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Abstract

This paper presents an approach to dynamic factor modeling in which variations can be
idiosyncratic, block-specific, or common across blocks and units. Existing two level factor mod-
els do not usually account for variations at the block level which implies that these can be
confounded with genuine common co-movements in the data. Specifying the block structure
also facilitates interpretation of shocks to economic activity. Our approach is aimed at three
types of applications: (i) decomposition of variance to assess the relative importance of different
shocks, (ii) understanding how block-specific shocks impact overall economic activity, and (iii)
monitoring and economic forecasting. We estimate a three level model for housing and find ev-
idence of aggregate housing shocks, but these are small relative to common regional shocks and
shocks to individual series within regions. We also estimate a model for real economic activity
excluding housing. The 315 time series are organized into six blocks according to the timing of
data releases. The results suggest that block-specific variations are important. Data released
in the household survey component of the monthly employment situation report turn out to
be mostly idiosyncratic and bear little information about the state of real economic activity.
Finally, we estimate a four level model consisting of 402 series organized into an output, an
employment, and a demand block that each are broken down into sub-blocks. According to this
model, the level of real economic activity at the end of our sample in February 2008 was about
1.5 standard deviations below average, but still well above the level of 3 standard deviations
below average reached at the trough of the recession in 2001.
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1 Introduction

Macroeconomists define the business cycle as common fluctuations across a wide range of economic

variables. Starting with the seminal work by Geweke (1977), dynamic factor models have been used

to extract the common fluctuations in economic variables. As predicted by economic theory and

verified by numerous empirical papers with Sargent and Sims (1977) being the first, the business

cycle fluctuations can be captured by a relatively low dimensional factor compared to the large

number of economic time series available. This has lead to intensive research in the last decade

on principal component type estimates that are able to extract the low dimensional factor under

very weak conditions on the underlying time series and factors. Work by Stock and Watson (2002)

and Forni et al. (2005) stimulated much interest in this area of research. Thus, whereas early work

extracts the common factors from a relatively small number of series, the more modern practice is

to extract them from large panels of data. These are usually constructed by taking a number of

individual series from different data releases produced by statistical agencies often with the intent

to give a balanced representation to the various sectors of the economy. In this paper we propose a

new dynamic factor model that exploits the block structure of data releases by statistical agencies,

information on the sectoral structure of the economy, and prior views about how economy activity

might be related across market, region, industry etc. to improve the estimation and interpretation

of the low dimensional business cycle factor.1

We develop a state space estimation methodology for a highly flexible hierarchical (multi-level)

dynamic factor model. The hierarchy is produced by splitting a large panel of data collected into

a much smaller number of blocks, each of which consists of a reasonably large number of series.

Each block is driven by its own block-specific factors that has a component driven by factors that

are common across all of the blocks. Higher level models can be obtained by further splitting some

blocks into finer sub-blocks. This hierarchical structure implies that the transition equation for

the common factors at a given level has a time varying intercept that depends on the common

factors at the next level and must be taken into account in the filtering algorithm. The state

space methodology applied to this hierarchical structure naturally facilitates the monitoring and

interpretation of changes in the state of the economy as new data arrives in real time. It also allows

us to easily deal with missing data, data collected at different frequencies, and can handle a much

larger number of time series than the standard state space approach to dynamic factor models.
1The widely used macroeconomic data provided by Stock and Watson (2006) is already loosely organized around

blocks of data on output, consumption, prices, etc. Although it is not always clear which block some series belong
to, this ambiguity does not matter as the block structure is not exploited in the analysis. In contrast, in one of our
main applications data are placed into blocks by data source. For example, we might have a retail sales block based
on the underlying detail of the the Census Bureau’s monthly retail sales release.
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We work with large dimensional panels, meaning that the number of cross-section units (N)

and time series observations (T ) are both large, but that the number of blocks, B, is much smaller

than N . Let i = 1, . . . , N be an index for units, t = 1, . . . , T be an index for time, and b = 1, . . . , B

be the index for blocks. Abstracting from dynamics to focus on the hierarchical structure for now,

an observation on economic variable/unit i belonging to block b observed at time t, denoted xbit,

is modeled as

xbit = λ′G.biGbt + eXbit, i = 1, ..., nb (1)

where Gbt is a set of kGb latent, block-specific factors, Nb is the total number of variables/units in

block b and eXbit is a purely idiosyncratic error (i.e., independent of all other errors and factors

but not necessarily an IID process). We posit that the latent block-specific factors are modeled as

depending on some common factors:

Gkbt = λ′F.bkFt + eGkbt (2)

where Ft is a vector of kF factors that are common across blocks and eGkbt is a block-specific idiosyn-

cratic error (i.e., independent of all other block specific errors and all factors but not necessarily

an IID process). Thus, variables/units within a block can be correlated through Ft or eGkbt, but

variables/units between blocks can be correlated only through Ft. In the terminology of multilevel

models, (1) is the level-1 equation, (2) is the level-2 equation. A stochastic process for Ft would

constitute a level-3 equation. If the process for Ft did not depend on another higher level of factors

this would constitute a level-3 model.

The difference between a multilevel and a standard factor model is best understood when there

is a single common and a single block-specific factor (kG = kF = 1),

xbit = λG.bi(λF.b1Ft + eGb1t) + eXbit

= λbiFt + vbit (3)

where λbi = λG.biλF.b1 and

vbit = λG.bieGb1t + eXbit.

A standard factor model ignores the block structure and stacks all observations up irrespective of

which block an observation belongs to. The data are thus analyzed using the level-2 representation

xit = λiFt + vit.

We would obtain an exact factor model if {eGb1t : b = 1, ..., B} was a zero stochastic process.

We would obtain an ‘approximate factor model’ if vit is ‘weakly correlated’ across i and t. In
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practice, this means that the number of idiosyncratic errors that are serially and/or cross-sectionally

correlated cannot be too large. When this assumption is satisfied, the largest eigenvalue of the

population covariance matrix of the N×1 vector xt will increase with N , but the 2nd eigenvalue will

be bounded. To the extent that the sample principal components are consistent for the population

principal components, and the population principal components span the space of the underlying

factor, the sample principal components will consistently estimate the space spanned by the latent

factor as N, T →∞.

The approximate factor model does not rule out correlation within blocks per se. It merely

restricts extensive correlation between vbit and vbjt, a condition that will be satisfied if block

specific effects are absent. Alternatively it could be satisfied if the number of series in each block

was relatively small and as N → ∞, B → ∞ with Nb < ∞ for all blocks. However, the standard

approach to increasing the number of series is to increase the level of disaggregation within each

block. For example, one might start at the two digit industry level and then expand the number

of series by going to the three digit level and so on. In this case the largest eigenvalues of the

covariance matrix of X may not be sufficiently separated, and as noted in Boivin and Ng (2006)

and Onatski (2006) for a range of cases, the consequence is that the principal components estimator

may not estimate the factor space precisely. A multi-level model directly tackles this problem by

explicitly modeling the block structure. To illustrate, suppose we are interested in having a factor

for prices. Rather than estimating a single price factor from the collection of producer prices,

consumer prices, commodity prices, wages, and import prices, we can first find factors specific to

the sub-blocks separately. This would yield producer price factors, consumer price factors, and so

forth. Common price factors can then be found from the block factors and perhaps passed up to

a higher level with factors related to real activity. As the block-level factors are estimated using

more homogeneous data, we reduce the possibility that block-level variations are mis-identified as

factors common to a pooled panel of data. Further, we can expand the number of series in any of

the blocks holding the number of block specific factors fixed without running the risk that it will

affect the estimation of factors from the other blocks.

Explicitly modeling the dynamics at the individual, block, and the aggregate levels is useful in a

variety of economic models. Asset returns are commonly assumed to depend on a set of risk factors

where the proxy for the factor affecting all assets is the market factor. But in addition to the sources

of risk that all assets are exposed to, there might also be return variation that is specific to assets in

a given industry. To construct portfolios that are well diversified or shall be used as a hedge against

a certain type of risk, it is important to properly identify the different sources of comovement among

asset returns. A natural approach to do so is to start by studying the comovement of returns at the
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industry level and then to analyze to what extent the industry-factors are driven by a market-wide

source of comovement. As another example, one might argue that business cycle variations are

driven by different types of shocks related to global, regional or country-specific events as in Kose

et al. (2003). Here again, it seems natural to start by studying the comovement among different

business cycle indicators at the country-level, then to analyze to what extent countries in the same

region of the world are affected by the same source of common variation, and finally to identify the

global component behind the regional variation. Our hierarchical dynamic factor model naturally

lends itself to analyzing such empirical questions.

The proposed dynamic hierarchical factor model has two other advantages. First, it gives more

structure to the latent objects that are being estimated at each level. For example, factors extracted

from the retail sales block can directly be interpreted as a retail sales factor. Variations that are

common amongst the block-specific factors are naturally the common factors. Common, block-

specific, and purely idiosyncratic variations are clearly distinguished, making a decomposition of

variance analysis possible. Further, in many cases we can recreate aggregates produced by statistical

agencies within a block of data allowing us to decompose the shocks to well-known aggregates such

as private payroll employment. This goes part way in alleviating a common critique of factor

models, namely, that the factors do not have a meaningful economic interpretation. In our setup, a

sharp drop in the factor corresponding to the durable goods block without a concurrent drop in the

factors of the remaining blocks is a shock to the durable goods sector. In contrast, a simultaneous

drop in factors across blocks would be indicative of a general decline in the state of the real economy.

Second, different counter-factual experiments can be specified in our framework. Suppose we

want to assess the state of the economy following a hypothetical one percent drop in housing

activity. This can be accomplished by reducing each series in the housing block by one percent,

re-estimate the factor in the block, and then construct the counter-factual Ft, holding other block-

specific factors fixed. Alternatively, if we want to consider the state of economic activity following a

one percent reduction in home prices in the northeast, we would reduce the data of the appropriate

series by one percent, reconstruct the factor for the housing block, and subsequently the counter-

factual Ft. If on the other hand, we want to consider a one percent drop in all economic activity,

we would reduce all series in the panel by one percent, re-construct Gbt for all b, and subsequently

Ft. In each case, we can trace out the chain of effects that account for changes in Ft.

This paper sets up the model and the framework for estimation. How to use the model for

monitoring and counterfactual experiments will be discussed in a companion paper. Our goal here

is to show that block-level variations are significant, and that going from a two to a three level model

not only has statistical advantages, it also provides a better understanding of economic fluctuations.
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We consider three examples. The first uses housing data where the blocks are determined by

geography. The second uses six blocks of data on output unrelated to housing where the blocks are

defined according to the timing of data release. Building on this six block model for output, data

from the demand side are then added, leading to a four-level model for real economic activity. The

decomposition of variance in each case shows that block-level variations tend to be stronger than

the common variations, though both are small relative to the purely idiosyncratic component in

the series.

2 A Three Level Dynamic Factor Model

Denote the observed data by xD
it (possibly after logarithmic transformation), where i = 1, . . . N

index units and t = 1, . . . T index time. We have B blocks of data, each of size Nb. Thus,

N =
∑B

b=1 Nb is the total number of cross-section units in the panel. A three level ’static’ factor

model can be specified as

xD
bit = cb + ci + λ′G.bigbt + eXbit

gbkt = cg.k + λ′F.bkft + eGbkt

frt = cf.r + εFrt.

We use the notation that gbkt is the k-th factor specific to block b, while frt is the r-th common

factor. As cb and ci are not separately identifiable, we work with deviations from means as in Stock

and Watson (1989) and Kim and Nelson (2000). For i = 1, . . . N , let

Φi(L)xD
it = XD

it

and

Φi(L) =
(

1− φi1L− . . . φipL
p

)(
1− φi0L

)
.

By suitable choice of Φi(L), XD
it is covariance stationary. The first difference filter obtains if

φi1 = . . . = φip = 0 and φi0 = 1. If a series does not require transformation to be stationary, φi0 = 0.

A factor structure is sometimes imposed on variations not explained by the series’ own past. We

therefore also allow φij(s), j = 1, . . . , p to be non-zero, so that XD
it would be the residuals from

autoregressions in xD
it (or ∆xD

it ). Let mean(XD
i ) = T−1 ∑T

t=1 XD
it and std(XD

i ) be the corresponding

sample variance. Our multi-level factor model is defined in terms of the demeaned and standardized

data,

Xit =
XD

it −mean(XD
i )

std(XD
i )

.
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The mean zero block-specific factors are Gbkt = gbkt − µgk , and the mean zero common factors are

Frt = frt−µf.r for k = 1, . . . kb, r = 1, . . . KF .2 We now present a three-level dynamic factor model

for Xit.

There are a total number B of blocks of data. We assume that there are kb common factors Gb in

each block b = 1, . . . , B. Hence, there is a total number KG = (k1+. . .+kB) of block-specific factors.

We assume that these KG block-specific factors share a total of KF common factors F. Moreover,

we denote Nb the number of variables in block b. This implies a total number N = (N1 + . . .+NB)

of variables in the economy.

Each time series in a given block b is decomposed into a serially correlated idiosyncratic com-

ponent, eXbit, and a component ΛG.bi(L)Gbt which it shares with other variables in the same block.

The dynamics of each block-specific factor Gbt are decomposed into a serially correlated block-

specific component eGbt and a component ΛF.b(L)Ft which it shares with all other blocks. Finally,

the economy-wide factors Ft are assumed to be serially correlated. Let

Xbt =
(
Xbt.1 Xbt.2 . . . Xbt.Nb

)′

Gbt =
(
Gbt.1 Gbt.2 . . . Gbt.kb

)′
.

The model can be summarized by the following equations:

Xbt = ΛG.b0Gbt + . . . + ΛG.bsGb
Gb,t−sGb

+ eXbt, (4)

Gbt = ΛF.b0Ft + . . . + ΛF.bsF Ft−sF + eGbt (5)

Ft = ΨF.1Ft−1 + . . . + ΨF.qF Ft−qF + εFt (6)

eGbt = ΨG.b1eGb,t−1 + . . . + ΨG.bqGb
eGb,t−qGb

+ εGbt (7)

eXbit = ΨX.bi1eXbi,t−1 + . . . + ΨX.biqXb
eXbi,t−qXb

+ εXbit. (8)

The idiosyncratic components eXbi are AR processes of order qXbi with innovations,

εXbi ∼ N(0, σ2
Xbi).

Similarly, the block-specific component is an AR process of order qGb and the block-specific inno-

vations are normally distributed. For b = 1, . . . , B:

εGb ∼ N(0, σ2
Gb).

Finally, the economy-wide factors Fkt are AR processes of order qFk and we also assume a normal

distribution for the innovations to the economy-wide factors:

εFk ∼ N(0, σ2
Fk

).
2Estimates of parameters µg and µf can be uncovered once the model parameters are estimated. For graphing

purposes, it is actually more useful to standardize estimates Gbt so they can be compared across blocks.

6



The dynamics of the model can be enriched by allowing for stochastic volatility and markov switch-

ing effects. The current specification allows the lag order of the factor loading matrix and the factor

specific errors to differ across blocks as well as within blocks. Similarly, the lag order of the id-

iosyncratic errors can also vary across blocks and units. Thus, sGb = (sGb.1, . . . sGb.Nb
) is a vector.

Similarly, qXb = (qXb.1, . . . qXb.Nb
) and qGb = (qGb.1, . . . qGb.kb

) are also vectors with possibly non-

identical entries. Stacking up the data by blocks and letting

Xt =
(
X1t X2t . . . XBt

)′

Gt =
(
G1t G2t . . . GBt

)′
,

we have

Xt = ΛG(L)Gt + eXt

Gt = ΛF (L)Ft + eGt

ΨX(L)eXt = εXt

ΨG(L)eGt = εGt

ΨF (L)Ft = εFt.

Let sG = maxb(maxi∈Nb sGb.i), qX = maxb(maxi∈Nb qXbi), and qG = maxb(maxr∈kb
qGb.r). The

model can be compactly written in matrix form as

ΛG(L) = ΛG0 + ΛG1L + . . . + ΛGsG
LsG

ΛF (L) = ΛF0 + ΛF1L + . . . + ΛFsF LsF

ΨX(L) = IN −ΨX1L− . . .−ΨXqX LqX

ΨG(L) = IKG −ΨG1L− . . .−ΨGqGLqG

ΨF (L) = IKF −ΨF1L− . . .−ΨFqF LqF .

The polynomial matrices in L above have the following dimensions:

ΛG(L) is a N ×KG matrix polynomial of order sG

ΛF (L) is a KG ×KF matrix polynomial of order sF

ΨX(L) is a N ×N matrix polynomial of order qX

ΨG(L) is a KG ×KG matrix polynomial of order qG

ΨF (L) is a KF ×KF matrix polynomial of order qF
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To ensure identification of the block-specific factors G, we assume that for s = 0, . . . , sG

ΛG.s =





ΛG.1s 0 · · · 0

0 ΛG.2s
...

... . . . 0
0 · · · 0 ΛG.Bs





The block-diagonal structure of ΛG.s implies that each block Xb of variables exclusively loads on the

block-specific factors Gb. Moreover, we assume that at lag 0, and for each b = 1, . . . , B, each ΛG.b0,

is a Nb × kb matrix whose upper-left kb × kb block is lower-triangular with ones on the diagonal.

More precisely, for kb = 3, we would have

ΛG.b0 =





1 0 0
ΛG.b02,1 1 0
ΛG.b03,1 ΛG.b03,2 1
ΛG.b04,1 ΛG.b04,2 ΛG.b04,3

. . .
ΛG.b0KG,1 ΛG.b0KG,2 ΛG.b0KG,3





This implies that the first variable within each block exclusively loads on the contemporaneous

observation of the first block-specific factor, the second exclusively on the contemporaneous obser-

vations of the two first block-specific factors and so on. We order the variables in each block such

that the first kb series are variables of economic interest and yet have independent information.

The loadings of the remaining variables in each block are unrestricted.

To ensure identification of the economy-wide factors F , we assume that the upper KF × KF

submatrix of ΛF.0 is lower triangular, i.e. for KF = 3, we have

ΛF.0 =





1 0 0
ΛF.02,1 1 0
ΛF.03,1 ΛF.03,2 1
ΛF.04,1 ΛF.04,2 ΛF.04,3

. . .
ΛF.0KG,1 ΛF.0KG,2 ΛF.0KG,3





This normalization assumes that the blocks are ordered so that the common factors load heavily on

the first block-specific factors. An alternative is to normalize the variance of εF to unity. However,

the diagonal elements of ΛF0 will still have to be constrained to be positive, even though they will

not be constrained to be one.
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2.1 The State Space Representation

Let Θ = (ΘF ; ΘG; ΘX) where ΘF ,ΘG are parameters that characterize Ft, Gt respectively, and ΘX

are the remaining parameters. By assumption,

(i) xt |= Θ|Gt,ΘX (ii) Gt |= Θ|Ft,ΘG, (iii) Ft |= Θ|ΘF

where |= stands for stochastic independence. Stepwise specification of the sub-models lead to the

statistical model

f(xt, Ft, Gt; Θ) = f(xt|Gt; ΘX)f(Gt|Ft; ΘG)f(Ft; ΘF ).

The data density is

f(xt; Θ) =
∫ ∫

f(xt|Gt; ΘX)f(Gt|Ft; ΘG)f(Ft|ΘF )dGtdFt.

Because of the assumed hierarchical structure, the data density can be constructed recursively from

the pair of equations:

f(Gt|ΘF ,ΘG) =
∫

f(Gt|Ft; ΘG)f(Ft|ΘF )dFt

f(xt|Θ) =
∫

f(xt|Gt; ΘX)f(Gt|ΘF ,ΘG)dGt.

Here, f(xt;Gt; ΘG) is the measurement equation and f(Gt|Ft; ΘF ) is the structural model for the

latent factor Ft. As discussed in Mouchart and Martin (2003), strong identification of the mea-

surement model is required to obtain weak identification of the statistical model. Our assumptions

ensure that ΘX = (ΨX ,ΣX ,ΛG) are identified from the measurement model, ΘG = (ΨG,ΣG,ΛF )

are identified from the structural model for Gt, and ΘF = (ΨF ,ΣF ) are identified from the transi-

tion equation for Ft. These equations are now made precise.

Common Factor Dynamics The common factors evolve according to

ΨF (L)Ft = εFt,

where ΨF (L) = IKF −ΨF.1L− . . .ΨF.qF LqF . This can be rewritten in companion form as




Ft

Ft−1
...

Ft−qF +1




=





ΨF.1 ΨF.2 · · · ΨF.qF

I 0 0
... . . . . . . ...
0 · · · I 0









Ft−1

Ft−2
...

Ft−qF




+





εFt

0
...
0




(9)

or
%Ft = %ΨF

%Ft−1 + %εFt

where εFt ∼ N(0,ΣF ) and ||%ΨF || < 1.
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Block-Level Dynamics We have the structural (instead of measurement) equation

Gt = ΛF.0Ft + ΛF.1Ft−1 + . . .ΛF.sF Ft−sF + eGt (10)

= ΛF (L)Ft + eGt

with G′
t =

(
G1t

... GBt

)
, Gbt being a kb × 1 vector,

ΨG(L)eGt = εGt (11)

and where ΛF.s is a KG × KF matrix of factor loadings. We call this a structural instead of a

measurement equation because Gt is not observed.

Denote ΨG(L) to be a diagonal matrix with diagonal elements ΨGb(L), where for b = 1, . . . B,

ΨG.b(L) is itself a diagonal matrix with elements ψG.bi(L),

ψG.bi(L) = 1− ψG.bi1L− . . .− ψG.biqGLqG

We restrict ||ψG.bi(L)|| < 1 for stationarity and assume εGt ∼ N(0,ΣG). Together, (10) and (11)

imply that

ΨG(L)Gt = ΨG(L)ΛF (L)Ft + εGt.

This leads to the block-level transition equation




Gt

Gt−1
...

Gt−qG+1




=





αFt

0
...
0




+





ΨG.1 ΨG.2 · · · ΨG.qG

I 0 0
... . . . . . . ...
0 · · · I 0









Gt−1

Gt−2
...

Gt−qG




+





εGt

0
...
0





or
%Gt = %αFt + %ΨG

%Gt−1 + %εGt

where

αFt = ΨG(L)ΛF (L)Ft. (12)

Within-Block Dynamics For each b = 1, . . . , B, we have

Xbt = ΛG.b0Gbt + . . . + ΛG.bsGGbt−sG + eXbt,

ΨX.b(L)eXbt = εXbt

where we recall that the top kG × kG block of ΛG.b0 is lower triangular, and with Xbt stacked so

that Gbt have non-trivial loadings on the first kb. For b = 1, . . . B, the measurement equation for

each block can be rewritten as

ΨX.b(L)Xbt = ΨX.b(L)ΛG.b(L)Gbt + εXbt,
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or

X̃bt = Λ̃G.b(L)Gbt + εXbt (13)

where

X̃bt = ΨX.b(L)Xbt

and Λ̃G.b(L) = ΨX.b(L)ΛG.b(L)

These can be stacked to produce

X̃t = Λ̃G(L)Gt + εXt

Decomposition of Variance Given the state space representation of the model, it is not hard

to see that for each individual variable Xbi,

vec(V ar(Xbi)) = γ′F.bivar(Ft) + γ′G.bivar(Gbt) + var(eXbi) (14)

where

γ′F.bi =

(
sG∑

s=0

λ′G.bis ⊗ λ′G.bis

)
·
(

sF∑

s=0

ΛF.bs ⊗ ΛF.bs

)

γ′G.bi =

(
sG∑

s=0

λ′G.bis ⊗ λ′G.bis

)

var(Ft) =



I −
qF∑

q=1

(ΨF.q ⊗ΨF.q)




−1

vec(ΣF )

var(Gbt) =



I −
qG∑

q=1

(ΨG.bq ⊗ΨG.bq)




−1

· vec(ΣGb)

var(eXbi) =



1−
qX∑

q=1

ψ2
X.biq




−1

· σ2
Xbi.

The total variance is the sum of the unconditional variance of the components multiplied by the

effective loadings on the component. Dividing the three components on the right hand side of (14)

gives the fraction of the variance in X explained by the common innovations εF , block-specific

innovations εGb, and idiosyncratic errors εX , respectively. We denote these by shareF , shareG, and

shareX . These shares depend on the factor loadings, the dynamic parameters, as well as the size

of the shocks. A two level factor model does not distinguish between Ft and Gt; in these models,

1-shareX is the size of the common component.
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2.2 Markov Chain Monte Carlo

We use the method of Markov Chain Monte Carlo (MCMC) to estimate the posterior distribution

of the parameters of interest. The method samples a Markov chain that has the posterior density

of the parameters as its stationary distribution. MCMC has been used by Kim and Nelson (2000),

Aguilar and West (2000), Geweke and Zhou (1996) and Lopes and West (2004), among others, to

estimate two level factor models. These algorithms are variations and extensions of the method

developed in Carter and Kohn (1994). Although in theory, the algorithm allows for multiple factors,

most previous studies have limited attention to estimation of a single factor. We allow both Ft and

Gbt to be vector valued.

Our setup is a hierarchical dynamic factor model where each level admits a state-space repre-

sentation that has a measurement and a transition equation. The MCMC algorithm thus needs

to be extended to handle this hierarchical structure. Let Λ = (ΛG,ΛF ), Ψ = (ΨF ,ΨG,ΨX),

Σ = (ΣF ,ΣG,ΣX). The main steps are as follows:

1. Initialize by using principal components to obtain initial estimates of {Gt} and {Ft} and the

ordering of each Xbt.Use these to produce initial values for Λ, Ψ, Σ.

2. Conditional on Λ,Ψ, Σ and {Ft} draw {Gt} using standard methods for state space models

with time varying intercepts.

3. Conditional on Λ,Ψ, Σ and {Gt} draw {Ft} using standard methods for state space models.

4. Conditional on {Ft} and {Gt} draw Λ, Ψ, and Σ using standard methods assuming conjugate

priors.

5. Return to 2.

The main complication going from a two to a three level model lies in the way {Gt} is sampled

in Step (2). Recall that the transition equation for Gbt is of the form

Gbt = αF.bt + ΨG.b1Gbt−1 + . . .ΨG.bqGb
Gbt−qGb

+ εGbt.

This involves the term αF.bt = ΨG.b(L)ΛF (L)Ft, which given a draw of Ft can be interpreted as a

time-varying intercept that is known for all t. By conditioning on Ft, our updating and smoothing

equations for Gt explicitly take into account the information that Ft has to bear. Details of Steps 2

and 3 are given in the Appendix. The complete algorithm is given in an appendix which is available

upon request.
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3 Related Work

Multilevel factor models have been considered extensively in the psychology literature, see Goldstein

and Browne (2002). With the size of the panel being large in only one dimension and assuming a

strict factor structure, estimation of these models tend to be likelihood based. As well, these models

have no dynamics. Our three-level factor model shares common features with a few approaches that

have previously been suggested in the macroeconomic literature. Kose et al. (2003) and Kose et al.

(2008) used multi-level factor models to study international business cycle comovements. In their

model, economic fluctuations in each country are attributed to three types of shocks: a world, a

regional and a country-specific business cycle component. For each observable variable i in country

b, they have

xbit = biFt + cbiGbt + ebit

where Ft is a world factor, Gbt is a factor specific to region b, and where ebit is a component specific

to variable i in country b.3

Our model differs from their model in a number of ways. While their Ft and Gbt are scalars, we

allow for multiple common and multiple block-specific factors. Comparing this setup to (3), their

loading on the world factor bi plays the role of our λG.biλF.b1 and their loading cbi on the regional

factor is our λG.bi. Since we impose the structure that Gbt is linear in Ft, the responses of shocks

to Ft for all variables in block b can only differ to the extent that their exposure to the block-

specific factors differs, whereas bi is unconstrained in Kose et al. (2008). However, by imposing this

structure, we have a total of KG ×KF and N ×KG parameters characterizing loadings on Ft and

Gt, whereas Kose et al. (2008) have N ×KF and N ×KG parameters, respectively. As KG is much

smaller than N , our framework is considerably more parsimonious, an issue that has computational

consequences as we discuss below.

Another related approach is the Structural Factor-Augmented VAR setup of Milani and Belviso

(2006). Similar to our model, they organize a large panel of macroeconomic time series for the US

into blocks of data and use the block structure to identify factors such as a real activity factor, an

inflation factor, a financial market factor etc. They do not assume the existence of comovement

beyond the block structure, but instead model the dynamic evolution of the different block factors

jointly within a VAR. Clearly, this approach imposes a constraint on the number of block factors

that one can allow for in their model. In contrast, we attribute variation that is common across

blocks to a small number of common factors F whose dynamics we describe as a VAR. This allows

us to have a potentially much larger set of block-specific factors and also enables us to study to
3A similar framework was recently used by Stock and Watson (2008a) to analyze national and regional factors in

housing construction.
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what extent common variation is block-specific or due to economy-wide shocks.

In a recent paper, Hallin and Liska (2008) also study dynamic factor models with a block

structure. While we assume the block structure of the data as known, they develop methods to

estimate the common, block-specific, and idiosyncratic factors from the data. To separate the

different sources of comovement, Hallin and Liska (2008) assume a factor space that contains a

total of 2K factors where K denotes the number of blocks. In setups with many blocks, this might

give rise to computational limitations of their approach. Moreover, we think that in many empirical

applications of factor models both theoretical considerations and background information on how

the data are constructed provide the researcher with valuable a priori knowledge of the block

structure that can be readily exploited using our hierarchical model.

In terms of estimation, Otrok and Whiteman (1998) estimate latent dynamic factors by consid-

ering their conditional joint distribution. The main practical limitation is that they have to invert

a variance-covariance matrix of rank T where T denotes the number of time series observations of

the data. Hence, estimation becomes computationally demanding for problems when N and T are

both large. In Kose et al. (2003), N = 180 and T = 30, and in Kose et al. (2008), T = 176 and

N = 21. Our experimental models here have up to N > 400 series and T close to 200, and we

anticipate using as many as 1,000 series in a full fledged analysis. To circumvent the dimensionality

problem, we put more structure on the block factors Gt. This enables us to cast the conditional

model for Ft and Gt in state space representation, which can be estimated using standard methods.

An alternative to Gibbs sampling is to estimate Gt by principal components, and then estimate

Ft from the principal components estimates of Gt. This method was implemented in Beltratti

and Morana (2008). However, sequential estimation by principal components would not take into

account the dependence of Gt on Ft through αFt. These ‘unrestricted’ estimates of Gt should thus

be less efficient than our one step estimates. Another advantage of our approach is that the posterior

distributions allow us to assess sampling uncertainty about the estimated factors. While the large

sample theory for G̃t and F̃t is given in Bai and Ng (2006), the sampling distribution of F̃t(G̃t) is

not known. It remains unclear how to obtain theoretical prediction intervals or assess the sampling

uncertainty of counter-factual analysis within the two-step principal components framework.

Since the true Ft are latent variables it will be difficult to compare the precision of the estimates.

However, as a cross-check on our results we deem it useful to compare the estimates produced by

our three level model with those obtained from principal components analysis. Hereafter, we use a

’tilde’ to denote estimates obtained by the method of principal components, and a ’hat’ to denote

estimates obtained from our MCMC algorithm. That is, Ĝt denote the posterior means of the

block-specific dynamic factors while F̂t are the posterior means of the factors common to Gt. In
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contrast, we refer to F̃t as the principal component estimates obtained using all data at once and

let F̃t(G̃t) denote the two step principal components estimates, obtained from extracting principal

components from the block-specific principal components estimates. When comparing the results,

It should be kept in mind that the method of principal components estimates the static factors,

whereas we estimate the dynamic factors, which should generally be smoother than the static

factors.

4 Empirical Analysis

We assume diffuse priors throughout. Specifically, all factor loadings Λ and all autocorrelation

coefficients ψ are Gaussian with mean zero and variance of one. The prior distribution for the

variance parameters is that of an inverse chi-square distribution with ν degrees of freedom and a

scale of d where ν and d2 are set to 4 and 0.01, respectively.4 After discarding the first 2,000 draws

as a burn-in, we take another 25,000 draws, storing every 50-th draw. The reported statistics for

posterior distributions are based on these 500 draws. Results obtained from storing every one of

the first 8,000 draws after burn-in are similar.

We use the principal components estimated for each block, denoted G̃b,PC , as starting values

for Gt. The principal components extracted from the data pooled across blocks are then used as

starting values for F . Note that the principal components only identify the factor space using the

normalization that Λ̃′
G,PCΛ̃G,PC/N = Ir and the matrix G̃′

PCG̃PC is diagonal. We use alternative

identification assumptions. Therefore, our starting values may be far from the true values. As

a cross-check on our choice of initialization, we also run the MCMC algorithm using randomly

generated numbers for the factors as starting values and find that the sampler converges to the

same posterior means.

4.1 Data Releases

Non-financial data on the state of the economy are being released at almost a daily frequency. Many

economic analysts closely follow the release calendar and prior to any new announcement assemble

information about the expectations for key indicators. While the media coverage of economic data

typically focuses on a few individual series as e.g. the number of non-farm payroll employees,

the majority of data releases actually contain the most recent number for a block of related time

series. This cross-sectional information is likely taken into account by analysts when they update

their beliefs about the state of the economy. In doing so, however, they need to filter out the
4If θ is distributed as inverse χ2 with ν degrees of freedom and a sale of d, written θ ∼ Iχ2(v, d2), then θ is

distributed as an inverse gamma with parameters α/2 and β/2, where α = ν and β = d2ν. We use this equivalence
in our procedure and sample variance parameters based on the χ2 distribution.
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aggregate from the idiosyncratic or noise components. In our model, we try to optimally exploit

the cross-sectional information by assuming a hierarchical factor structure for the data that takes

into account the timing of the releases.

Figure 1 shows the release of non-financial data for the month of June 2008. For the non-

financial data, we use the highest level of aggregation that will give a reasonable number of cross-

section units. In this paper, we use data from nine blocks of non-housing real economic data.

These are industrial production (IP) and capacity utilization (CU), the establishment survey (ES),

the household survey (HS), and manufacturers’ surveys (MS), durable good (DS), retail sales (RS),

wholesale trade (WT), and auto sales (AUTO). The establishment survey and the household survey

are released together in the so-called employment report in the first week of the month. Retail sales

data are published in the second week. This is followed by IP and CU released in the third week of

the month and so on. We also consider three blocks of housing data: home price, housing starts,

home sales. These data are reorganized into three new blocks by geographical regions, the West,

the Northeast, and others. These will be denoted West, NE, and CTL.

We use a balanced panel of monthly data from 1992:01-2008:02. After the data transformation,

our sample effectively starts in 1992:4, giving T = 191 observations for all blocks. We only have one

recession in this sample, but the analysis can be extended to allow for a non-balanced panel in future

work. The data are transformed using Stock and Watson (2008b) as a guide. For quantity variables,

we compute month-on-month growth rates. For price variables, we take quarterly differences of the

logged series. Indices (such as capacity utilization) are not transformed.

An important aspect of our model is that we use prior information to identify the factors. This

is achieved by ordering the variables thought most likely to be representative of comovement in

a given blocks in positions one through kGb. Table 1 list the first two variables in each block,

along with some summary statistics based upon the factors estimated by principal components.

Properties of the principal component estimates for each block are given in Table 2.

4.2 A Housing Model Using Actual and Simulated Data

Our first model uses three blocks of U.S. regional housing data with 7, 8, and 18 series in each

block, respectively. Note that the principal component estimates will not be precise because of

the small number of units in each block. We assume that there are two factors in each block,

and all block-specific factors are in turn driven by one common factor. The common and block-

specific factors are modeled to have AR(1) dynamics. We allow for two lags of the respective

factors in the measurement equations. In addition to being of interest in its own right, we also use

this simple example to assess the precision of the estimator. Treating the posterior means of the
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parameters estimates, F̂t and Ĝt as ‘true’ values, we reconstruct and then re-sample εX to obtain

a set of simulated data. The simulated data are then used to estimate the parameters. Comparing

the estimates obtained from the simulated data with the ’true’ values gives an assessment of the

precision of the estimates. Table 3 reports the results. Since the ‘actual’ parameters are themselves

estimates, we report standard errors for them as well.

The ψF estimated from the data indicates that the common factor is highly persistent, and

the estimate based on the simulated data is very similar. The ψG’s estimated from the data are

generally not significant from zero, and the estimates based on the simulated data also have this

near white noise feature. The F̂t has a correlation of 0.98 with the ‘true’ Ft. Since there are multiple

factors within each block, we assess the precision of the estimates by regressing Ĝbk on the entire

set of block factors, Gb. The correlation between Ĝb1 and the true factors in the block are quite

high (.877, .965, and .707), but considerably lower for the respective second block-specific factors

Ĝb2. This suggests that the second block-specific factors are not well determined in this dataset,

and the model could have been estimated with one block-specific factor, respectively.

The bottom panel of Table 3 provides the decomposition of variance into economy-wide, region-

specific, and idiosyncratic shocks. At each draw of the Gibbs sampler, we obtain the shares for each

series and then average over units within a block. We then report the mean and standard deviation

of these block-specific decompositions across all draws. Since the data are standardized to have

unit variance, the estimated variance of X also gives a sense of the fit of the model. According to

these numbers, the common housing factor accounts for 10 to 17% of the regional fluctuations in

the housing market while region specific factors account for anther 12 to 24%. However, by far the

largest source of variations in the housing market are idiosyncratic. The decomposition of variances

based on the simulated data match these estimates very well. Our methodology thus seems capable

of disentangling the different levels of cross-sectional variation.

The top left panel of Figure 2 graphs the F against F̂ . Clearly, F̂ is significantly below zero

in recent years. At the end of our estimation sample (2008:2), F̂ is -0.843, with sample standard

deviation of 0.320. In comparison, the maximum value of F̂ over the sample is 0.427. The top right

panel of Figure 2 graphs Gb1 against Ĝb1 for the West, which is far more volatile than the factors

in the Northeast and the other regions. The Ĝb are quite close to the true factor processes. It is

evident that shocks to all three regions have been mostly been negative since 2006. While the state

of housing in the CTL region appears to be still in a downward trend, there are signs of rebounding

in both the West and Northeast in 2008:2. In sum, we find that regional and to a smaller extent

economy-wide shocks have contributed to the recent housing slump.
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4.3 A Six Block Model for Output

We estimate a dynamic hierarchical factor model for six blocks of data related to output in the US

economy: industrial production (IP), capacity utilization (CU), the establishment survey (ES), the

household survey (HS), manufacturers’ surveys (MS), and durable goods (DG). According to the

IC2 criterion of Bai and Ng (2002), four of the six blocks have either one or two factors. However,

the criterion suggests that the HS and MS blocks may have as many as eight factors. Although our

Bayesian estimation approach generally allows for different numbers of factors across blocks, we let

all blocks be driven by two block-specific components so as to enhance comparability of the results.

Moreover, we assume one common factor at the aggregate level. Initial estimation assuming two

common factors suggests that the second factor has a very small variance, and dropping it did not

lead to any noticeable change in the decomposition of variance. As before, we let the factor loadings

at both levels to be polynomials of order two, i.e. two lags of the factors enter the observation

equations, respectively. Finally, we assume that the common factors as well as the idiosyncratic

and block-specific disturbances are AR(1) processes. Altogether, our model is thus described by the

following set of parameters : KF = 1, kGb = 2 for all b, sFr = 2, sGb = 2, qFr = qGb.k = qXb.i = 1

for all b = 1, . . . B, r = 1, . . . KF , k = 1, . . . KGb, and i = 1, . . . Nb. We note that the estimated

factors and idiosyncratic errors are generally mildly persistent, suggesting that the transformed

data used in the analysis are stationary.

The top panel of Table 4 reports the posterior means and standard errors of the dynamic

parameters. The common factor has an autoregressive coefficient of .795. The block-specific factors

have varying degrees of persistence, and many of the block-specific factors are close to white noise.

Moreover, the block-specific shocks tend to have larger variance than the shocks to the common

factors.

In this model, there are 2 × N loadings on Gt, and KG × 1 loadings on Ft, where KG = 12

and N=315. Instead of reporting all the loadings, we summarize the properties of the model

by evaluating the relative importance of the common, block-specific, and idiosyncratic variation.

According to the model, the DG block has the best fit. The bottom panel of Table 4 shows that

there is substantial heterogeneity across blocks. Of the six blocks considered, the CU, the IP, and

the ES blocks have the largest common component, explaining 20% or more of the variation in the

data of the block. The block-specific shocks roughly explain another 15% of the variation in these

three blocks. Thus, the common and block-specific factors in our sample of economic variables

explain close to 40% of the variation in the blocks. This is similar to what one finds in principal

components analysis applied to the much analyzed Stock and Watson dataset with 132 series, where

the first five factors are found to explain about 40% of the data.
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While aggregate shocks to the CU, IP, and ES blocks are more important as shocks specific to

these blocks, the block-specific component is larger than the common component in all remaining

blocks. Shocks specific to MS account for around 24% of the variations, compared to the common

component of about 4%. The result that stands out in Table 4 is that the idiosyncratic component

always explains the largest share of variation. In particular, 80% of the variation in the Household

Survey block is idiosyncratic, and only 2% of the variation in that block is explained by the common

factor F . Although the monthly employment report (which contains the HS data) is well-watched

by financial markets, our findings thus suggest that the HS data contain little information about the

level of non-housing real economic activity. The results generally highlight the difficulty in distilling

information relevant for aggregate policy from observed data, as block-specific information can be

disguised as common variations, and a large idiosyncratic component can make precise estimation

of the common factor space difficult.

The relative importance of the common factors based on principal components estimation is also

reported in Table 5. The IC2 criterion of in Bai and Ng (2002) indicated a total of 2 factors in the

panel of 315 series. Both one and two step principal component estimation of Ft suggests that the

first two factors explain about 40% of the variation in the data. As noted earlier, if block-specific

variations are important, some of the principal components extracted from the entire panel of data

might correspond to block-specific factors. The correlation between our first factor F̂1 and the first

principal component is 0.80.

To investigate if the estimated principal components capture block-specific variations, we regress

the principal components F̃rt extracted from the entire panel on F̂ to obtain residuals ẽrt. These

are variations deemed common by the method of principal components but not by our hierarchical

dynamic factor model estimated using MCMC. We then check if these residuals can be explained by

our estimated block-specific factors by regressing ẽrt on G̃bkt. To conserve space, Table 5 reports the

R2s that exceed 0.1. Evidently, many of the block-specific variations are correlated with the factors

estimated by the method of principal components. The first and second principal components are

correlated with variations in the Establishment Survey block (b = 3) with a correlation as high as

0.716, while the third principal component is highly correlated with the Household Survey block

(b = 4). This could be a consequence of the fact that the employment block constitutes one third

of the data, and common variations in the Household Survey block are deemed more important

in principal component analysis than in our framework. The factors of the Durable Goods block

(b = 6) are correlated with the second and fourth principal component. Overall, we interpret these

results as suggesting that variations identified as common by principal component analysis may in

fact be block-specific.
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Figure 3 graphs the factors estimated using the three different methods. The top panel plots

F̂t estimated using our hierarchical model against the first principal component F̃t(G̃t) extracted

from the block-specific principal components. The lower panel graphs F̂t against the first principal

component F̃t extracted from the entire data panel. All estimates indicate that the trough of the

last recession occurred towards the end of 2001. This is in agreement with the NBER business cycle

dates which report November 2001 as the trough of the last recession. All estimates also indicate a

slowdown in the level of real activity since the middle of 2005, with the common factor F̂t estimated

using our hierarchical model suggesting a weaker economy than the principal component estimates.

Notice that our F̂t tends to be smoother than F̃t and F̃t(G̃t). For example, around the end of

1995, both principal components estimates show large spikes which in our model are picked up by

the Establishment Survey factor G3t. One potential explanation for the large spikes in the principal

components factor relates to the government shutdown over the budget in January 1996. Due to the

large number of employment related series in the dataset, the first principal component extracted

from the entire panel reflects this block-specific event. In contrast, our hierarchical model allows

to distinguish this block-specific from genuinely common shocks.

5 A Four Level Model

Some blocks of data are naturally organized by sub-blocks. For example, the producer and consumer

price blocks together form a price block. Data on the establishment and household surveys are

released together in the employment report, while data for industrial production and capacity

utilization are also released at the same time. It is therefore natural to allow some blocks to have

a sub-block structure.

We continue to let Xbit denote variables associated with block-specific factors Gbt. To distinguish

data associated with blocks that have sub-blocks from those that do not, let Zbsit be the observed

data for block b where s is an index for the sub-blocks. Let Hbst be the factors of sub-block b. Then

a four-level model can be represented by

Zbsit = λH.bsi(L)Hbst + εXbsit (15)

Hbst = λG.bs(L)Gbt + εHbst (16)

Gbt = λF.b(L)Ft + εGbt (17)

eFkt = ΨF.keFkt−1 + . . .ΨF.qFkeFkt−qF + εFkt (18)

eGbt = ΨG.b1eGb,t−1 + . . . + ΨG.bqGb
eGb,t−qGb

+ εGbt (19)

eHbst = ΨH.bs1eHbs,t−1 + . . . + ΨH.bsqHbs
eHbs,t−qHbs

+ εHbst (20)

eXbsit = ΨX.bsi1eXbsi,t−1 + . . . + ΨX.bsiqXb
eXbsi,t−qXb

+ εXbsit (21)
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The dependence of Ht on Gt implies that

Hbst = αG.bst + ΨH.bs1Hbst−1 + . . .ΨH.bsqHbs
Hbst−qHbs

+ εHbst

where αG.bst = ΨH.bs(L)ΛG.b(L)Gbt. As in the level three model, the dependence of Gbt on Ft in

turn implies

Gbt = αF.bt + ΨG.b1Gbt−1 + . . .ΨG.bqGb
Gbt−qGb

+ εGbt.

Conditional on Gbt, Ft, and Θ, we can draw Hbst for each s and b, and conditional of Ft, we can

draw Gbt for each b. Blocks with a sub-block structure can be combined with blocks that do not. A

model with more levels can always be decomposed into a sequence of two-level models. Of course,

we will need to have a reasonable number of series at the sub-block level, and a multi-level model

would be more time intensive to estimate. But conceptually, a model with ’branches’ in some but

not all blocks is possible.

We extend our six block model considered in the previous section to include three more blocks of

data: retail sales (RS), wholesale trade (WT), and autosales (AUTO). We then reorganize the 402

series into 3 blocks. The first is an output block with sub-blocks IP, CU, MS, and DG representing

goods production. The second is a labor market block consisting of sub-blocks ES and HS. The

third is a demand block consisting of sub-blocks RS, WT, and AUTO. This covers demand by both

firms and consumers. The common factor extracted by this model can thus be interpreted as a

factor for real economic activity. We estimate one common factor and let KG = (1, 2, 1).

To conserve space, Table 6 only reports the autoregressive parameters for Gt and Ft. The

common factor is slightly more persistent than that estimated for the three level model. The ψG

for the output specific factor is close to that found for CU and IP, while that for the employment

block is higher than that found for ES or HS. The demand-specific factor is the least persistent of

all block factors. Table 7 reports the decomposition of variance, which is now performed at the

sub-block level. The CU and IP blocks continue to have the largest common component. The

sub-blocks of the demand block have relatively large variations due to factors common to series in

the sub-blocks, but the overall picture remains that series specific idiosyncratic shocks dominate.

Perhaps of most interest is an analysis of the state of real economic activity estimated with the

model. This is presented in Figure 4. The solid line is the F̂t based on our model and the dotted

line is the principal component estimate, F̃t, both standardized to have a mean of zero and unit

variance. Our F̂t is noticeably smoother than F̃t. The large spikes in employment in 1996 due to the

budget crisis once again weighs heavily in F̃t but is appropriately treated as variations specific to a

sub-block of employment using our four-level hierarchical model. Our (non-standardized) estimates

suggest that the state of real economic activity at the end of our sample in 2008:02 stood at -.328.
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With the sample standard deviation of F̂t being .202, the level of real activity was thus considerably

below average. However, according to our estimate activity in 2008:02 was still stronger than at

the trough of the 2001 recession for which we record a value of -0.598.

6 Conclusion

This paper lays out a framework for analyzing dynamic hierarchical factor models. The approach

has three advantages. First, by extracting common components from blocks, the estimated factors

have more precise interpretation. Explicitly modeling the block-specific variation also resolves an

important drawback of standard (two-level) factor models in which block-specific shocks can be

confounded with common shocks. Second, the blocks can be defined to take advantage of the

timing of data releases, which makes the framework suitable for real time monitoring of economic

activity. Third, the framework allows for a more disaggregated analysis of economic fluctuations

while still achieving a reasonable level of dimension reduction. While a two-level model only enables

counter-factual analyses of aggregate or idiosyncratic shocks, the effects of aggregate, block-specific,

and idiosyncratic shocks can be coherently analyzed in our framework.
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Table 1: Data
Block Variables Ordered 1 and 2

1 CU Capacity Utilization: Machinery (SA, Percent of Capacity)
Capacity Utilization: Motor Vehicles and Parts (SA, Percent of Capacity)

2 IP IP: Durable Consumer Goods (SA, 2002=100)
IP: Nondurable Consumer Goods (SA, 2002=100)

3 ES All Employees: Wholesale Trade (SA, Thous)
Avg Wkly Earnings: Construction (SA, $/wk)

4 HS Civilian Labor Force: Men: 25-54 Years (SA, Thous)
Unemployment Rate: Full-Time Workers: Men (SA, %)

5 MS ISM Mfg: PMI Composite Index (SA, 50+ = Econ Expand)
Phila FRB Bus Outlook: General Activity, Current, Diffusion Index (SA,%)

6 DG Mfrs’ Inventories: Machinery (EOP, SA, Mil.$)
Mfrs’ Unfilled Orders: Machinery (EOP, SA, Mil.$)

7 RS Retail Sales: General Merchandise Stores (SA, Mil.$)
Retail Sales: Motor Vehicle Dealers (SA, Mil$)

8 WT Merchant Wholesalers: Sales: Automotive (SA, Mil.$)
Merchant Wholesalers: Sales: Apparel (SA, Mil.$)

9 AUTO Domestic Car Retail Sales (SAAR, Mil. Units)
Domestic Light Truck Retail Sales (SAAR, Mil. Units)

10 H- NE Housing Starts: 1-Unit: Northeast (SAAR, Thous.Units)
Housing Completions: 1-Unit: Northeast (SAAR, Thous.Units)

11 H- WEST Housing Starts: 1-Unit: West (SAAR, Thous.Units)
Housing Completions: 1-Unit: West (SAAR, Thous.Units)

12 H- CTL Housing Starts: 1-Unit: Midwest (SAAR, Thous.Units)
Housing Starts: 1-Unit: South (SAAR, Thous.Units)

Summary Statistics

b T N IC2 R2
F̃1

R2
F̃2

ARF̃1
ARF̃2

CU 191 25 1 0.210 0.092 0.112 0.031
IP 191 38 1 0.208 0.086 0.123 0.033
ES 191 72 2 0.189 0.132 -0.190 0.675
HS 191 85 8 0.113 0.081 -0.122 -0.446
MS 191 35 4 0.143 0.108 -0.062 -0.104
DG 191 60 2 0.115 0.088 0.273 0.302
RS 191 30 1 0.187 0.086 -0.333 -0.301
WT 191 53 1 0.093 0.064 -0.312 -0.115
AS 191 4 4 0.483 0.242 -0.360 -0.365

H- NE 191 8 8 0.190 0.181 -0.352 -0.531
H- WEST 191 7 7 0.240 0.196 -0.310 -0.199
H- CTL 191 18 0 0.119 0.091 -0.112 -0.246

Note: IC2 is the Bai-Ng (2002) criteria for determining the number of factors. R2
j is the j-th eigenvalue of x′x

divided by the sum of the eigenvalues. ARF̃j
is the first order autocorrelation of j-th principal component of F .
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Table 2: Univariate Analysis of Principal Component Estimates

Two Step Model:

G̃bjt = Λ̃F.bjF̃t(G̃t) + ẽGbjt

G̃bjt = Ψ̃G.bjG̃bjt−1 + ε̃Gbjt

ẽGbjt = Ψ̃eGbj ẽGbjt−1 + ε̃Gbjt

F̃kt(G̃t) = Ψ̃F.kF̃kt−1(G̃t) + ε̃Fkt.

Block T Nb IC2 R2
Gb.1

R2
Gb.2 Ψ̃G̃.b1 Ψ̃G̃.b2

CU 191 25 1 0.210 0.092 0.112 0.031
IP 191 38 1 0.208 0.086 0.123 0.033
ES 191 72 2 0.189 0.132 -0.190 0.675
HS 191 85 8 0.113 0.081 -0.122 -0.446
MS 191 35 4 0.143 0.108 -0.062 -0.104
DG 191 60 2 0.115 0.088 0.273 0.302
RS 191 30 1 0.187 0.086 -0.333 -0.301
WT 191 53 1 0.093 0.064 -0.312 -0.115
AS 191 4 4 0.483 0.242 -0.360 -0.365
H- NE 191 8 8 0.190 0.181 -0.352 -0.531
H- WEST 191 7 7 0.240 0.196 -0.310 -0.199
H- CTL 191 18 0 0.119 0.091 -0.112 -0.246

Note: Let G̃bjt be the j-th factor obtained by the method of principal components using data from
block b. Then R2

Gbj
is the explanatory power of the j factor, obtained as the ratio of j-th largest

eigenvalue X ′X to the sum of the eigenvalues. Ψ̂G̃.bj is the estimated first order autocorrelation
coefficient of G̃bj .
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Table 3: A Three Block Housing Model

True and Posterior Means: ψ̂G and ψ̂F

Actual Data Standard Errors Simulated Data Standard Errors
b j ψG.bj σ̂2

G.bj ψG.bj σ̂2
G.bj ψG.bj σ̂2

G.bj ψG.bj σ̂2
G.bj

1 1 -0.007 0.366 0.177 0.098 -0.008 0.409 0.157 0.090
1 2 -0.105 0.082 0.114 0.031 -0.049 0.070 0.117 0.024
2 1 0.009 0.310 0.126 0.085 -0.083 0.244 0.150 0.066
2 2 -0.251 0.091 0.128 0.038 -0.043 0.054 0.112 0.020
3 1 0.110 0.116 0.179 0.066 0.088 0.121 0.118 0.049
3 2 -0.114 0.040 0.114 0.015 -0.006 0.067 0.118 0.032

ψF σ2
F ψF σ̂2

F ψF σ̂2
F ψF σ̂2

F

1 0.945 0.016 0.033 0.009 0.943 0.012 0.035 0.006

Decomposition of Variance
Estimates standard Errors

block σ2
X shareF shareG shareX σ2

X shareF shareG shareX

Data
1 1.490 0.173 0.237 0.590 2.299 0.133 0.059 0.087
2 1.742 0.106 0.230 0.664 5.924 0.103 0.051 0.064
3 1.368 0.140 0.118 0.742 1.269 0.101 0.032 0.077

Simulated Data
1 1.338 0.162 0.233 0.606 0.798 0.112 0.057 0.064
2 1.234 0.106 0.223 0.670 0.457 0.104 0.046 0.072
3 1.191 0.121 0.119 0.760 0.506 0.099 0.024 0.080
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Table 4: A Six Block three Level Model for Production:

Gbt = ΛF.b(L)Ft + eGbt

ΨF.r(L)Frt = εFrt, r = 1, . . . KF

ΨG.bj(L)eGbjt = εGbjt, j = 1, . . . KGb.

Block j Ψ̂G.bj σ̂2
εbj S.E

CU: 1 1 0.272 0.031 0.114 0.026
CU: 1 2 0.288 0.072 0.166 0.033
IP: 2 1 0.322 0.043 0.117 0.020
IP: 2 2 0.098 0.064 0.107 0.018
ES: 3 1 0.013 0.027 0.185 0.010
ES: 3 2 -0.034 0.027 0.185 0.010
HS: 4 1 -0.067 0.103 0.100 0.021
HS: 4 2 -0.021 0.059 0.101 0.013
MS: 5 1 0.381 0.860 0.130 0.103
MS: 5 2 0.087 0.106 0.099 0.023
DG: 6 1 -0.101 0.039 0.173 0.009
DG: 6 2 0.041 0.041 0.175 0.009
Factor ΨF.k σ̂2

F.k S.E.
1 0.795 0.020 0.068 0.008

Principal Component Estimates

N R2
F.1 R2

F.2 Ψ̃F.1 Ψ̃F.2

F̃t(G̃t) 14 .205 .133 .074 .272
F̃t 315 .210 .208 .187 .339

Decomposition of Variance
Estimates Standard Errors

block σ2
X shareF shareG shareX σ2

X shareF shareG shareX

1 CU: 1.235 0.197 0.144 0.659 0.120 0.048 0.021 0.042
2 IP: 1.318 0.245 0.151 0.604 0.153 0.054 0.019 0.043
3 ES: 1.116 0.201 0.138 0.661 0.112 0.053 0.020 0.037
4 HS: 1.061 0.021 0.170 0.809 0.029 0.015 0.011 0.013
5 MS: 1.130 0.044 0.244 0.712 0.053 0.025 0.020 0.018
6 DG: 1.033 0.062 0.141 0.798 0.040 0.028 0.013 0.024

Table 5: Correlation Between Ĝbkt and ẽrt|F̂

r b k ρ r b k ρ
1 3 2 0.235 4 1 2 0.109
2 3 2 0.716 4 6 1 0.233
2 5 1 0.124 5 4 2 0.139
2 6 2 0.196 6 2 2 0.138
3 4 1 0.616 7 5 2 0.224
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Table 6: A Nine Block Four Level Model for Real Activity

Hbst = ΛH.bs(L)Gbt + eHbst

Gbt = ΛG.b(L)Ft + eGbt

ΨF.r(L)Frt = εFrt

ΨG.bj(L)eGbjt = εGbjt, j = 1, . . . kGb.

ΨH.bsk(L)eHbskt = εHbskt, j = 1, . . . kHbs.

b j Ψ̂G.bj σ̂2
εbj S.E

1 1 0.302 0.101 0.140 0.024
2 1 0.351 0.037 0.193 0.015
2 2 0.342 0.019 0.328 0.007
3 1 0.182 0.063 0.173 0.024

Factor ΨF.k σ̂2
F.k S.E.

1 0.895 0.013 0.049 0.007

Table 7: Decomposition of Variance
block sub-block σ2

X shareF shareG shareH shareX

Estimates
1 CU 1.239 0.104 0.137 0.169 0.590
1 IP 1.157 0.099 0.129 0.153 0.619
1 MS 1.050 0.027 0.033 0.237 0.703
1 DG 0.975 0.022 0.027 0.172 0.779
2 ES 1.032 0.051 0.103 0.205 0.641
2 HS 1.026 0.018 0.037 0.177 0.767
3 RS 1.091 0.045 0.072 0.213 0.669
3 WT 1.007 0.015 0.023 0.164 0.798
3 AU 1.050 0.040 0.066 0.552 0.342

Standard Errors
1 CU 0.525 0.063 0.033 0.027 0.040
1 IP 0.404 0.061 0.029 0.020 0.041
1 MS 0.076 0.027 0.012 0.018 0.023
1 DG 0.072 0.023 0.008 0.013 0.021
2 ES 0.167 0.044 0.026 0.027 0.033
2 HS 0.058 0.023 0.013 0.014 0.022
3 RS 0.509 0.044 0.020 0.022 0.032
3 WT 0.147 0.022 0.010 0.015 0.022
3 AU 0.332 0.046 0.034 0.051 0.027
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1 Appendix

Sampling {Ft}

To obtain estimates of the global factors F given the block factors G, we have to perform the
following steps. First, pre-Whiten the observation equation

Gt = ΛF (L)Ft + eGt

so that its errors are i.i.d. This gives

ΨG(L)Gt = ΨG(L)ΛF (L)Ft + εGt,

or G̃t = Λ̃F (L)Ft + εGt

where G̃t = ΨG(L)Gt, and where Λ̃F (L) = ΨG(L)ΛF (L) = Λ̃F0+Λ̃F1L+...+Λ̃Fs∗F
Ls∗F is a KG×KF

matrix polynomial of order s∗F = qG + sF . Stacking the lags of F , this gives the companion form:

G̃t =
[

Λ̃F0 Λ̃F1 · · · Λ̃Fs∗F

]





Ft

Ft−1
...

Ft−s∗F




+ εGt





Ft

Ft−1
...

Ft−s∗F+1




=





ΨF1 · · · ΨFqF 0 · · · 0

I 0
...

...
...

... . . . . . . ...
...

0 · · · I 0 · · · 0









Ft−1

Ft−2
...

Ft−s∗F




+





εFt

0
...
0





or

G̃t = &̃ΛF
&Ft + εGt

&ΨF (L)&Ft = &εFt

where ΩF = V ar(&εFt) =
(

ΣF 0
0 0

)
.

Denote ΞF the set of parameters {ΛF ,ΨF ,ΣG,ΣF }. Then, following Carter and Kohn (1994), the
conditional distribution of the factors &F given the pre-Whitened block factors {G̃t} and the param-
eters ΞF can be obtained by performing the following steps. First run the Kalman filter forward to
obtain estimates &FT |T of the (stacked) factors and their variance covariance matrix &PT |T in period
T based on all available sample information:
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&Ft+1|t = &ΨF
&Ft|t

&PFt+1|t = &ΨF
&PFt|t&Ψ′

F + &ΣF

&Ft|t = &Ft|t−1 + &PFt|t−1
&̃Λ′

F

(
&̃ΛF

&PFt|t−1
&̃Λ′

F + &ΣF

)−1 (
G̃t − &̃ΛF

&Ft|t−1

)

&PFt|t = &PFt|t−1 − &PFt|t−1
&̃Λ′

F

(
&̃ΛF

&PFt|t−1
&̃Λ′

F + &ΣF

)−1 &̃ΛF
&PFt|t−1

Next, draw &FT from its conditional distribution given ΞF and the data through period T :

&FT |{G̃t},ΞF ∼ N(&FT |T , &PFT |T )

Then, for t=T−1, . . . , 1 proceed backwards to generate draws &Ft|T from

&Ft|T |&F ∗
t+1, {G̃T },ΞF ∼ N(&Ft|t, "F ∗

t+1
, &Pt|t, "F ∗

t+1
) (1)

where &Ft|t, "F ∗
t+1

= &Ft|t + &Pt|t&Ψ∗′
F (&Ψ∗

F
&Pt|t &Ψ∗′

F + Ω∗
F )−1 (&F ∗

t+1 − &Ψ∗
F

&Ft|t)

and &Pt|t, "F ∗
t+1

= &Pt|t − &Pt|t &Ψ∗′
F (&Ψ∗

F
&Pt|t &Ψ∗′

F + Ω∗
F )−1 &Ψ∗

F
&Pt|t.

where Ω∗
F is the upper left KF×KF block of ΩF which is positive-definite and where &F ∗

t and &Ψ∗
F

are the first KF rows of &Ft and &ΨF , respectively. Note also that we initialize the Kalman filter
with the unconditional mean and variance of the states &F , i.e. &F1|0 = E[&F ] = 0 and vec(&P1|0) =
[
IsF −

(
&ΨF ⊗ &ΨF

)]−1
vec(ΩF ).

Sampling {Gt}

A similar algorithm can be used to sample the block factors G. Since the block-dynamics are
assumed to be independent, this can be done block by block. Recall that

X̃bt = Λ̃Gb(L)Gbt + εXbt, ∀ b = 1, . . . , B,

where X̃bt = ΨXb(L)Xbt and where Λ̃Gb(L) = ΨXb(L)ΛGb(L) is a Nb × Kb matrix polynomial of
order s∗G = qX + sG. Moreover, recall that





Gbt

Gbt−1
...

Gbt−qG+1




=





αFbt

0
...
0




+





ΨGb1 ΨGb2 · · · ΨGbqG

I 0 · · · 0
... . . . . . . ...
0 · · · I 0









Gbt−1

Gbt
...

Gbt−qG




+





εGbt

0
...
0





where
αFbt = ΨGb(L)ΛF (L)Ft, ∀ b = 1, . . . , B,
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Together, these two equations imply the following state-space form

X̃bt =
[

Λ̃Gb0 Λ̃Gb1 · · · Λ̃Gbs∗G

]





Gbt

Gbt−1
...

Gbt−s∗G




+ εXbt





Gbt

Gbt−1
...

Gbt−s∗G




=





αFbt

0
...
0




+





ΨGb1 · · · ΨGbqG 0 · · · 0

I 0
...

...
...

... . . . . . . ...
...

0 · · · I 0 · · · 0









Gbt−1

Gbt−2
...

Gbt−s∗G−1




+





εGbt

0
...
0





or

X̃bt = &̃ΛGb
&Gbt + εXbt

&ΨGb(L)&Gbt = &αFbt +&εGbt

Denote ΞGb the set of parameters {Λ̃Gb, &ΨGb,ΣGb,ΣXb}. Conditional on ΞGb and {Ft}, the above
equations represent a state-space system with a time-varying intercept. We therefore need to
slightly adjust the Carter and Kohn (1994) method laid out before. The complete set of equations
is as follows.

First, run the Kalman filter forward to obtain estimates &GbT |T of the factors and their variance
covariance matrix &PbT |T in period T based on all available sample information. With the time-
varying intercept &αFbt, this implies the following steps:

&Gbt+1|t = &αFbt + &ΨGb
&Gbt|t

&PGbt+1|t = &ΨGb
&PGbt|t&Ψ′

Gb + &ΣGb

&Gbt|t = &Gbt|t−1 + &PGbt|t−1
&̃Λ′

Gb

(
&̃ΛGb

&PGbt|t−1
&̃Λ′

Gb + &ΣXb

)−1 (
X̃bt − &̃ΛGb

&Gbt|t−1

)

&PGbt|t = &PGbt|t−1 − &PGbt|t−1
&̃Λ′

Gb

(
&̃ΛGb

&PGbt|t−1
&̃Λ′

Gb + &ΣXb

)−1 &̃ΛGb
&PGbt|t−1

We again initialize the filter with the unconditional mean and variance of the states &Gb, i.e. &Gb1|0 =
E[&Gb] and vec(&P1|0) = vec(var(&Gb)). Precisely, these are given by

E[&Gbt] = E
[
&αFbt + &ΨGb

&Gbt−1 +&εGbt

]
= 0

V ar(&Gbt) = V ar(&αFbt + &ΨGb
&Gbt−1 +&εGbt)

= V ar(&αFbt) + &ΨGbV ar(&Gbt−1)&Ψ′
Gb + &ΣGb + 2&ΨGbCov(&αFbt, &Gbt−1)

Altogether, we therefore have

vec(V ar(&Gb)) =
[
I −

(
&ΨGb ⊗ &ΨGb

)]−1 (
&ΣαF + &ΣGb + 2&ΨGb

&ΣαFb

)

32



where

&ΣαF = V ar(&αFbt) =
[

ΣαF 0
0 0

]

and Σα = V ar(αbt) = V ar(&̃ΛFb0
&Ft)

= &̃ΛFb0V ar(&Ft)&̃Λ′
Fb0

Moreover,
&ΣGb =

[
ΣGb 0
0 0

]

and

&Σαb = Cov(&αbt, &Gbt−1) =
[

Σab 0
0 0

]
,

with Σαb = Cov(αbt, Gbt−1)

= Cov(&̃ΛFb0
&Ft, λ

′
Fb(L)Ft−1 + εGbt−1)

= Cov(&̃ΛFb0
&Ft, λ

′
Fb(L)Ft−1)

= &̃ΛFb1V ar(&Ft−1)&̃Λ′
Fb0

where vec(V ar(&Ft)) = vec(V ar(&Ft−1)) =
[
IsF −

(
&ΨF ⊗ &ΨF

)]−1
vec(ΩF ) The Kalman filter itera-

tions provide us with the conditional distribution of &GbT |T given ΞGb and the data through period
T :

&GbT |{X̃bt},ΞGb ∼ N(&GbT |T , &PGbT |T )

Carter and Kohn show us how to sample the entire set of factor observations conditional on the
parameters ΞGb and all the data. Given the Gaussianity and Markovian structure of the state-space
model, the distribution of &Gbt given &Gbt+1 and X̃btis normal:

&Gbt|X̃bt, &G∗
bt+1,ΞGb ∼ N(&Gbt|t, "G∗

bt+1
, &PGbt|t, "G∗

bt+1
) (2)

where

&Gbt|t, "G∗
bt+1

= E[&Gbt|X̃bt, &G∗
bt+1]

= &Gbt|t + &PGbt|t&Ψ∗′
Gb

(
&Ψ∗

Gb
&PGbt|t&Ψ∗′

Gb + &Σ∗
Gb

)−1
(&G∗

bt+1 − &αbt+1 − &Ψ∗
Gb

&Gbt|t)

&PGbt|t, "G∗
bt+1

= V ar(&Gbt|X̃bt, &G∗
bt+1)

= &PGbt|t − &PGbt|t&Ψ∗′
Gb

(
&Ψ∗

Gb
&PGbt|t&Ψ∗′

Gb + &Σ∗
Gb

)−1
&Ψ∗

Gb
&PGbt|t

and where &G∗
bt+1 and &Ψ∗

Gb denote the first kb rows of &Gbt+1 and &ΨGb, respectively. Given these
conditional distributions, we can then proceed backwards to generate draws &G∗

bt for t=T−1, . . . , 1.
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Figure 2: Housing
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Figure 4: A Four Level Factor Estimate of Real Activity
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