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1 Introduction

Few results are available in the literature for dynamic panel models with time varying latent com-

ponents of which serially correlated measurement errors is a special case. Instead of working around

the measurement errors to look for orthogonality conditions, we take as a starting point that the

biases induced by measurement errors contain valuable information about the parameters of in-

terest. We use the estimates of an auxiliary model that are known to be inconsistent to obtain

consistent estimates of the original model. Our approach falls in the class of Indirect Inference

methods proposed by Gourieroux, Monfort, and Renault (1993) and Smith (1993). The typical

indirect inference estimator (IDE) either holds the covariates fixed in simulations, or fully specifies

their data generating processes so that they can be simulated along with the endogenous variables.

We enhance the IDE to handle situations when the parameters in the marginal distribution of the

covariates and those of the conditional model are not variation free. The proposed estimator will

hereafter be referred to as IDEA (augmented indirect inference estimator).

Our IDEA estimator is a promising alternative to least squares estimation, which is convenient

and often efficient when the regression error is orthogonal to the covariates. However, in the case

of panel data, it is well-known that least squares estimation using demeaned or differenced data

is inconsistent when the time dimension of the panel is short. Furthermore, if data are measured

with errors, if the regressors are endogenous, or if there is unobserved cross-section dependence,

the least squares estimates are inconsistent even when the sample sizes in both the time series (T )

and the cross-section (N) dimensions are large. The source of these problems is the presence of a

latent component in the model that is correlated with the regressors.

We provide a Panel-ME algorithm to show how dynamic panel models with measurement errors

can be estimated without fully specifying the data generating processes for the covariates as in

structural equation models of the LISREL type discussed in Joreskog and Thillo (1972). A simple

modification leads to a Panel-IV algorithm that enables estimation of models with endogenous

regressors without the need for instrumental variables. We also provide a Panel-CS algorithm for

estimating panel models with cross-section dependence. Such models have generated a good deal of

interest in recent years. Cross-section dependence in the form of a factor structure bears similarity

with measurement errors in that they both involve a time varying latent component.

The appeal of IDEA lies in its applicability to a broad range of models and data configurations.

Furthermore, it has a built in bias-correction property that is especially appealing when there is

unobserved heterogeneity and T is small. This property was illustrated in Gourieroux, Phillips,

and Yu (2010) using a panel AR(1) model. We show that IDEA shares this property even for

models in which consistent estimation by the fixed effects estimator is not possible regardless of
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how large T is. In a companion paper Komunjer and Ng (2010), we show that IDEA also has

excellent properties in small N and large T VARX models with measurement errors. We begin

with an overview of the method of indirect inference of panel models with correctly observed data.

2 The Indirect Inference Estimator: An Overview

Let θ be the parameter vector in a model that may be complex, but can be easily simulated.

Indirect inference requires specifying an auxiliary model that captures features of the data but

need not coincide with the true model. Let ~yi ≡ (yi1, . . . , yiT )′ and ~xi ≡ (xi1, . . . , xiT )′ be the time

series observations, and let y = (~y1, . . . , ~yN ) and x = (~x1, . . . , ~xN ) be the matrix of stacked up

observations in the panel. Let then ψ be the parameters of the auxiliary model whose estimates

are defined by

ψ̂N,T = argmaxψQN,T (y,x, ψ; θ0).

Assuming it exists and is unique, the pseudo true value of ψ is given by ψ0
∞,T = argmaxψ limN→∞

QN,T (y,x, ψ; θ0). Note that both the estimator and the pseudo-true value of ψ depend on the

objective function, Q.

Let ys = (~ys1, . . . , ~y
s
N ) with ~ysi = (ysi1, . . . , y

s
iT )′ be data for the dependent variable simulated

under the assumed true model, holding the exogenous covariates x fixed. This requires drawing usit
from a parametric distribution. Estimating the auxiliary model on the simulated data yields

ψ̃sN,T (θ) = argmaxψQN,T (ys,x, ψ; θ).

The IDE is obtained by solving

θ̃N,T,S ≡ argminθ

∥∥∥∥∥ψ̂N,T − 1
S

S∑
s=1

ψ̃sN,T (θ)

∥∥∥∥∥
WN,T

,

where WN,T is a weighting matrix. Essentially, the auxiliary parameter estimates define a mapping

from the parameter space of θ to the parameter space of the auxiliary model. Gourieroux, Monfort,

and Renault (1993) refer to this mapping as a binding function.

Definition 1 Let Ψ : θ0 → Ψ(θ0) be a mapping from θ0 to ψ0
∞,T . Then θ0 is globally and locally

identified if Ψ(·) is injective and ∂Ψ(θ0)
∂θ has full column rank.

Although the auxiliary model need not nest the true model, it must contain features of the data

generated under θ. In a likelihood setting, identification requires that the true densities of the data

be ‘smoothly embedded’ within the scores of the auxiliary model, see Gallant and Tauchen (1996).

When QN,T (·) is not likelihood based, identification requires that the conditional moments of the
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auxiliary model under θ have independent information about θ. This in turn means that ψ must

be chosen such that ∂Ψ(θ)
∂θ has full column rank.

If the binding function were known, invertible, and θ of the same dimension as ψ, then θ̂N,T =

Ψ−1(ψ̂N,T ) would be a consistent estimate of θ0. But Ψ(·) is usually an intractable function. The

IDE uses simulations to approximate and invert the binding function. Under regularity conditions,

√
NT (θ̃N,T,S − θ0) d−→N(0,Avar(θ̃N,T,S)),

where Avar(θ̃N,T,S) is of the double sandwich form as defined in Proposition 3 of Gourieroux,

Monfort, and Renault (1993). It depends on whether the auxiliary model is correctly specified via

ψ, the asymptotic variance of ψ̂N,T through the choice of the Q, and the number of simulations, S.

In a recent paper, Gourieroux, Phillips, and Yu (2010) use the IDE to improve the estimates of

a panel AR(1) model. Use of the IDE in dynamic panels is natural as Gourieroux, Renault, and

Touzi (2000) show that the estimator automatically provides second order bias correction if the

auxiliary model admits an Edgeworth expansion. Before explaining why the IDE will not work for

measurement error models and explain what modifications are necessary, we first take a closer look

at the IDE in the context of a panel ARX(1,0) model.

2.1 Direct and Indirect Bias Corrections: Case of ARX(1,0)

Consider a correctly measured dynamic panel model with fixed effects,

yit = λi +A1yi,t−1 +B0xit + uit, i = 1, . . . , N, t = 1, . . . , T, (1)

with uit ∼ WN(0, σ2
u). The parameters of this model are θ = (θ+′, σ2

u)′ = (B0, A1, σ
2
u)′.1 Let

z̈it = (ÿi,t−1, ẍit)′ represent the deviation of zit = (yi,t−1, xit)′ from its time average. Let σ̂äb̈
be the sample covariance between two demeaned variables, a and b. For example, σ̂ẍÿ−1 =

1
N(T−1)

∑N
i=1

∑T
t=1 ẍitÿi,t−1. For given N and T , the LSDV estimator θ̂N,T = (θ̂+

N,T
′, σ̂2

u,N,T )′ is

θ̂+
N,T =

(
σ̂ẍẍ σ̂ẍÿ−1

σ̂ẍÿ−1 σ̂ÿ−1ÿ−1

)−1(
σ̂ẍÿ
σ̂ÿ−1ÿ

)
and σ̂2

u,N,T =
1

N(T − 1)

N∑
i=1

T∑
t=1

(ÿit − z̈′itθ̂+
N,T )2.

We may write

θ̂N,T = θ + bN,T

(
σ̂ÿ−1ÿ−1 , σ̂ẍÿ−1 , σ̂ẍẍ, σ̂ẍü, σ̂ÿ−1ü

)
(2)

where bN,T (·) is the bias function. Nickell (1981) showed that θ̂N,T is inconsistent as N →∞ with

T fixed. Consistent estimates can be obtained by various instrumental variable methods, details
1Our results are invariant to the assumptions made on the initial conditions. In the simulation experiments to

follow, we shall assume the initial observation to be drawn as yi0 ∼ N
„

λi
1−A1

+B0xi0,
σ2

u√
1−A2

1

«
.
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of which can be found in Arellano (2003). However, the IV estimates are generally inefficient, and

weak instruments pose a problem when the panel has near unit roots with A1 close to unity.

An alternative to IV estimation is to obtain analytical approximations to the bias and then

construct bias corrected estimators. Kiviet (1995), Bun and Carree (2005) and Phillips and Sul

(2007) approximate the biases using large N asymptotics. Specifically, let σäb̈ ≡ limN→∞ σ̂äb̈.

Then, as N gets large the bias function bN,T converges to b∞,T (θ, σÿ−1ÿ−1 , σẍÿ−1 , σẍẍ); for analytic

expressions of b∞,T see, for example, Nickell (1981), Kiviet (1995), and Bun and Carree (2005).

The bias-corrected estimator θ̂BC is then defined as the value of θ that solves

θ̂N,T = θ + b∞,T

(
θ, σ̂ÿ−1ÿ−1 , σ̂ẍÿ−1 , σ̂ẍẍ

)
. (3)

Large N and T approximations has been used by Hahn and Kuersteiner (2002) to obtain b∞,∞(·).
Kiviet (1995) showed that these bias-corrected estimators tend to have smaller root mean-squared

error (RMSE) than the IV estimators. However, the bias corrections are model specific and are

invalid when there are additional covariates or lagged independent variables.

Consider now the IDE based on simulated usit, y
s
it and observed xit. Let the auxiliary model be

the (true) ARX(1,0) model and consider estimating the model by LSDV. Under these assumptions,

θ = ψ and the choice of WN,T does not matter. Then

θ̃sN,T = θ + bsN,T

(
σ̂ÿs−1ÿ

s
−1

(θ), σ̂ẍÿs−1
(θ), σ̂ẍẍ, σ̂ẍüs(θ), σ̂ÿs−1ü

s(θ)
)
. (4)

Note that unlike in (2), the covariance terms obtained from simulated usit and ysit now explicitly

depend on θ. The IDE is then obtained as a solution θ̃N,T,S to

min
θ

∥∥∥∥∥θ̂N,T − 1
S

S∑
s=1

θ̃sN,T

∥∥∥∥∥ = (5)

min
θ

∥∥∥∥∥bN,T
(
σ̂ÿ−1ÿ−1 , σ̂ẍÿ−1 , σ̂ẍẍ, σ̂ẍü, σ̂ÿ−1ü

)
− 1
S

S∑
s=1

bsN,T

(
σ̂ÿs−1ÿ

s
−1

(θ), σ̂ẍÿs−1
(θ), σ̂ẍẍ, σ̂ẍüs(θ), σ̂ÿs−1ü

s(θ)
)∥∥∥∥∥

The IDE exploits the fact that if the LSDV estimator θ̂N,T based on the true data is biased, then

θ̃sN,T which is based on the simulated data will also be biased. Calibrating the bias terms by

simulations eliminates the need for analytical derivations on a model specific basis.

As noted above, the IDE depends on the simulated variables ysit and usit which depend on θ;

hence, all the covariance terms appearing in the simulated bias bsN,T , except σ̂ẍẍ, are functions of θ.

In contrast, all the covariance terms appearing in the limit bias b∞,N , and thus in θ̂BC in (3), are

invariant to θ. As the binding function of the two estimators vary with θ in different ways, they

will have also different variance in finite samples, even though both are of the double sandwich
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form. However, as S and N tend to ∞, the right hand side of (4) evaluated at θ0 converges to the

right hand side of (3). Thus, the asymptotic variance of θ̃N,T,S is the same as θ̂BC given in Bun

and Carree (2005).

Notice that (4) reflects the fact that the covariates xit are held fixed in the simulations. This is

valid if the parameters of the conditional model do not vary with those in the marginal distribution

of the covariates. Or in other words, x is weakly exogenous for θ in the sense of Engle, Hendry,

and Richard (1983). While such exogeneity conditions are typically assumed to hold in correctly

measured panel models, they break down as soon as measurement errors are present.

3 An Augmented Indirect Estimator: IDEA

As far as we are aware of, the only reference to IDE in the measurement error literature is Jiang and

Turnbull (2004) who use indirect inference as a way to adjust the bias in the auxiliary parameters

with the help of validation data. Standard implementation of the IDE without validation data

is problematic because the regressors are no longer weakly exogenous for the parameters of the

conditional model. More precisely, when the parameters in the conditional model and those in the

marginal density of the covariates are no longer ‘variation free’, the covariates xit cannot be held

fixed in simulations. To make this point precise, consider the ARX(1,0) model without fixed effect

but with measurement error in Xit = xit + εxit:

yit = λi +A1yi,t−1 +B0xit + uit

= λi +A1yi,t−1 +B0Xit + Vit.

As Vit = uit−B0ε
x
it is not orthogonal to Xit, an OLS estimator ψ̂N,T of the parameter ψ = (B0, A1)

based on the observed data is such that plimN→∞ψ̂N,T = ψ + bias 6= ψ. Now consider estimating

the model by the IDE. If Xit is fixed in simulations, then Xit⊥V s
it = usit − B0ε

sx
it by construction,

and plim ψ̂sN,T = ψ. The binding function Ψ(θ) will not be consistently estimated.

The next subsection shows how to define ψ for the purpose of identifying the parameters of

interest in the presence of latent components, and how to simulate the covariates without fully

specifying their data generating process. The key idea is to use the relation

var(Xit) = var(xit) + var(εxit)

to obtain estimates of the latent xit from the data up to scale. Then Xs
it can be obtained upon

simulation of εxit.
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3.1 The Case of Measurement Errors

The LSDV estimates of the ARX(1,0) model are biased even without measurement errors. However,

with or without measurement error, ψ̂N,T is consistent for the pseudo parameter ψ0
∞,T even though

ψ0
∞,T 6= θ0. It remains to be precise what is θ and what is the ψ appropriate for the measurement

error model. To this end, we consider a general panel autoregressive distributed lag ARX(py, rx)

model with dependent variable yit and a scalar covariate xit given by

yit = λi +
py∑
τ=1

Aτyi,t−τ +
rx∑
τ=0

Bτxi,t−τ + uit, (6)

where i = 1, . . . , N and t = 1, . . . , T . The observed data are possibly contaminated by classical

additive errors:

Yit = yit + εyit,

Xit = xit + εxit.

Let nyε = 1 if yit is measured with error and zero otherwise. Similarly, let nxε = 1 if the covariate

xit is measured with error and zero otherwise. We assume the measurement errors to be drawn

from independent ARMA processes: φy(L)εyit = ϑy(L)vyit and φx(L)εxit = ϑx(L)vxit in which vyit ∼
WN(0, σyv

2) and vxit ∼WN(0, σxv
2) are independent.

Let Vit be the errors of the auxiliary model let ΓV (j) be the (possibly vector of) autocovariance

of Vit at lag j. With the auxiliary model being the true model, consider

θyε = (φy, ϑy, σyv) if nyε = 1

θxε = (φx, ϑx, σxv ) if nxε = 1

θ = (A1, . . . , Apy , B0, . . . , Brx , σ
2
u, θ

y
ε , θ

x
ε )

ψ = (A1, . . . , Apy , B0, . . . , Brx ,ΓV (0), . . . ,ΓV (qV )),

As the parameters (A1, . . . , Apy , B0, . . . , Brx , σ
2
u) cannot be separately identified from those of the

measurement error processes, θ is augmented to include nuisance parameters belonging to the

measurement errors. The auxiliary parameter vector ψ crucially depends on ΓV (qV ) for suitably

chosen qV .

Identification: Panel-ME (i) ∂Ψ(θ)
∂θ is full column rank; and (ii) qV ≥ dim(θyε ) + dim(θxε ).

Part (i) is the necessary and sufficient rank condition for identification of θ; part (ii) is the

necessary order condition. In the absence of measurement error, identification would have required
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the information matrix of the ARX model (which is a function of θ) to be full rank, as in Rothenberg

(1971). Instead, our rank condition concerns the Jacobian matrix of the Ψ(θ) with respect to θ,

which can be checked analytically or numerically.

The above identification analysis stands in sharp contrast to the conventional IV approach.

With the latter, one transforms the model to remove the bias-inducing terms so that orthogonaltiy

conditions can be found. While instrumental variables are required, parametric specification of

the measurement error process or of the covariates is not necessary. On the other hand, IDEA

exploits information in the bias. It does not require instruments, but demands specification of the

measurement error process.

For the ARX(1,0) model with θ+ = (B0, A1)′, the indirect estimator is

θ̃s+N,T = θ+ + bsN,T

(
σ̂Ÿ s−1Ÿ

s
−1

(θ), σ̂ẌsŸ s−1
(θ), σ̂ẌsẌs(θ), σ̂ẌsV̈ s(θ), σ̂Ÿ s−1V̈

s(θ)
)
. (7)

Unlike (4) when there is no measurement error, σ̂ẌẌ(θ) in (7) is now a function of θ via the

measurement error parameters. This also makes clear that simulation of the contaminated data

Xit is now necessary. We propose the following:

Algorithm Panel-ME

1. Estimate the auxiliary model to yield ψ̂+
N,T = (Â1, . . . , Âpy , B̂0, . . . , B̂rx)′ and residuals V̂i,t.

2. Compute its T×T variance covariance matrix with (t, j) element being ΓV (t, j) = 1
N

∑N
i=1 V̂itV̂i,t−j .

Let ΓV (j) = 1
T−j

∑T
t=j+1 ΓV (t, j).

3. Given a guess of θ and for s = 1, . . . , S:

a. Draw vysit ∼ N(0, σ2
vy) to obtain φy(L)εysit = ϑy(L)vyst .

b. Draw vxsit ∼ N(0, σ2
vx) to obtain φx(L)εxsit = ϑx(L)vxsit .

c. Compute var(εxsit ) and let xsit = Xit ·
[
1− var(εxsit )

var(Xit)

]1/2

.

d. Draw usit ∼ N(0, σ2
u). Construct ysit =

∑py
j=1Ajy

s
i,t−j +

∑rx
j=0Bjx

s
it + usit.

e. Let Xs
it = xsit + εxsit and Y s

it = ysit + εysit .

f. Estimate the auxiliary model using (Ys,Xs) to obtain ψ̃s+N,T . Construct the autocovari-

ances for Ṽ s
it as in step 2. Then ψ̃sN,T = (ψ̃s+N,T ,ΓeV (qV )).

As is well documented, the choice of auxiliary model and estimator affect the efficiency of the

IDE. Li (2010) favors OLS estimation of a linear auxiliary model for estimating structural auction

models with computational ease being one of the reasons. Michaelides and Ng (2000) find that an
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auxiliary model with thresholds yields more precise estimates than a linear model . Here, we let the

auxiliary model be the true model. Still, the parameters of the auxiliary model can be estimated

in Step f by multiple ways. The obvious choice is LSDV since it is efficient when N,T → ∞.

A different implementation is to estimation ψ by instrumental variables. OLS estimation is also

possible as we do not need ψ̂N,T to be consistent for θ0.

3.2 The Case of Endogeneity

It is known that the coefficients associated with endogenous regressors cannot be consistently

estimated when the variations in the dependent variable can no longer be traced to exogenous

variations in the regressors. As with the problem of measurement error, the orthogonality between

the regression error and the regressor breaks down. Consider the stationary dynamic panel model

A(L)yit = λi +B(L)Xit + uit

where uit is serially uncorrelated, but the scalar covariate Xit is contemporaneously correlated with

uit. Specifically, assume that

Xit = γuit + xit

has two mutually orthogonal latent components: an xit satisfying E(xituit) = 0, and a component

that induces endogeneity. If xit were observed, it would have been the ideal instrument as it is

correlated with Xit and uncorrelated with uit. The measurement error problem is evidently a

special case of endogeneity with γ = 1. To identify the exogenous shifts in Xit as given by xit on

yit, we will exploit the fact that var(Xit) = γ2σ2
u + var(xit). Define

θ = (A1, . . . , Apy , B0, . . . Brx , σ
2
u, γ)

ψ = (A1, . . . , Apy , B0, . . . , Brx ,Γu(0), . . . ,Γu(qu)).

Algorithm Panel-IV

1. Estimate the auxiliary model to yield ψ̂+
N,T = (Â1, . . . , Âpy , B̂0, . . . , B̂rx)′ and residuals ûit.

2. Compute its T×T variance covariance matrix with (t, j) element being Γu(t, j) = 1
N

∑N
i=1 ûitûit−j .

Let Γu(j) = 1
T−j

∑T
t=j+1 Γu(t, j).

3. Given a guess of θ and for s = 1, . . . , S:

a. Let xsit = Xit

[
1− γ2σ2

u
var(Xit)

]1/2

. Draw usit ∼ N(0, σ2
u) and let Xs

it = γusit + xsit.

b. Construct ysit =
∑py

j=1Ajy
s
i,t−j +

∑rx
j=0Bjx

s
it + usit.
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c. Estimate the auxiliary model using (ys,Xs) to obtain ψ̃s+N,T . Construct the autocovari-

ances for ũsit as in step 2. Then ψ̃sN,T = (ψ̃s+N,T ,Γeu(qu)).

Algorithm Panel-IV presents an alternative solution to the endogeneity problem which usually

consists of finding instruments that are exogenous yet strongly correlated with Xit. Parametric

assumptions about the nature of endogeneity are not required. Instead, IDEA takes a control

function type approach to make explicit the relation between the equation error and Xit. However,

the need for instruments is dispensed at the cost of having to specify how Xit is correlated with

uit. Our linearity assumption leads to a simple way that allows the exogenous variations in Xit to

be simulated.

3.3 The Case of Cross-Section Dependence

A generalization of the fixed effects model is a multiplicative two-way model that allows the unob-

served heterogeneity to have time varying effects. The model is

Yit = λy′i ft +A1Yi,t−1 +X ′itB0 + uit (8)

Xit = λx′i gt + xit (9)

where λyi and ft are rf × 1 vectors, while λxi and gt are rg × 1.2 In this model, λyi and λxi are

unobserved (vectors of) individual effects whose impact on Yit and Xit may change over time

according to ft and gt respectively. Assuming gt = 0 for all t, Kiefer (1980) derives a concentrated

least squares estimator for the r = 1 case, while Holtz-Eakin, Newey, and Rosen (1988) suggest a

quasi-differencing approach to estimate panel vector autoregressive models in the presence of λy′i ft.

Ahn, Lee, and Schmidt (2001) exploit orthogonaltiy conditions to estimate the model by GMM,

while Nauges and Thomas (2003) use a double difference transformation to estimate the model, also

by GMM. Bai (2009) considers maximum likelihood estimation treating ft and gt as parameters

using the approach of Chamberlain (1982) and Mindlak (1978) to control for the correlation between

the fixed effects and the regressors. The likelihood depends on whether or not the regressors are

weakly exogenous.

We consider indirect estimation of A1 and B0 simultaneously with ft and gt treated as param-

eters. This is motivated by the observation that the latent multiplicative fixed effects λy′i ft and

λx′i gt in (8) and (9) are time varying latent components, much like measurement errors. Whereas

parametric assumptions were made for the measurement error process, we now need to be precise

about λxi and λyi .
2As pointed out before, our approach allows for arbitrary assumptions regarding the initial conditions. In the

simulations carried out in the next section, we shall assume that Yi0 ∼ N
„
λ

y′
i f0

1−A1
+X ′i0B0

σ2
u√

1−A2
1

«
.
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Let the auxiliary model be the true model (8) with residuals uit. Define

θ =
(
A1, B0, σu, λ̄

y, λ̄x, σλy , σλx , {ft}Tt=1, {gt}Tt=1

)′
ψ =

(
A1, B0, ~Γu(qu)

)′
,

where ~Γu(qu) is a qu × 1 sub-vector of the unique elements of the T × T covariance matrix of uit.

Identification: Panel-CS: (i) ∂Ψ(θ)
∂θ is full column rank; and (ii) qu ≥ (T + 2)(rg + rf ).

The rank condition requires that the auxiliary model encompasses features of the model of

interest. As θ is a subvector of ψ, the condition reduces to ∂Γu(θ)
∂θ being full rank. The necessary

(order) condition is, however quite stringent as we now have to estimate T elements of the rf vector

ft and T elements of the rg vector gt. As the T × T covariance matrix of uit can have at most the

T (T + 1)/2 elements, the order condition requires that T ≥ 5.

Algorithm Panel-CS

1 Choose a criterion function Q to obtain ψ̂+
N,T = (Â1, B̂0) and residuals ûit.

2. Construct Γu(t, j) = 1
N

∑N
i=1 ûitûi,t−j . Let

~Γu(qu) = ({Γu(t, 0)}Tt=1, {Γu(t, 1)}Tt=2, . . . {Γu(t, k)}Tt=k+1}

where k is chosen to satisfy the order condition.

3 Given a guess of θ, repeat for s = 1, . . . , S:

a. Simulate the rf × 1 vector λysi and the rg × 1 vector λxsi from assumed distributions;

b. Let Xs
it = xsit + λxsi

′gt with

xsit = Xit ·
[
1−

g′tσ
2
λxgt

var(Xit)

]1/2

.

c. Draw usit and let Y s
it = λysi

′
ft +A1Y

s
i,t−1 +Xs

it
′B0 + usit.

4. Estimate the auxiliary model on (Ys,Xs) according to criterion Q(·) to yield ψ+s
N,T . Construct

Γ̃su(t, j) as in step 2.

10



In the stationarity measurement error model, we average ΓV (t, j) over t to obtain ΓV (j). With

Algorithm MFE, Γu(t, j) at each t is a distinct entry of ψ̃N,T . Thus if T = 5, there would be five

Γu(t, 0), four Γu(t, 1) and so forth. This is necessary to identify ft and gt for t = 1, . . . T .

Two additional implementation issues need to be highlighted. First, in the measurement error

model, demeaning removes λi. Thus any value of λi (including zero) can be used to simulate the

data. The LSDV/ FD estimates of the auxiliary parameters are invariant to what is assumed for

λi. In the present setup, demeaning and differencing no longer remove λi. For this reason, the

first step in each simulation is to make draws of λyi and λxi . Second, so long as ft and gt are time

varying, LSDV will not be consistent even when N and T are both large. Although LSDV can still

be used, it is no longer the obvious candidate estimator for the parameters of the auxiliary (also

the true) model.

4 Simulations

This section consists of four parts. Subsection 1 assesses the finite sample properties of the IDE for

the dynamic panel model with no measurement error. Subsection 2 considers ARX(1,1) models with

measurement errors. Endogeneity is considered in subsection 3. Subsection 4 considers the case

cross-section dependence. The mean and root-mean-squared error of the estimates are computed

from 1000 replications. The IDE and IDEA results are based on S = 100 draws.

4.1 The ARX(1,0) Model

Data are generated according to (1):

yit = λi +A1yi,t−1 +B0xit + uit

where for t ≥ 1, uit ∼ σu0N(0, .95− 05T + .1t). Furthermore, λi ∼ N(0, σ2
λ) and

yi0 ∼ N( λi
1−A1

+B0xi0,
σ2
u0√

1−A2
1

). The scalar covariate xit is generated as

xit = µx +Ax1xi,t−1 + uxit, xi0 ∼ N
(

µx

1−Ax1
,

σ2
v√

1− (Ax1)2

)
, uxit ∼ N(0, σ2

x). (10)

We let Ax1 = .8, µx = 0, σx = 1. The true values of (B0, A1, σu0) are (1, .8, 1). We consider the six

parameter configurations in Tables 2-4 of Bun and Carree (2005), For the sake of comparison, we

also compute the LSDV, along with the bias-corrected estimator of Bun and Carree (2005).3 Note

that the fixed effect is absent in xit.
3As Bun and Carree (2005) also consider the GMM estimator of Arellano and Bond (1991) and the modified

corrected estimator of Kiviet (1995), these results will not be reported. It should however be mentioned that bθbc has
smaller bias than the other estimators considered.
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The results are reported in Table 1. The LSDV estimates of A1 are strongly biased downwards

when T = 2 or 3, similar to the panel AR(1) results reported in Gourieroux, Phillips, and Yu (2010)

for T = 6. The B̂0,BC and B̂0,IDE are much more precise. The IDE tends to provide somewhat

more efficient estimates of A1 when T is small. Results with uit ∼ N(0, σ2
u) and cross-section

heteroskedasticity with σ2
ui ∼ χ2

1 are similar and not reported to conserve space. Suffice it to mention

that θ̂IDE has better properties when T < 6 (especially under cross-section heteroskedasticity)

while θ̂BC is better with larger T . Overall, θ̂BC and θ̂IDE have similar finite sample properties.

The advantage of the IDE is that it can be used in models that are not specified exactly as in (1),

such as when there are multiple covariates or additional lags.

4.2 The ARX(1,1) Model with Measurement Errors

Data are generated as follows:

yit = λi +A1yi,t−1 +B0xit +B1xit−1 + uit

xit = λi + ρxi,t−1 + uxit

Xit = xit + εxit, εxit = φxεi,t−1 + vit, vxit ∼ N(0, σ2
vx)

Yit = yit + εyit, εyit = φxε
y
i,t−1 + vyit, vyit ∼ N(0, σ2

vy)

with λi ∼ N(0, 1), σ2
u = 1. The covariate xit now has a fixed effect. We let ρ = 0.5. Simulations

are performed with N = 200 and qV = 2. Thus, dim(θ) = dim(ψ) = 6.

We first verify that the IDEA is not affected by having to estimate the measurement error

parameters unnecessarily. This is reported in Table 2. The infeasible LSDV using the correctly

observed data (y,x) are reported in column 1. The IDEA estimates are based on using the true

model as the auxiliary model. Two estimators of the auxiliary parameters are considered: OLS

(column 2) and LSDV (column 3). The IDEA estimates using OLS are inferior to those based on

LSDV and it is useful to understand why. As demeaning removes the fixed effect, LSDV estimates

are invariant to λi. The mean and variance of λi can conveniently be set to zero. With OLS, the

mean of λi is absorbed in the intercept leaving λi − λ̄ in the residuals. Even if θ is augmented

to include σ2
λ, we cannot separately identify σλ from the measurement error parameters. In other

words, ∂Ψ(θ)
∂θ fails to be full rank. The highlights the point that the choice of the auxiliary model and

the estimator for its parameters are both important. Indirect estimation will yield consistent and

improved estimates only when identification conditions are met. The OLS based IDEA estimates

will not be reported in subsequent results for the fixed effect model.

We then add AR(1) measurement errors to either yit or xit or both. Instead of the OLS based

IDEA estimates, we now report the LSDV using contaminated data (Y,X) to gauge the extent
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of measurement error bias. These results are reported in Tables 3a and 3b. In all four cases,

dim(ψ) = dim(θ). The IDEA estimates are generally precise when the data are truly observed with

serially correlated AR(1) errors. The estimates of measurement error parameters exhibit downward

bias when T = 5, but are precise when T = 10. Results for A1 and B0 are also similar if λi is

drawn from the uniform distribution but a normal distribution is assumed. Varying σv relative to

σu has little change on the results.

4.3 Endogeneity

Data are generated as follows:

yit = λi +A1yi,t−1 +B0Xit + uit

xit = λi + ρxi,t−1 + uxit,

Xit = xit + γuit

where uxit ∼ N(0, 1) and independent of uit ∼ N(0, 1). In the simulations, we let γ = .5. The

results for N = 200 and T = 5, 10 are reported in Table 4. Also reported are the infeasible LSDV

estimates using xit as regressor (denoted LSDVx), and the LSDV estimates using the endogenous

regressor Xit (denoted LSDVX).

When γ = 0 and hence there is no endogeneity, all three estimators have precise estimates of

B0 though IDEA is less efficient. However, IDEA has a more precise estimate of A1. When Xit is

endogenous with γ = .5, the infeasible LSDVx is still precise for B0, but LSDVX is strongly upward

biased. The bias persist even when T = 10. In contrast, the IDEA estimate of both B0 and A1 are

precise. Furthermore, the variance of the estimates falls as T increases.

4.4 Cross-Section Dependence

We simulate data according to (8) and (9) with λyi = λxi ∼ U(.5, 1) for all i. We consider two

serially correlated regressors. For k = 1, 2,

ft = ρfft−1 + uft , uft ∼ N(0, σ2
f )

Xikt = λigt + µk + xikt, gt ∼ N(0, 1),

xikt = Ax1kxik,t−1 + uxit, uxikt ∼ N(0, 1).

with ρf = Ax1 = 0.5, µ1 = .25, µ2 = .5. We let (N,T ) = (200, 5). The initial condition is

Yi0 ∼ N
(
λy′i f0

1−A1
+X ′i0B0,

σ2
u√

1−A2
1

)
,
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where f0 and X0 are draws from their unconditional distributions.

In the simulations, we use qu = 2, giving dim(θ) = 16 and dim(ψ) = 18. The IDEA estimates

are based on OLS estimation of the auxiliary model, which coincides with the true model.

When ft is time varying, demeaning no longer removes the fixed effect. Both LSDV and OLS

yield bised estimates even when N is large. We use OLS to estimate the auxiliary parameters as

they more precise than than the LSDV estimates. The results are reported in Table 5. The first

panel sets σ2
f = 0 to verify the IDEA is unaffected by having to estimate ft and gt unnecessarily.

Indeed, in such a case, OLS, LSDV, and IDEA are equally precise. Panels two and three sets

allow for a non-degenerate multiplicative fixed effect but uit is homoskedastic. Evidently, all three

estimators are biased, but the IDEA produces much more precise estimates of A1 and B0. With

T = 5, these results are surprisingly good. Introducing time series heteroskedasticity as in Table

5b not change the picture. In fact, IDEA appears to be more precise under heteroskedasticity.

5 Conclusion

This paper considers an indirect estimation method for estimating models with time varying latent

effects. The augmented indirect estimator (IDEA) is used to estimate dynamic panel models

with measurement errors, endogenous regressors, and cross section dependence. The estimator

has a built in bias-correction property that can be especially useful when T is small. The finite

sample properties of IDEA are promising. In particular, the estimator suffers only small efficiency

loss when there truly is no measurement error, endogeneity, or cross-section dependence. IDEA

exploits information in the biases rather than removes the biases from orthogonality conditions.

While IDEA requires the practitioner to specify how the regressors are correlated with the error

term, full specification of the data generating process of the regressors is not necessary. The appeal

of IDEA is generality and its ability to automatically perform bias correction when T is small.
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Table 1: Dynamic Panel Model:

yit = λi +A1yi,t−1 +B0xit + uit, σ2
u,t = σu0(.95− 0.5T + .1t), t ≥ 1.

true LSDV se mse BC se mse IDE se mse
(N,T ) = (300, 2)
β1 1.000 0.883 0.074 0.138 1.005 0.086 0.086 0.997 0.098 0.098
α 0.800 0.353 0.049 0.449 0.837 0.071 0.080 0.802 0.060 0.060
σu 1.000 - - - - - - 1.089 0.048 0.101
(N,T ) = (200, 3)
β1 1.000 0.967 0.064 0.072 1.004 0.067 0.067 1.012 0.081 0.082
α 0.800 0.541 0.041 0.262 0.806 0.053 0.053 0.816 0.046 0.049
σu 1.000 - - - - - - 1.017 0.042 0.046
(N,T ) = (150, 4)
β1 1.000 0.992 0.047 0.048 1.000 0.048 0.048 1.002 0.067 0.066
α 0.800 0.635 0.028 0.168 0.810 0.032 0.034 0.823 0.033 0.041
σu 1.000 - - - - - - 1.036 0.033 0.049
(N,T ) = (100, 6)
β1 1.000 1.013 0.046 0.048 1.000 0.046 0.046 1.002 0.062 0.062
α 0.800 0.710 0.024 0.094 0.809 0.026 0.028 0.826 0.030 0.040
σu 1.000 - - - - - - 1.054 0.037 0.065
(N,T ) = (60, 10)
β1 1.000 1.019 0.045 0.049 0.999 0.044 0.044 1.000 0.061 0.061
α 0.800 0.759 0.020 0.046 0.809 0.020 0.022 0.810 0.024 0.026
σu 1.000 - - - - - - 1.098 0.036 0.105
(N,T ) = (40, 15)
β1 1.000 1.017 0.041 0.044 0.996 0.041 0.041 1.001 0.058 0.058
α 0.800 0.776 0.017 0.029 0.808 0.018 0.019 0.801 0.023 0.023
σu 1.000 - - - - - - 1.114 0.039 0.120

Note: BC denotes the bias-corrected in Bun and Carree (2005). IDE uses the LSDV to estimate
the auxiliary parameters. LSDV denotes the least squares dummy variable (or within) estimates.
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Table 2: Panel ARX(1,1): No Measurement Error (N = 200)

yit = λi +A1yi,t−1 +B0xit +B1xi,t−1 + uit

true LSDVy se mse IDEA se mse IDEA se mse
T = 5 OLS LSDV

A1 0.600 0.237 0.032 0.364 0.929 0.010 0.329 0.525 0.047 0.088
σu 1.000 0.149 0.007 0.851 1.153 0.010 0.153 1.032 0.055 0.063
σv - - - - 0.274 0.017 0.275 0.081 0.057 0.099
φ - - - - 0.222 0.026 0.224 0.020 0.060 0.063
B0 1.000 1.033 0.051 0.061 1.414 0.062 0.419 0.994 0.048 0.049
A1 0.600 0.530 0.078 0.105 0.503 0.019 0.099 0.608 0.066 0.066
σu 1.000 0.151 0.099 0.855 0.808 0.248 0.314 0.868 0.338 0.362
σvy - - - - 0.057 0.148 0.159 0.170 0.264 0.314
φy - - - - 0.067 0.122 0.139 0.075 0.066 0.100
B0 1.000 0.972 0.056 0.062 0.981 0.119 0.120 1.018 0.084 0.086
B1 0.600 0.644 0.065 0.079 0.793 0.158 0.249 0.612 0.089 0.090
A1 0.800 0.747 0.061 0.080 0.799 0.129 0.129 0.795 0.068 0.068
σu 1.000 0.228 0.162 0.788 0.957 0.334 0.337 0.876 0.375 0.395
σxv - - - - 0.233 0.180 0.322 0.101 0.136 0.169
φx - - - - 0.186 0.197 0.271 0.102 0.010 0.103
B0 1.000 0.982 0.042 0.046 1.226 0.256 0.341 1.023 0.067 0.071
B1 0.600 0.639 0.050 0.063 0.913 0.226 0.386 0.581 0.062 0.064
A1 0.800 0.763 0.036 0.052 0.551 0.197 0.317 0.810 0.040 0.042
σu 1.000 0.192 0.097 0.814 0.588 0.423 0.590 0.816 0.282 0.337
σvx - - - - 0.402 0.211 0.454 0.108 0.120 0.162
φx - - - - 0.377 0.274 0.466 0.096 0.036 0.102
σvy - - - - 0.114 0.113 0.160 0.183 0.218 0.284
φy - - - - 0.105 0.044 0.114 0.085 0.082 0.118

Note: LSDV−y are the infeasible estimates using the latent (true) variables. IDEA-OLS uses OLS
to estimate the auxiliary model, while IDEA-LSDV uses the LSDV estimator.
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Table 3a: Panel ARX(1,1) Model with Measurement Error in Xit, (N,T ) = (200, 5)

yit = λi +A1yi,t−1 +B0xit +B1xi,t−1 + uit

Xit = xit + εxit, εxit = φxεi,t−1 + vit, vxit ∼ N(0, σ2
vx)

Yit = yit + εyit, εyit = φxε
y
i,t−1 + vyit, vyit ∼ N(0, σ2

vy).

true LSDVy se mse LSDVY se mse IDEA se mse
A1 0.600 0.237 0.032 0.365 0.223 0.034 0.378 0.512 0.063 0.108
σu 1.000 0.149 0.007 0.851 0.187 0.009 0.813 1.040 0.050 0.064
σv 0.500 - - - - - - 0.531 0.070 0.077
φ 0.500 - - - - - - 0.450 0.078 0.093
B0 1.000 1.033 0.051 0.061 1.042 0.052 0.067 0.991 0.049 0.050
A1 0.600 0.530 0.079 0.106 0.511 0.075 0.116 0.614 0.061 0.063
σu 1.000 0.151 0.100 0.855 0.191 0.099 0.815 0.891 0.310 0.329
σvy 0.500 - - - - - - 0.463 0.173 0.177
φy 0.500 - - - - - - 0.381 0.472 0.487
B0 1.000 0.973 0.055 0.061 0.788 0.053 0.218 1.072 0.258 0.268
B1 0.600 0.645 0.062 0.077 0.532 0.058 0.089 0.630 0.212 0.214
A1 0.800 0.746 0.061 0.081 0.749 0.062 0.080 0.788 0.086 0.087
σu 1.000 0.226 0.156 0.789 0.333 0.139 0.681 0.893 0.360 0.375
σxv 0.500 - - - - - - 0.493 0.271 0.271
φx 0.500 - - - - - - 0.383 0.073 0.138
B0 1.000 0.984 0.035 0.038 0.791 0.040 0.213 1.021 0.218 0.218
B1 0.600 0.640 0.047 0.061 0.538 0.048 0.078 0.611 0.235 0.235
A1 0.800 0.765 0.031 0.046 0.757 0.031 0.053 0.804 0.056 0.056
σu 1.000 0.180 0.093 0.825 0.336 0.096 0.670 1.075 0.241 0.251
σvx 0.500 - - - - - - 0.502 0.228 0.227
φx 0.500 - - - - - - 0.359 0.193 0.238
σvy 0.500 - - - - - - 0.401 0.006 0.099
φy 0.500 - - - - - - 0.401 0.003 0.099

Note: LSDV−y are the infeasible estimates using the latent (true) variables. LSDV−Y are estimates
using the contaminated data. The IDEA estimates applies LSDV to the auxiliary model.

19



Table 3b: Panel ARX(1,1) Model with Measurement Error in Xit, (N,T ) = (200, 10)

yit = λi +A1yi,t−1 +B0xit +B1xi,t−1 + uit

Xit = xit + εxit, εxit = φxεi,t−1 + vit, vxit ∼ N(0, σ2
vx)

Yit = yit + εyit, εyit = φxε
y
i,t−1 + vyit, vyit ∼ N(0, σ2

vy).

true LSDVy se mse LSDVY se mse IDEA se mse
A1 0.600 0.421 0.022 0.180 0.406 0.022 0.195 0.592 0.030 0.032
σu 1.000 0.088 0.003 0.912 0.110 0.004 0.890 0.924 0.036 0.084
σv 0.500 - - - - - - 0.454 0.032 0.056
φ 0.500 - - - - - - 0.456 0.042 0.060
B0 1.000 1.023 0.037 0.043 1.028 0.039 0.048 0.994 0.036 0.036
A1 0.600 0.563 0.044 0.058 0.553 0.044 0.064 0.608 0.037 0.038
σu 1.000 0.090 0.038 0.911 0.113 0.038 0.888 0.955 0.219 0.222
σvy 0.500 - - - - - - 0.490 0.155 0.155
φy 0.500 - - - - - - 0.387 0.345 0.361
B0 1.000 0.990 0.026 0.028 0.797 0.028 0.205 0.987 0.073 0.074
B1 0.600 0.626 0.034 0.043 0.503 0.033 0.103 0.567 0.052 0.061
A1 0.800 0.781 0.017 0.025 0.790 0.018 0.020 0.811 0.019 0.022
σu 1.000 0.148 0.049 0.853 0.300 0.062 0.702 1.036 0.213 0.216
σxv 0.500 - - - - - - 0.488 0.084 0.084
φx 0.500 - - - - - - 0.420 0.044 0.092
B0 1.000 0.989 0.026 0.028 0.792 0.030 0.210 0.997 0.112 0.112
B1 0.600 0.626 0.034 0.043 0.510 0.034 0.096 0.579 0.096 0.098
A1 0.800 0.782 0.017 0.025 0.783 0.018 0.024 0.804 0.024 0.025
σu 1.000 0.148 0.046 0.853 0.316 0.059 0.686 1.002 0.138 0.138
σvx 0.500 - - - - - - 0.495 0.117 0.117
φx 0.500 - - - - - - 0.404 0.088 0.130
σvy 0.500 - - - - - - 0.520 0.132 0.133
φy 0.500 - - - - - - 0.400 0.121 0.157
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Table 4: Panel ARX(1,0) Model with Endogenous Regressors (N = 200)

yit = λi +A1yi,t−1 +B0Xit + uit
Xit = xit + γuit,

xit = λi + ρxi,t−1 + uxit.

true LSDVx se mse LSDVX se mse IDEA se mse
T = 5, ρ = .5

B0 1.000 0.998 0.036 0.036 0.998 0.036 0.036 1.006 0.259 0.259
A1 0.800 0.736 0.067 0.093 0.736 0.067 0.093 0.786 0.061 0.063
σu0 1.000 - - - - - - 0.886 0.359 0.376
γ - - - - - - - 0.034 0.384 0.385
B0 1.000 0.995 0.053 0.053 1.319 0.183 0.368 1.002 0.256 0.256
A1 0.800 0.680 0.115 0.166 0.738 0.058 0.085 0.773 0.097 0.100
σu0 1.000 - - - - - - 0.832 0.531 0.557
γ 0.500 - - - - - - 0.701 0.297 0.358
T = 10, ρ = .5

B0 1.000 1.008 0.024 0.025 1.008 0.024 0.025 0.928 0.175 0.189
A1 0.800 0.770 0.029 0.042 0.770 0.029 0.042 0.802 0.026 0.026
σu0 1.000 - - - - - - 0.956 0.260 0.263
γ - - - - - - - 0.114 0.243 0.269
B0 1.000 1.016 0.036 0.040 1.333 0.131 0.358 1.003 0.130 0.130
A1 0.800 0.742 0.054 0.080 0.761 0.030 0.049 0.794 0.029 0.030
σu0 1.000 - - - - - - 0.934 0.309 0.315
γ 0.500 - - - - - - 0.625 0.133 0.182

Note: LSDV−x are the infeasible estimates using the orthogonal component of the regressor.
LSDV−X are estimates using the endogenous regressor. The IDEA estimates applies LSDV to the
auxiliary model.
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Table 5a: Panel Model with Cross-Section Dependence: N = 200 (Homoskedasticity)

yit = λift +B01X1it +B02X2it + uit, uit ∼ N(0, σ2
u)

Xkit = xkit + λigt + µk, k = 1, 2.

true OLS se mse LSDV se mse IDEA se mse
σ2
f = 0, σ2

λ = 1
B01 1.000 0.998 0.025 0.025 0.991 0.032 0.033 1.024 0.043 0.050
B02 2.000 2.001 0.025 0.025 1.991 0.031 0.033 2.019 0.042 0.046
A1 0.600 0.600 0.005 0.005 0.589 0.006 0.012 0.607 0.010 0.012
σu 1.000 - - - - - - 0.963 0.030 0.048
λ̄ 0.500 - - - - - - 0.452 0.023 0.054
σλ 1.000 - - - - - - 0.921 0.026 0.084
σ2
f = 1, σ2

λ = 1, T = 10
B01 1.000 0.873 0.027 0.130 0.848 0.035 0.156 0.953 0.045 0.065
B02 2.000 1.843 0.026 0.159 1.848 0.033 0.156 1.947 0.044 0.069
A1 0.600 0.643 0.005 0.043 0.644 0.007 0.045 0.610 0.010 0.014
σu 1.000 - - - - - - 1.000 0.032 0.032
λ̄ 0.500 - - - - - - 0.471 0.063 0.070
σλ 1.000 - - - - - - 0.947 0.063 0.082
σ2
f = 1, σ2

λ = 2, T = 5
B01 1.000 0.820 0.028 0.182 0.786 0.039 0.217 0.946 0.044 0.070
B02 2.000 1.776 0.027 0.226 1.783 0.036 0.220 1.935 0.043 0.078
A1 0.600 0.660 0.005 0.060 0.665 0.007 0.065 0.613 0.010 0.016
σu 1.000 - - - - - - 1.017 0.035 0.039
λ̄ 0.500 - - - - - - 0.484 0.053 0.055
σλ 1.000 - - - - - - 0.969 0.047 0.056
σ2
f = 1, σ2

λ = 1, T = 10
B01 1.000 0.980 0.020 0.028 0.977 0.024 0.033 0.951 0.029 0.057
B02 2.000 1.950 0.019 0.053 1.964 0.023 0.042 1.952 0.030 0.057
A1 0.600 0.638 0.004 0.038 0.642 0.004 0.042 0.590 0.007 0.012
σu 1.000 - - - - - - 0.971 0.017 0.033
λ̄ 0.500 - - - - - - 0.575 0.051 0.090
σλ 1.000 - - - - - - 0.822 0.071 0.191
σ2
f = 1, σ2

λ = 2,T = 10
B01 1.000 0.970 0.023 0.038 0.966 0.027 0.043 0.938 0.032 0.070
B02 2.000 1.926 0.021 0.077 1.946 0.026 0.060 1.937 0.032 0.071
A1 0.600 0.655 0.004 0.055 0.662 0.005 0.062 0.592 0.007 0.011
σu 1.000 - - - - - - 0.979 0.017 0.027
λ̄ 0.500 - - - - - - 0.621 0.053 0.132
σλ 1.000 - - - - - - 0.817 0.057 0.192

Note: OLS denotes least squares estimates of the panel model. LSDV denotes the within estimates
of the model. The IDEA estimates applies OLS to the auxiliary model.
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Table 5b: Panel Model with Cross-Section Dependence: N = 200 (Heteroskedasticity)

yit = λift +B01X1it +B02X2it + uit, uit ∼ N(0, σ2
ut)

Xkit = xkit + λigt + µk, k = 1, 2.

true OLS se mse LSDV se mse IDEA se mse
σ2
f = 0, σ2

λ = 1 σut = .95− .05T + .1t, T = 5
B01 1.000 0.999 0.023 0.023 0.995 0.039 0.039 1.022 0.037 0.043
B02 2.000 2.001 0.025 0.025 1.996 0.037 0.037 2.023 0.037 0.044
A1 0.600 0.600 0.005 0.005 0.588 0.007 0.014 0.601 0.011 0.011
σu 1.000 - - - - - - 1.012 0.035 0.037
λ̄ 0.500 - - - - - - 0.447 0.017 0.055
σλ 1.000 - - - - - - 0.953 0.034 0.058
σ2
f = 1, σ2

λ = 1 σut = .95− .05T + .1t, T = 5
B01 1.000 0.890 0.024 0.113 0.845 0.042 0.161 0.976 0.038 0.045
B02 2.000 1.833 0.026 0.169 1.831 0.040 0.174 1.956 0.042 0.061
A1 0.600 0.647 0.005 0.047 0.647 0.007 0.048 0.616 0.010 0.019
σu 1.000 - - - - - - 1.093 0.033 0.098
λ̄ 0.500 - - - - - - 0.494 0.096 0.097
σλ 1.000 - - - - - - 0.933 0.115 0.133
σ2
f = 1, σ2

λ = 2 σut = .95− .05T + .1t, T = 5
B01 1.000 0.845 0.025 0.157 0.779 0.045 0.226 0.981 0.039 0.044
B02 2.000 1.766 0.028 0.236 1.759 0.043 0.245 1.959 0.043 0.059
A1 0.600 0.665 0.005 0.065 0.669 0.008 0.069 0.618 0.010 0.020
σu 1.000 - - - - - - 1.108 0.037 0.115
λ̄ 0.500 - - - - - - 0.544 0.089 0.099
σλ 1.000 - - - - - - 1.019 0.070 0.073
σ2
f = 0, σ2

λ = 1 σut = .95− .05T + .1t, T = 10
B01 1.000 0.959 0.018 0.044 0.968 0.027 0.041 0.961 0.039 0.055
B02 2.000 1.908 0.018 0.093 1.936 0.025 0.068 1.911 0.043 0.099
A1 0.600 0.636 0.004 0.036 0.644 0.005 0.044 0.625 0.034 0.042
σu 1.000 - - - - - - 1.153 0.080 0.173
λ̄ 0.500 - - - - - - 0.531 0.082 0.087
σλ 1.000 - - - - - - 0.880 0.082 0.145
σ2
f = 1, σ2

λ = 2 σut = .95− .05T + .1t, T = 10
B01 1.000 0.940 0.019 0.064 0.951 0.030 0.057 0.922 0.027 0.083
B02 2.000 1.866 0.020 0.135 1.906 0.028 0.098 1.910 0.028 0.094
A1 0.600 0.652 0.004 0.053 0.666 0.005 0.066 0.607 0.006 0.009
σu 1.000 - - - - - - 1.105 0.022 0.107
λ̄ 0.500 - - - - - - 0.584 0.044 0.095
σλ 1.000 - - - - - - 0.947 0.049 0.072
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