�t�∑
i=1

�Ṽ 5
i −1�

]
�

from which (15) follows. �

Appendix B: Derivation of the < Function

B.1. Decomposition of the Sum of Double Exponential
Random Variables

The memoryless property of exponential random variables yields
��+−�− � �+ > �−�

d= �+ and ��+−�− � �+ < �−�
d=−�−� thus leading

to the conclusion that

�+ −�− d=
{

�+� with probability �2/��1+�2�

−�−� with probability �1/��1+�2�

}
� (B1)

because the probabilities of the events �+ > �− and �+ < �− are
�2/��1 +�2� and �1/��1 +�2�, respectively. The following proposi-
tion extends (B1).

Proposition B.1. For every n ≥ 1, we have the following
decomposition

n∑
i=1

Yi

d=
{ ∑k

i=1 �
+
i � with probability Pn�k� k = 1�2� � � � �n

−∑k
i=1 �

−
i � with probability Qn�k� k = 1�2� � � � �n

}
� (B2)

where Pn�k and Qn�k are given by

Pn�k =
n−1∑
i=k

(
n−k−1
i−k

)(
n

i

)
·
(

�1

�1+�2

)i−k( �2

�1+�2

)n−i

piqn−i�

1≤ k ≤ n−1�

Qn�k =
n−1∑
i=k

(
n−k−1
i−k

)(
n

i

)
·
(

�1

�1+�2

)n−i( �2

�1+�2

)i−k

pn−iqi�

1≤ k ≤ n−1�Pn�n = pn� Qn�n = qn�

and
(0
0

)
is defined to be one. Here �+

i and �−
i are i.i.d. exponential random

variables with rates �1 and �2, respectively.

As a key step in deriving closed-form solutions for call and
put options, this proposition indicates that the sum of i.i.d. double
exponential random variables can be written, in distribution, as a
(randomly) mixed gamma random variable.10 To prove Proposition
B.1, the following lemma is needed.

Lemma B.1.

n∑
i=1

�+
i −

m∑
j=1

�−
j

d=



k∑
i=1

�i� with prob.(
�1

�1+�2

)n−k(
�2

�1+�2

)m ·(n−k+m−1
m−1

)
�

k = 1� � � � �n

−
l∑

i=1
�i� with prob.(

�1
�1+�2

)n(
�2

�1+�2

)m−l ·
(
n− l+m−1

n−1

)
�

l = 1� � � � �m



� (B3)

Proof. Introduce the random variables A�n�m� = ∑n
i=1 �i −∑m

j=1 �̃j . Then

A�n�m�
d=
{
A�n−1�m−1�+�+� �2/��1+�2�

A�n−1�m−1�−�−� �1/��1+�2�

}

d=
{
A�n�m−1�� �2/��1+�2�

A�n−1�m�� �1/��1+�2�

}
�

via (B1). Now imagine a plane with the horizontal axis repre-
senting the number of ��+

i � and the vertical axis representing the
number of ��−

j �. Suppose we have a random walk on the integer
lattice points of the plane. Starting from any point �n�m�, n�m≥ 1,
the random walk goes either one step to the left with probability
�1/��1+�2� or one step down with probability �2/��1 +�2�, and

10 A result similar to the decomposition (B2) was first discovered
by Shanthikumar (1985), although (B2) gives a more explicit cal-
culation of Pn�k and Qn�k. Furthermore, the proofs are totally dif-
ferent: A combinatorial approach is used here, while the proof in
Shanthikumar (1985) is based on the Laplace transform.
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the random walk stops once it reaches either the horizontal or ver-
tical axis. For any path from �n�m� to �k�0��1≤ k≤ n, it must reach
�k�1� first before it makes a final move to �k�0�. Furthermore, all the
paths going from �n�m� to �k�1� must have exactly n−k lefts and
m− 1 downs, whence the total number of such paths is

(
n−k+m−1

m−1
)
.

Similarly, the total number of paths from �n�m� to �0� l�, 1≤ l ≤m,
is
(
n−l+m−1

n−1
)
. Thus,

A�n�m�
d=



k∑
i=1

�i� with prob.( �1

�1+�2

)n−k( �2

�1+�2

)m ·(n−k+m−1
m−1

)
�

k = 1� � � � �n

−
l∑

i=1
�i� with prob.( �1

�1+�2

)n( �2

�1+�2

)m−l ·
(
n− l+m−1

n−1

)
�

l = 1� � � � �m



�

and the lemma is proven. �

Proof of Proposition B.1. By the same analogy used in
Lemma B.1 to compute probability Pn�k, 1 ≤ k ≤ n, the probability
weight assigned to

∑k
i=1 �

+
i when we decompose

∑n
i=1 Yi , it is equiv-

alent to consider the probability of the random walk ever reach
�k�0� starting from the point �i�n− i��0 ≤ i ≤ n, with probability
of starting from �i�n− i� being

(
n
i

)
piqn−i. Note that the point �k�0�

can only be reached from points �i� n− i� such that k ≤ i ≤ n− 1,
because the random walk can only go left or down, and stops
once it reaches the horizontal axis. Therefore, for 1 ≤ k ≤ n− 1�
(B3) leads to

Pn�k =
n−1∑
i=k

P�going from �i�n− i� to �k�0�� ·P�starting from �i�n− i��

=
n−1∑
i=k

(
�1

�1+�2

)i−k( �2

�1+�2

)n−i(i+ �n− i�−k−1
�n− i�−1

)
·
(
n

i

)
piqn−i

=
n−1∑
i=k

(
n−k−1
n− i−1

)(
n

i

)(
�1

�1+�2

)i−k( �2

�1+�2

)n−i

piqn−i

=
n−1∑
i=k

(
n−k−1
i−k

)(
n

i

)(
�1

�1+�2

)i−k( �2

�1+�2

)n−i

piqn−i �

Of course, Pn�n = pn. Similarly, we can compute Qn�k:

Qn�k =
n−1∑
i=k

P�going from �n−i�i� to �0�k��·P�starting from �n−i�i��

=
n−1∑
i=k

(
�1

�1+�2

)n−i( �2

�1+�2

)i−k(�n−i�+i−k−1
�n−i�−1

)
·
(

n

n−i

)
pn−iqi

=
n−1∑
i=k

(
n−k−1
i−k

)(
n

i

)(
�1

�1+�2

)n−i( �2

�1+�2

)i−k

pn−iqi�

with Qn�n = qn. Incidentally, we have also shown that
∑n

k=1�Pn�k +
Qn�k�= 1. �

B.2. Results on Hh Functions
First of all, note that Hhn�x� → 0, as x → �, for n ≥ −1; and
Hhn�x� → �, as x → −�, for n ≥ 1; and Hh0�x� =

√
28%�−x� →√

28, as x→−�. Also, for every n≥−1, as x→�,

lim
x→�

Hhn�x�/

{
1

xn+1 e
−x2/2

}
= 1� (B4)

and as x→−�,

Hhn�x�=O��x�n�� (B5)

Here (B4) follows from Equations (19.14.3) and (19.8.1) in
Abramowitz and Stegun (1972); and (B5) is clearly true for n=−1,
while for n≥ 0 note that as x→−�,

Hhn�x� =
1
n!
∫ �

x
�t−x�ne−t2/2 dt

≤ 2n

n!
∫ �

−�
�t�ne−t2/2 dt+ 2n

n!
∫ �

−�
�x�ne−t2/2 dt =O��x�n��

For option pricing it is important to evaluate the integral
In�c9.�5�*�,

In�c9.�5�*� 1=
∫ �

c
e.xHhn�5x−*�dx� n≥ 0� (B6)

for arbitrary constants .�c, and 5.

Proposition11 B.2. (1) If 5 > 0 and . �= 0, then for all n≥−1,

In�c9.�5�*� = − e.c

.

n∑
i=0

(
5

.

)n−i

Hhi�5c−*�

+
(
5

.

)n+1√28
5

e
.*
5

+ .2

252 %

(
−5c+*+ .

5

)
� (B7)

(2) If 5 < 0 and . < 0, then for all n≥−1�

In�c9.�5�*� = − e.c

.

n∑
i=0

(
5

.

)n−i

Hhi�5c−*�

−
(
5

.

)n+1√28
5

e
.*
5

+ .2

252 %

(
5c−*− .

5

)
� (B8)

Proof. Case 1. 5 > 0 and . �= 0. Since, for any constant . and
n ≥ 0� e.xHhn�5x−*�→ 0 as x →� thanks to (B4), integration by
parts leads to

In = 1
.

∫ �

c
Hhn�5x−*�de.x

= − 1
.
Hhn�5c−*�e.c + 5

.

∫ �

c
e.xHhn−1�5x−*�dx�

11 If 5> 0 and .= 0, then for all n≥ 0� In�c9.�5�*�= 1
5
Hhn+1�5c−

*�. If 5 ≤ 0 and . ≥ 0, then for all n ≥ 0� In�c9.�5�*�=�. If 5= 0
and . < 0, then for all n ≥ 0� In�c9.�5�*� =

∫ �
c
e.xHhn�−*�dx =

Hhn�−*�e.c .
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In other words, we have a recursion, for n ≥ 0� In =
−�e.c/.�Hhn�5c−*�+ �5/.�In−1 with

I−1 = √
28
∫ �

c
e.x$�−5x+*�dx

=
√
28
5

exp
{
.*

5
+ .2

252

}
%

(
−5c+*+ .

5

)
�

Solving it yields, for n≥−1,

In = − e.c

.

n∑
i=0

(
5

.

)i

Hhn−i�5c−*�+
(
5

.

)n+1
I−1

= − e.c

.

n∑
i=0

(
5

.

)n−i

Hhi�5c−*�

+
(
5

.

)n+1√28
5

exp
{
.*

5
+ .2

252

}
%

(
−5c+*+ .

5

)
�

where the sum over an empty set is defined to be zero.
Case 2. 5 < 0 and . < 0. In this case, we must also have, for

n≥ 0 and any constant .< 0� e.xHhn�5x−*�→ 0 as x→�, thanks
to (B5). Using integration by parts, we again have the same recur-
sion, for n≥ 0� In =−�e.c/.�Hhn�5c−*�+ �5/.�In−1, but with a dif-
ferent initial condition

I−1 = √
28
∫ �

c
e.x$�−5x+*�dx

= −
√
28
5

exp
{
.*

5
+ .2

252

}
%

(
5c−*− .

5

)
�

Solving it yields (B8), for n≥−1. �

B.3. Sum of Double Exponential and the Normal
Random Variables

Proposition B.3. Suppose {�1� �2� � � � } is a sequence of i.i.d. expo-
nential random variables with rate �> 0, and Z is a normal random vari-
able with distribution N�0�� 2�. Then for every n ≥ 1, we have: (1) The
density functions are given by

fZ+∑n
i=1 �i �t�= ����n

e����
2/2

�
√
28

e−t�Hhn−1

(
− t

�
+��

)
� (B9)

fZ−∑n
i=1 �i �t�= ����n

e����
2/2

�
√
28

et�Hhn−1

(
t

�
+��

)
� (B10)

(2) The tail probabilities are given by

P

(
Z+

n∑
i=1

�i ≥ x

)
= ����n

�
√
28

e����
2/2In−1

(
x9−��− 1

�
�−��

)
� (B11)

P
(
Z−

n∑
i=1

�i ≥ x

)
= ����n

�
√
28

e����
2/2In−1

(
x9��

1
�
�−��

)
� (B12)

Proof. Case 1. The densities of Z+∑n
i=1 �i and Z−∑n

i=1 �i� We
have

fZ+∑n
i=1 �i �t� =

∫ �

−�
f∑n

i=1 �i �t−x�fZ�x�dx

= e−t���n�
∫ t

−�

ex��t−x�n−1

�n−1�!
1

�
√
28

e−x2/�2�2� dx

= e−t���n�e����
2/2
∫ t

−�

�t−x�n−1

�n−1�!
1

�
√
28

e−�x−�2��2/�2�2� dx�

Letting y = �x−� 2��/� yields

fZ+∑n
i=1 �i �t� = e−t�e����

2/2�n−1�n

×
∫ t/�−��

−�

�t/� −y−���n−1

�n−1�!
1√
28

e−y2/2 dy

= e����
2/2

√
28

��n−1�n�e−t�Hhn−1�−t/� +����

because �1/�n− 1�!� ∫ a

−��a− y�n−1e−y2/2 dy = Hhn−1�−a�. The deriva-
tion of fZ−∑n

i=1 �i �t� is similar.
Case 2. P�Z+∑n

i=1 �i ≥ x� and P�Z−∑n
i=1 �i ≥ x�. From (B9), it is

clear that

P

(
Z+

n∑
i=1

�i ≥ x

)
= ����ne����

2/2

�
√
28

∫ �

x
e−t�Hhn−1

(
− t

�
+��

)
dt

= ����ne����
2/2

�
√
28

In−1

(
x9−��− 1

�
�−��

)
�

by (B6). We can compute P�Z−∑n
i=1 �i ≥ x� similarly. �

Theorem B.1. With 8n 1= P�N �T � = n� = e−
T �
T �n/n! and In in
Proposition B.2, we have

P�Z�T �≥ a� = e���1�
2T/2

�
√
28T

�∑
n=1

8n

n∑
k=1

Pn�k��
√
T�1�

k

× Ik−1

(
a−�T9−�1�−

1

�
√
T
�−��1

√
T

)

+ e���2�
2T/2

�
√
28T

�∑
n=1

8n

n∑
k=1

Qn�k��
√
T�2�

k

× Ik−1

(
a−�T9�2�

1

�
√
T
�−��2

√
T

)
+80%

(
− a−�T

�
√
T

)
�

Proof. By the decomposition (B2),

P�Z�T �≥ a� =
�∑
n=0

8nP
(
�T +�

√
TZ+

n∑
j=1

Yj ≥ a

)
= 80P��T +�

√
TZ ≥ a�

+
�∑
n=1

8n

n∑
k=1

Pn�kP
(
�T +�

√
TZ+

k∑
j=1

�+
j ≥ a

)

+
�∑
n=1

8n

n∑
k=1

Qn�kP

(
�T +�

√
TZ−

k∑
j=1

�−
j ≥ a

)
�

The result now follows via (B11) and (B12) for �1 > 1 and
�2 > 0. �
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