Lecture 2 Linear Regression: A Model for the Mean

Sharyn O'Halloran

Closer Look at:

Linear Regression Model

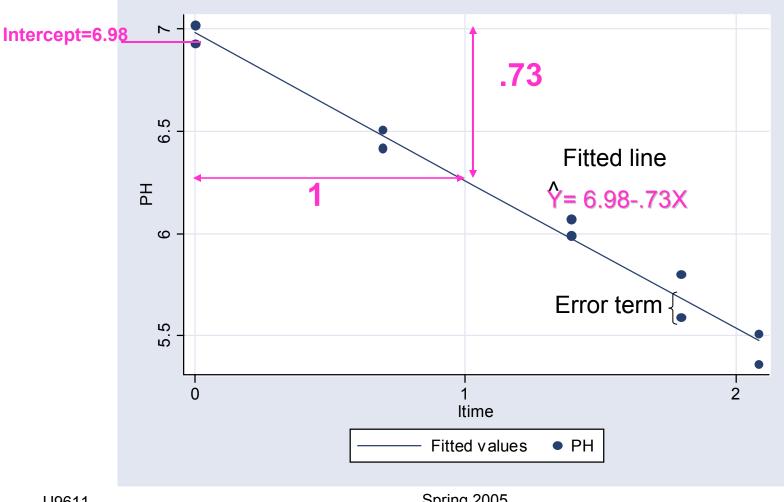
- Least squares procedure
- Inferential tools
- Confidence and Prediction Intervals
- Assumptions
- Robustness
- Model checking
- Log transformation (of Y, X, or both)

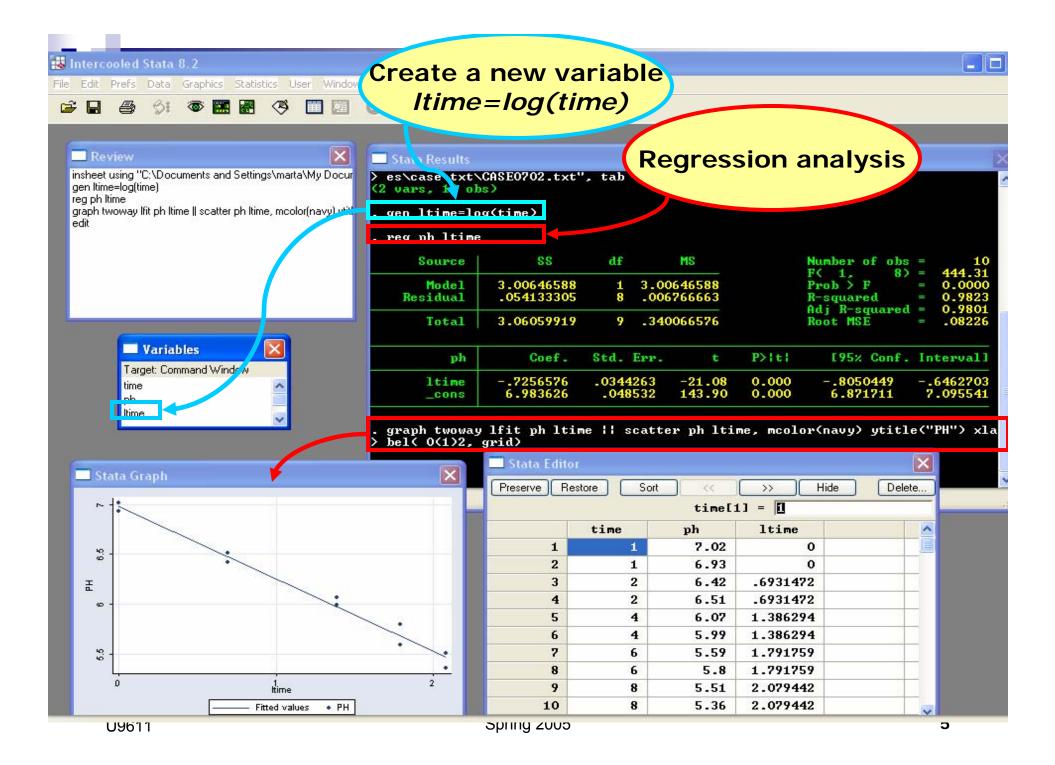
Linear Regression: Introduction

- Data: (Y_i, X_i) for i = 1, ..., n
- Interest is in the probability distribution of Y as a function of X
- Linear Regression model:
 - Mean of Y is a straight line function of X, plus an error term or residual
 - Goal is to find the best fit line that minimizes the sum of the error terms

Estimated regression line

Steer example (see Display 7.3, p. 177) Equation for estimated regression line:





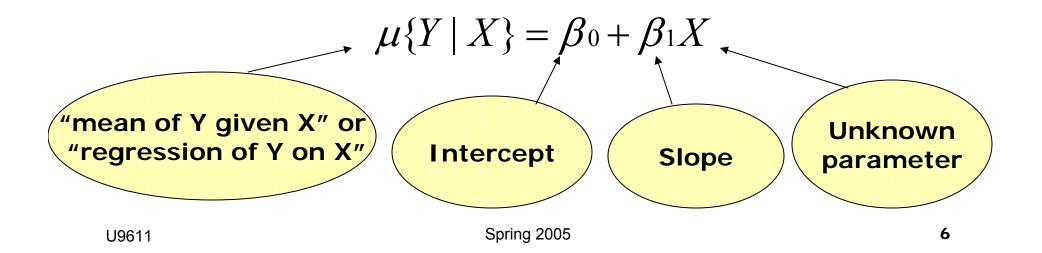
Regression Terminology

Regression: the mean of a response variable as a function of one or more explanatory variables:

 $\mu\{Y \mid X\}$

Regression model: an ideal formula to approximate the regression

Simple linear regression model:



Regression Terminology

Y	X
Dependent variable	Independent variable
Explained variable	Explanatory variable
Response variable	Control variable

Y's probability distribution is to be explained by X

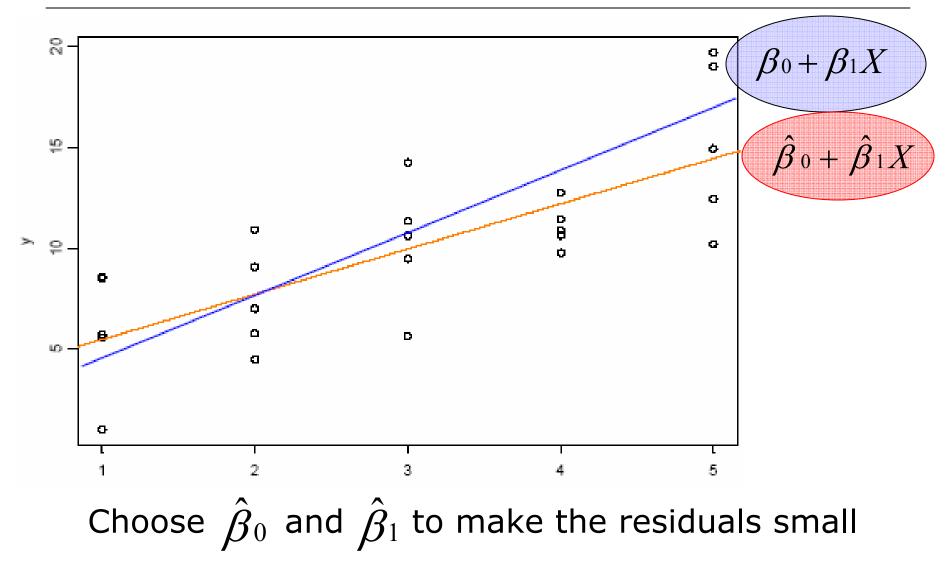
b₀ and b₁ are the regression coefficients

(See Display 7.5, p. 180)

Note: $Y = b_0 + b_1 X$ is NOT simple regression

U9611

Regression Terminology: Estimated coefficients



U9611

Regression Terminology

Fitted value for obs. i is its estimated mean: $\hat{Y} = fit_i = \mu\{Y \mid X\} = \beta_0 + \beta_1 X$

Residual for obs. i:

$$\operatorname{res}_{i} = Y_{i} - \operatorname{fit}_{i} \Longrightarrow e_{i} = Y_{i} - \hat{Y}$$

 Least Squares statistical estimation method finds those estimates that minimize the sum of squared residuals.

$$\sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2 = \sum_{i=1}^{n} (y_i - \hat{y})^2$$

Solution (from calculus) on p. 182 of Sleuth U9611 Spring 2005

Least Squares Procedure

• The Least-squares procedure obtains estimates of the linear equation coefficients β_0 and β_1 , in the model

$$\hat{y}_i = \beta_0 + \beta_1 x_i$$

by minimizing the sum of the squared residuals or errors (e_{i)}

$$SSE = \sum e_i^2 = \sum (y_i - \hat{y}_i)^2$$

• This results in a procedure stated as

$$SSE = \sum e_i^2 = \sum (y_i - (\beta_0 + \beta_1 x_i))^2$$

• Choose β_0 and β_1 so that the quantity is minimized.

Least Squares Procedure

The slope coefficient estimator is

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{X})(y_{i} - \overline{Y})}{\sum_{i=1}^{n} (x_{i} - \overline{X})^{2}} = r_{xy} \frac{S_{Y}}{S_{X}} \frac{STANDARD \ DEVIATION}{OF \ Y \ OVER \ THE} STANDARD \ DEVIATION OF \ X}$$

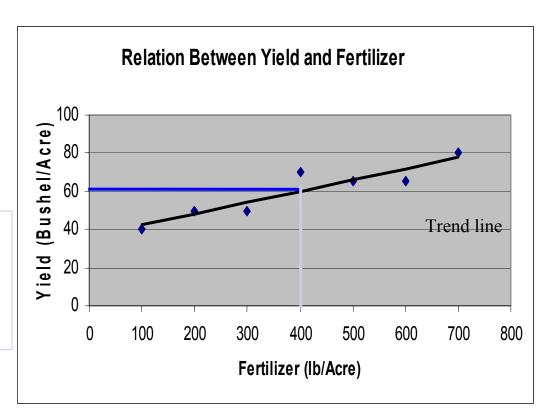
And the constant or intercept indicator is

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$

Least Squares Procedure(cont.)

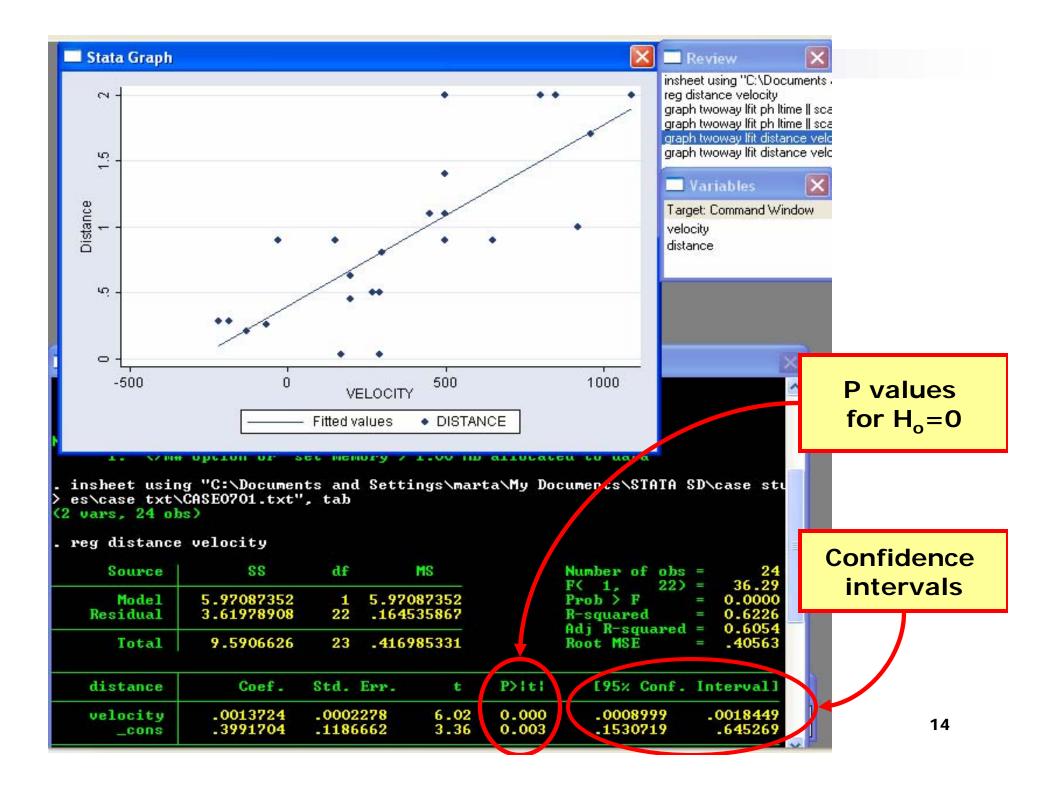
- Note that the regression line always goes through the mean X, Y.
- Think of this regression line as the expected value of Y for a given value of X.

That is, for any value of the independent variable there is a single most likely value for the dependent variable



Tests and Confidence Intervals for β_0 , β_1

- Degrees of freedom:
 - \Box (n-2) = sample size number of coefficients
- Variance {Y|X}
 - $\Box \sigma^2 = (\text{sum of squared residuals})/(n-2)$
- Standard errors (p. 184)
- Ideal normal model:
 - The sampling distributions of β_0 and β_1 have the shape of a t-distribution on (n-2) d.f.
- Do t-tests and CIs as usual (df=n-2)



Inference Tools

Hypothesis Test and Confidence Interval for mean of Y at some X:

 \square Estimate the mean of *Y* at *X* = *X*₀ by

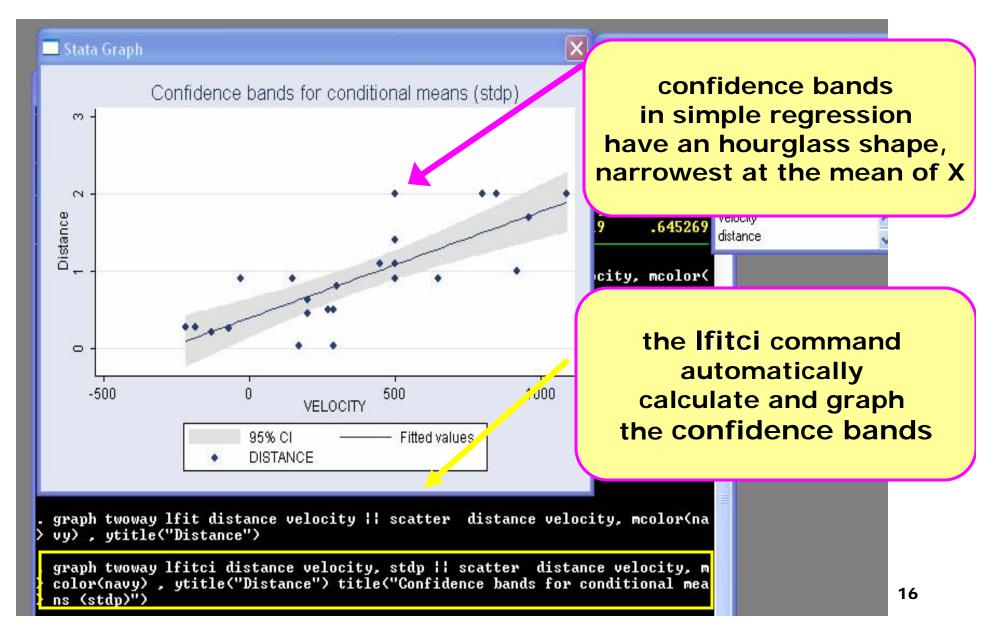
$$\hat{\mu}\{Y \mid X_0\} = \hat{\beta}_0 + \hat{\beta}_1 X_0$$

□ Standard Error of
$$\hat{\beta}_0$$

 $SE[\hat{\mu}\{Y \mid X_0\}] = \hat{\sigma} \sqrt{\frac{1}{n} + \frac{(X_0 - \overline{X})^2}{(n-1)s_x^2}}$

 Conduct t-test and confidence interval in the usual way (df = n-2)

Confidence bands for conditional means



Prediction

• Prediction of a future Y at $X=X_0$ $Pred(Y | X_0) = \hat{\mu}\{Y | X_0\}$

Standard error of prediction:

about its mean

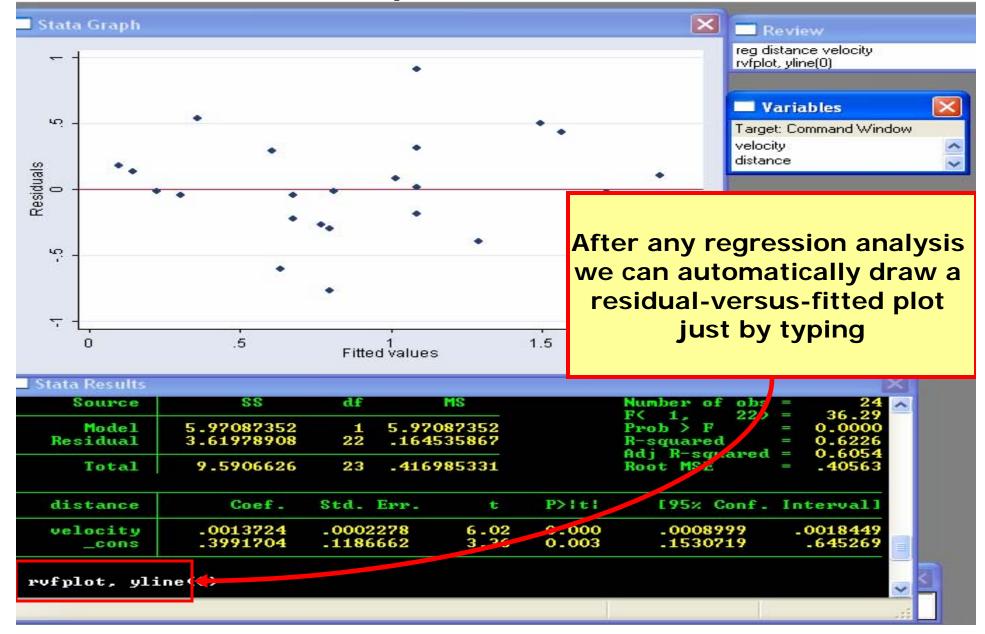
$$SE[\operatorname{Pred}(Y \mid X_0)] = \sqrt{\hat{\sigma}^2 + (SE[\hat{\mu}(Y \mid X_0)])^2}$$
Variability of Y

Uncertainty in the estimated mean

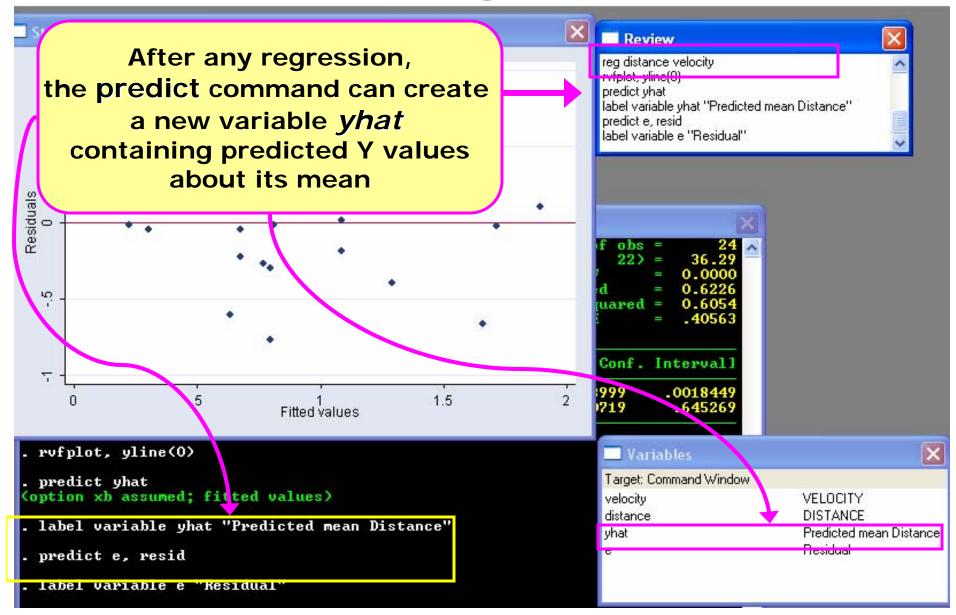
95% prediction interval:

$$Pred(Y | X_0) \pm t_{df} (.975) * SE[Pred(Y | X_0)]$$

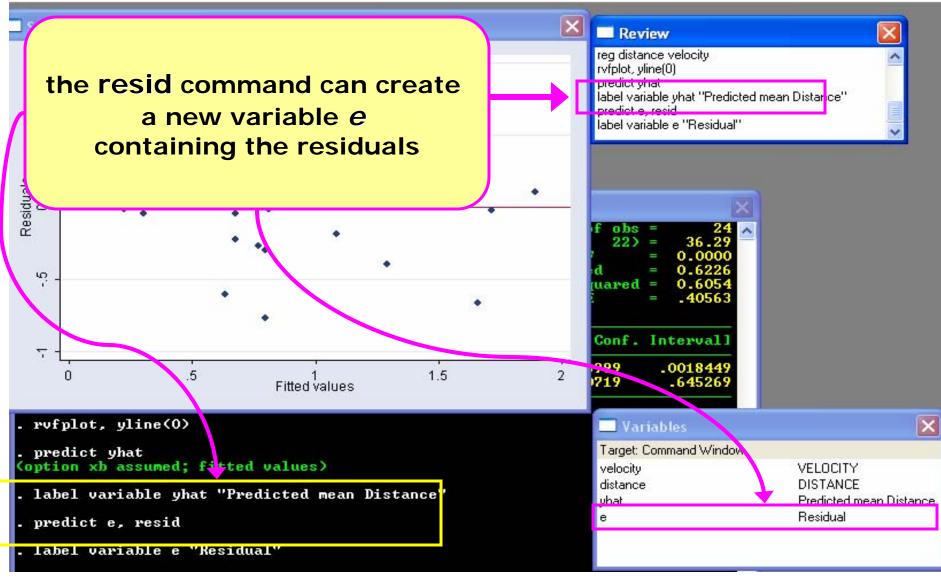
Residuals vs. predicted values plot



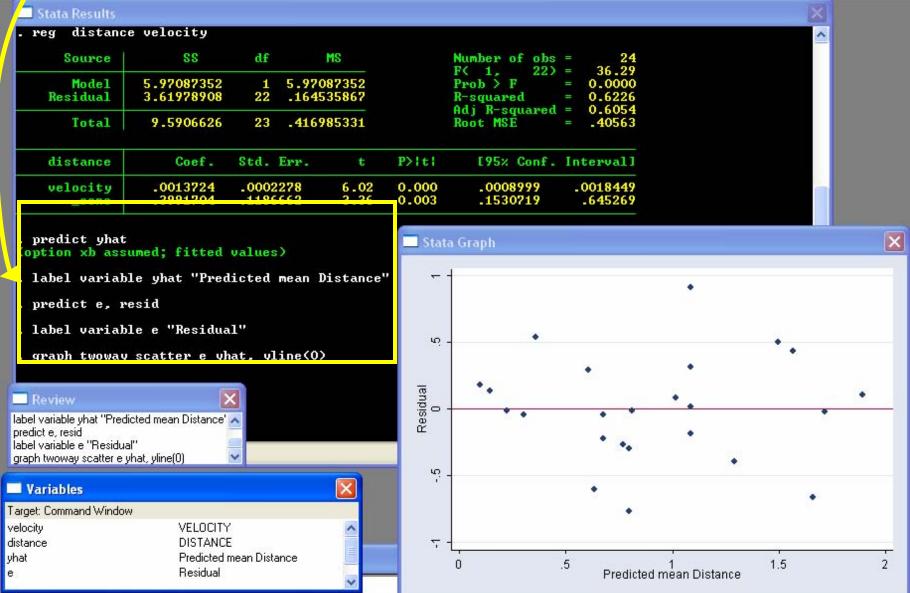
Predicted values (yhat)



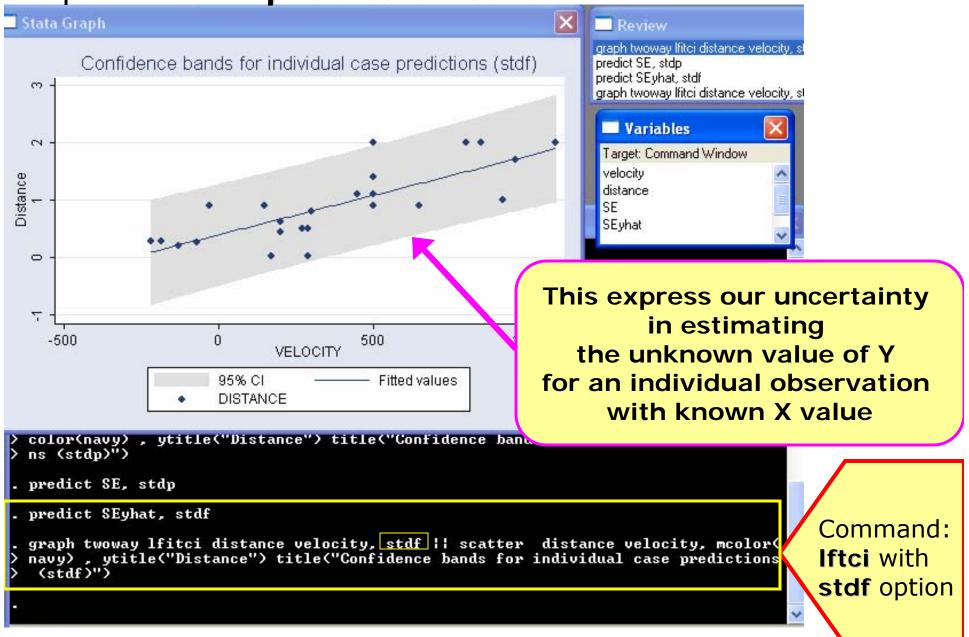
Residuals (e)



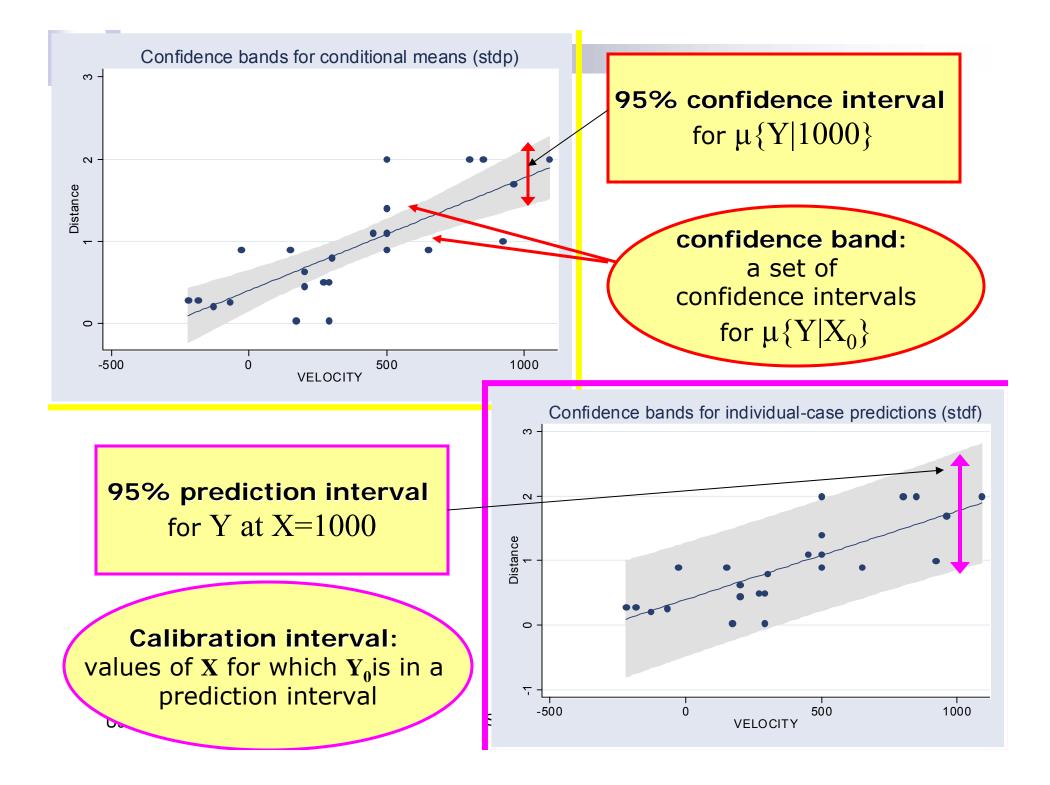
The residual-versus-predicted-values plot could be drawn "by hand" using these commands



Second type of confidence interval for regression prediction: **"prediction band"**

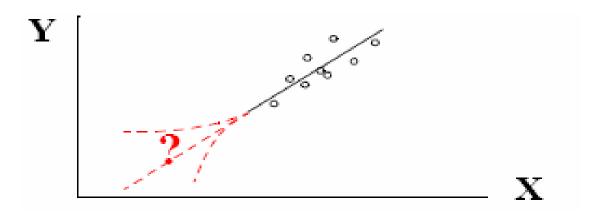


Additional note: Predict can generate two kinds of standard errors for the predicted y value, which have two different applications.



Notes about confidence and prediction bands

Both are narrowest at the mean of X
Beware of *extrapolation*



The width of the Confidence Interval is zero if n is large enough; this is not true of the Prediction Interval.

Review of simple linear regression

1. Model with constant variance.

2. Least squares: choose estimators β_0 and β_1 to minimize the sum of squared residuals.

3. **Properties** of estimators.

 $\mu\{Y \mid X\} = \beta_0 + \beta_1 X$ $\operatorname{var}\{Y \mid X\} = \sigma^2$ $\hat{\beta}_1 = \sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y}) / \sum_{i=1}^{n} (X_i - \overline{X})^2.$ $\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$ $res_{i} = Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}X_{i} (i = 1, ..., n)$ $\hat{\sigma}^2 = \sum res_i^2 / (n-2)$ $SE(\hat{\beta}_1) = \hat{\sigma} / \sqrt{(n-1)s_x^2}$ $SE(\hat{\beta}_0) = \hat{\sigma} / \sqrt{(1/n) + \overline{X}^2 / (n-1)s_r^2}$

Assumptions of Linear Regression

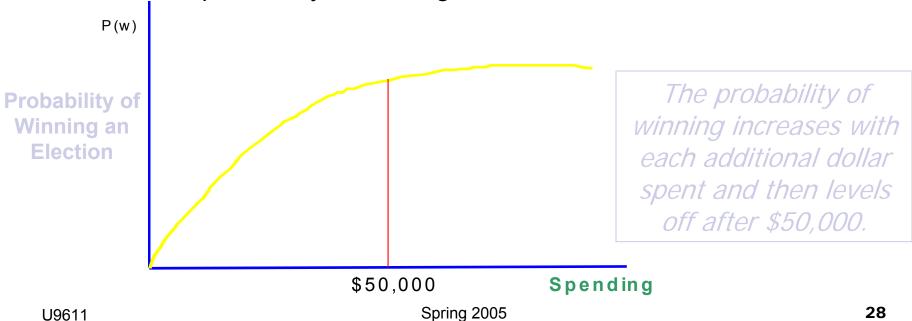
- A linear regression model assumes:
 Linearity:
 - $\mu \{Y|X\} = \beta_0 + \beta_1 X$
 - Constant Variance:
 - $var{Y|X} = \sigma^2$
 - Normality
 - Dist. of Y's at any X is normal
 - Independence
 - Given X_i's, the Y_i's are independent

Examples of Violations

Non-Linearity

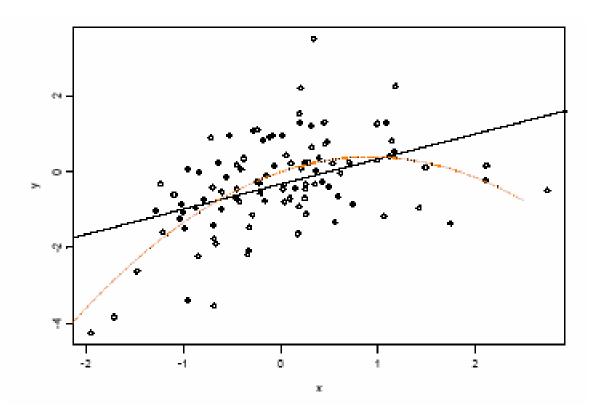
The true relation between the independent and dependent variables may not be linear.

 For example, consider campaign fundraising and the probability of winning an election.



Consequences of violation of linearity

If "linearity" is violated, misleading conclusions may occur (however, the degree of the problem depends on the degree of non-linearity)

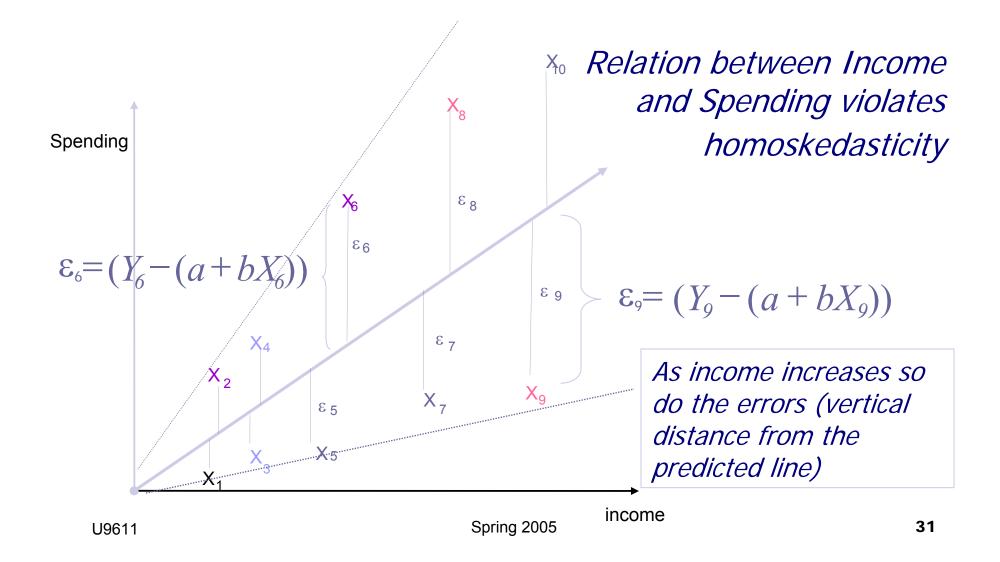


U9611

Examples of Violations: Constant Variance

- Constant Variance or Homoskedasticity
 - The Homoskedasticity assumption implies that, on average, we do *not expect* to get larger errors in some cases than in others.
 - Of course, due to the luck of the draw, some errors will turn out to be larger then others.
 - But homoskedasticity is violated only when this happens in a predictable manner.
 - □ Example: income and spending on certain goods.
 - People with higher incomes have more choices about what to buy.
 - We would expect that there consumption of certain goods is more variable than for families with lower incomes.

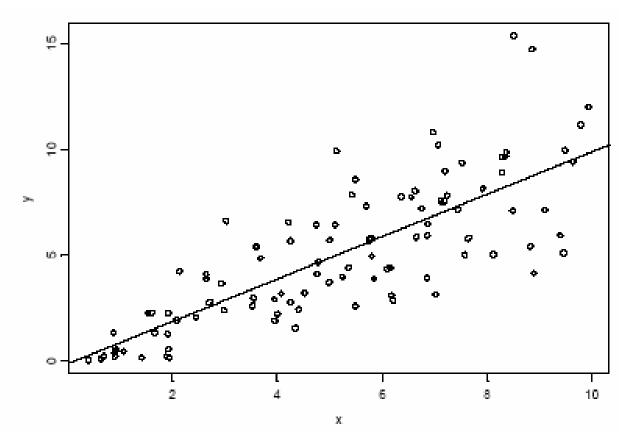
Violation of constant variance



Consequences of non-constant variance

 If "constant variance" is violated, LS estimates are still unbiased but SEs, tests, Confidence Intervals, and Prediction Intervals are incorrect

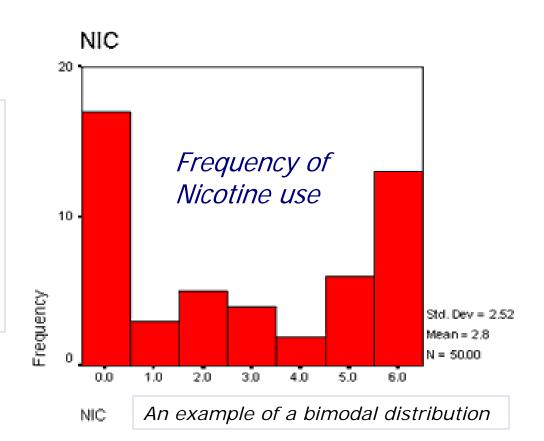
However,
 the degree
 depends...



Violation of Normality

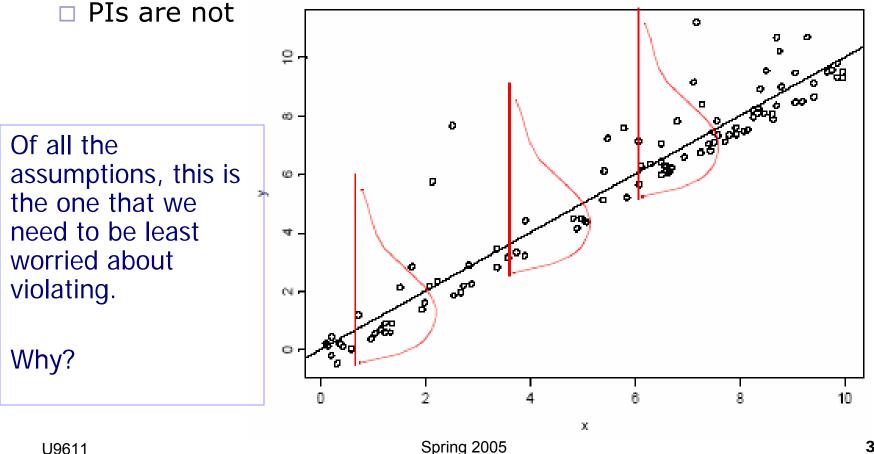
Non-Normality

Nicotine use is characterized by a large number of people not smoking at all and another large number of people who smoke every day.



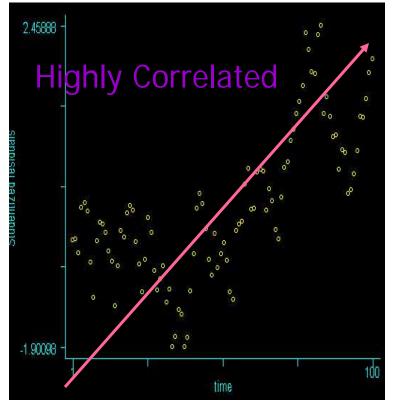
Consequence of non-Normality

- If "normality" is violated,
 - LS estimates are still unbiased
 - □ tests and CIs are quite robust



Violation of Non-independence

Residuals of GNP and Consumption over Time

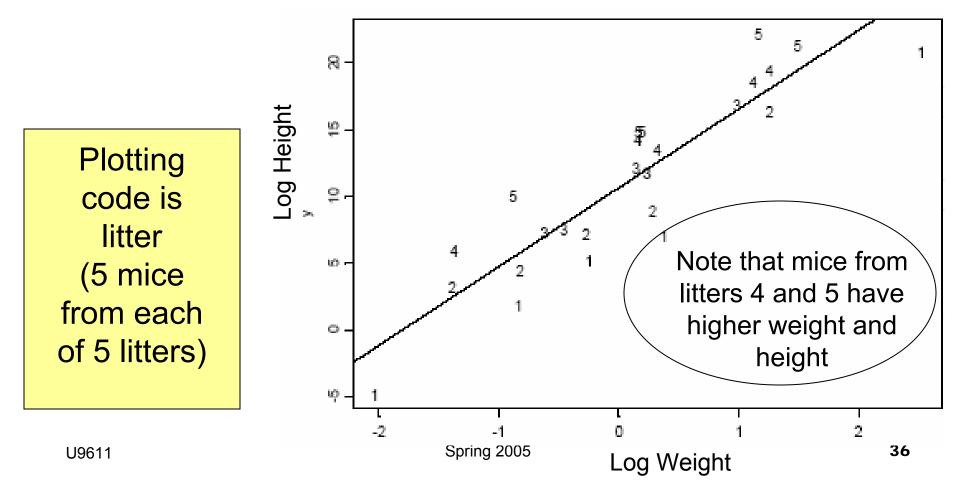


Non-Independence

- The independence assumption means that errors terms of two variables will not necessarily influence one another.
 - Technically, the RESIDUALS or error terms are uncorrelated.
- The most common violation occurs with data that are collected over time or time series analysis.
 - Example: high tariff rates in one period are often associated with very high tariff rates in the next period.
 - Example: Nominal GNP and Consumption

Consequence of non-independence

- If "independence" is violated:
 - LS estimates are still unbiased
 - everything else can be misleading



Robustness of least squares

- The "constant variance" assumption is important.
- Normality is not too important for confidence intervals and p-values, but is important for prediction intervals.
- Long-tailed distributions and/or outliers can heavily influence the results.
- Non-independence problems: serial correlation (Ch. 15) and cluster effects (we deal with this in Ch. 9-14).

Strategy for dealing with these potential problems

Plots; Residual plots; Consider outliers (more in Ch. 11)

□ Log Transformations (Display 8.6)

Tools for model checking

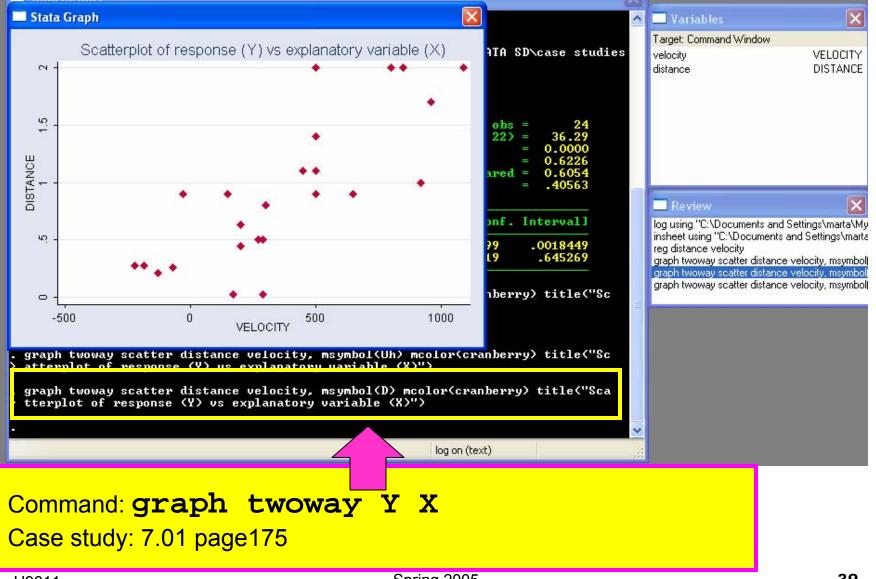
- Scatterplot of Y vs. X (see Display 8.6 p. 213)*
- Scatterplot of residuals vs. fitted values*

*Look for curvature, non-constant variance, and outliers

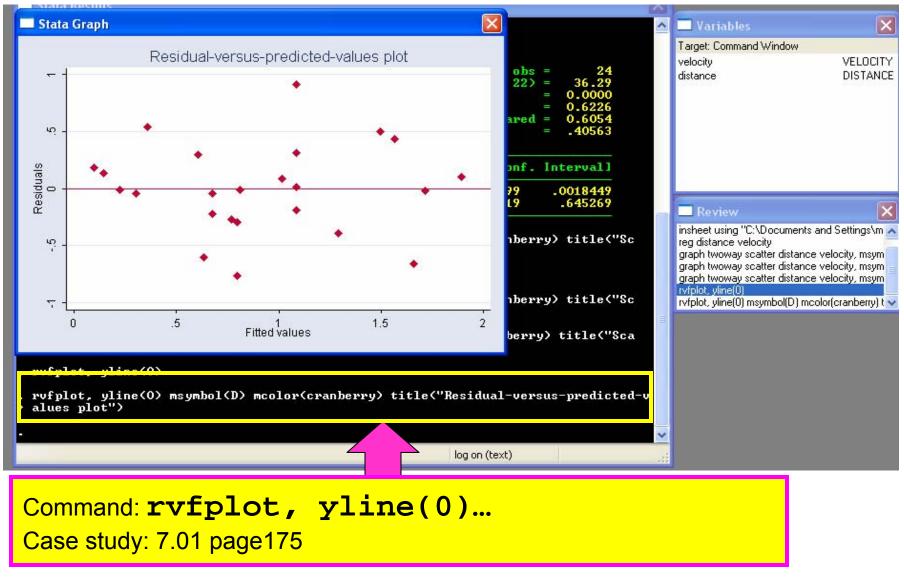
- Normal probability plot (p.224)
 - It is sometimes useful—for checking if the distribution is symmetric or normal (i.e. for PIs).

 Lack of fit F-test when there are replicates (Section 8.5).

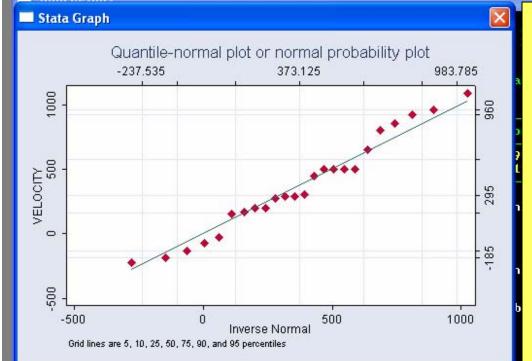
Scatterplot of Y vs. X



Scatterplot of residuals vs. fitted values



Normal probability plot (p.224)



Quantile normal plots compare quantiles of a variable distribution with quantiles of a normal distribution having the same mean and standard deviation.

They allow visual inspection for departures from normality in every part of the distribution.

rvfplot, yline(0) msymbol(D) mcolor(cranberry) title("Kesidual-versus-predicted-v alues plot")

qnorm velocity, grid msymbol(D) mcolor(cranberry) title("Quantile-normal plot or normal probability plot")

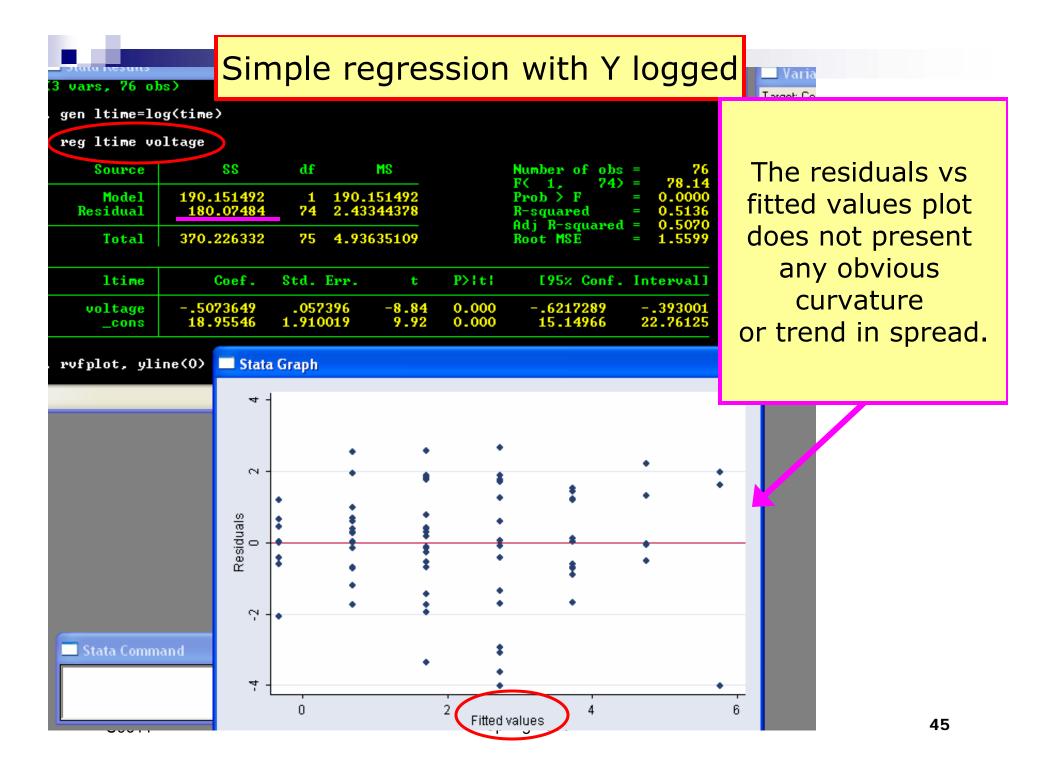
Command: **qnorm variable, grid** Case study: 7.01, page 175

Diagnostic plots of residuals

- Plot residuals versus fitted values almost always:
 - \Box For simple reg. this is about the same as residuals vs. x
 - Look for outliers, curvature, increasing spread (funnel or horn shape); then take appropriate action.
- If data were collected over time, plot residuals versus time
 - Check for time trend and
 - □ Serial correlation
- If normality is important, use normal probability plot.
 - □ A straight line is expected if distribution is normal

Voltage Example (Case Study 8.1.2)

- Goal: to describe the distribution of breakdown time of an insulating fluid as a function of voltage applied to it.
 - Y=Breakdown time
 - X = Voltage
- Statistical illustrations
 - Recognizing the need for a log transformation of the response from the scatterplot and the residual plot
 - Checking the simple linear regression fit with a lack-of-fit F-test
 - □ Stata (follows)



Interpretation after log transformations

Model	Dependent Variable	Independent Variable	Interpretation of β_1
Level-level	Y	X	$\Delta y = \beta_1 \Delta x$
Level-log	Y	log(X)	Δy=(β ₁ /100)%Δx
Log-level	log(Y)	X	%Δy=(100β ₁)Δx
Log-log	log(Y)	log(X)	% Δy=(β ₁)%Δx

Dependent variable logged

• $\mu\{log(Y)|X\} = \beta_0 + \beta_1 X$ is the same as:

(if the distribution of log(Y), given X, is symmetric) $Median \{Y \mid \mid X\} = e^{\beta_0 + \beta_1 X}$

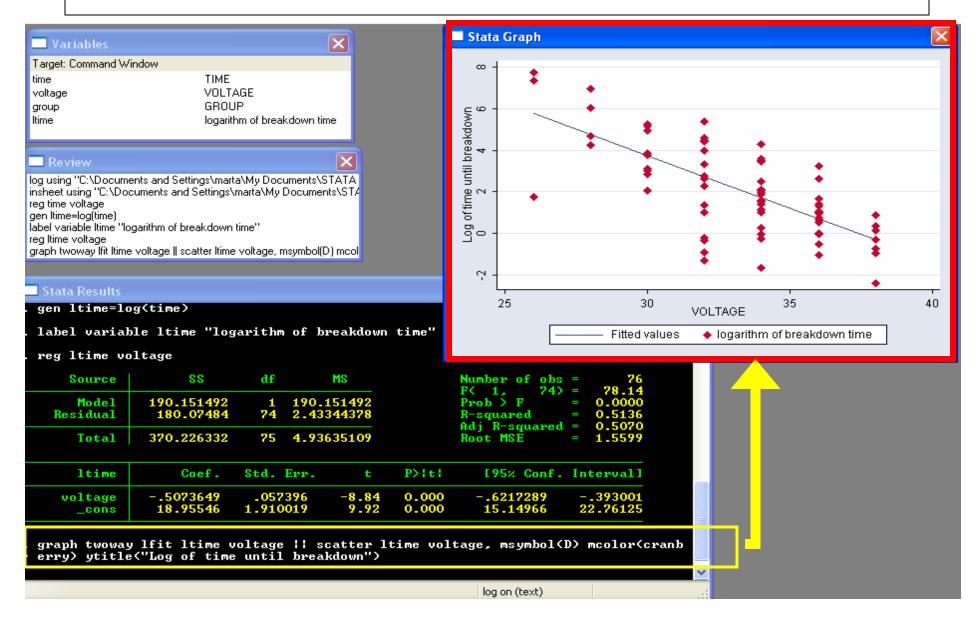
• As X increases by 1, what happens? $\frac{Median\{Y \mid X = x+1\}}{Median\{Y \mid X = x\}} = \frac{e^{\beta_0 + \beta_1(x+1)}}{e^{\beta_0 + \beta_1 x}} = e^{\beta_1}$

Median $\{Y \mid X = x + 1\} = e^{\beta_1} Median \{Y \mid X = x\}$

Interpretation of Y logged

- "As X increases by 1, the median of Y changes by the multiplicative factor of e^{β_1} ."
- Or, better:
 - □ If β_1 >0: "As X increases by 1, the median of Y increases by $(e^{\beta_1} 1)*100\%$ "
- If $\beta_1 < 0$: "As X increases by 1, the median of Y decreases by $(1 e^{\beta_1}) * 100\%$ "

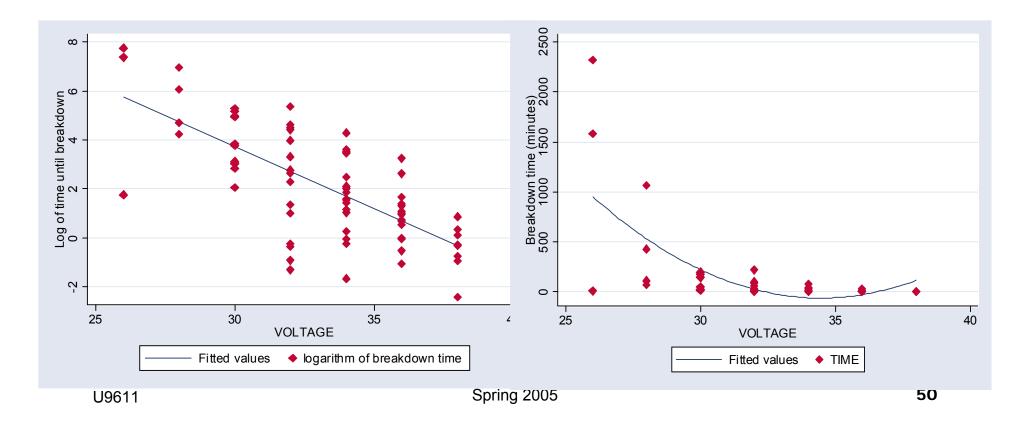
Example: $\mu\{log(time)|voltage\} = \beta_0 - \beta_1 voltage$ 1- e^{-0.5}=.4



$$\mu \{ log(time) | voltage \} = 18.96 - .507 voltage$$

1- e^{-0.5}=.4

It is estimated that the median breakdown time decreases by 40% with each 1kV increase in voltage



If the explanatory variable (X) is logged

- If μ {Y|log(X)} = $\beta_0 + \beta_1 log(X)$ then:
 - □ "Associated with each two-fold increase (i.e doubling) of X is a $\beta_1 log(2)$ change in the mean of Y."
- An example will follow:

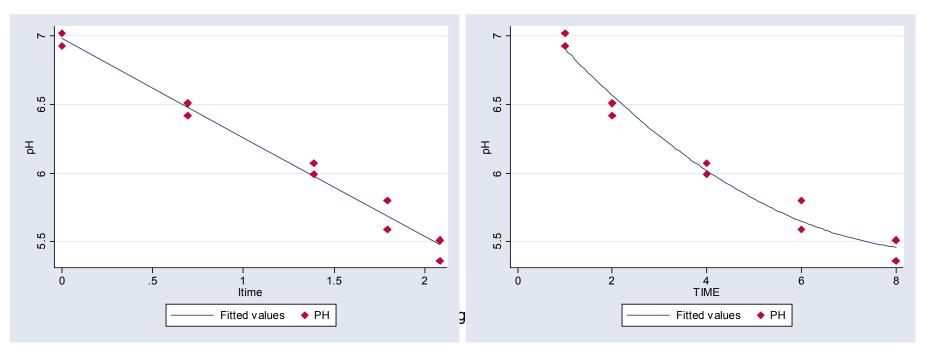
Example with X logged (Display 7.3 - Case 7.1):

Y = pH

X = time after slaughter (hrs.)

estimated model: μ {*Y*|*log*(*X*)} = 6.98 - .73*log*(*X*).

-.73' $log(2) = -.5 \Rightarrow$ "It is estimated that for each doubling of time after slaughter (between 0 and 8 hours) the mean pH decreases by .5."



Both Y and X logged

- $\mu\{log(Y)|log(X)\} = \beta_0 + \beta_1 log(X)$ is the same as:
- As X increases by 1, what happens?

If $\beta_1 > 0$: "As X increases by 1, the median of Y increases by $(e^{\log(2)\beta_1} - 1)*100\%$ "

If $\beta_1 < 0$: "As X increases by 1, the median of Y decreases by $(1 - e^{\log(2)\beta_1}) * 100\%$ "

Example with Y and X logged Display 8.1 page 207

- Y: number of species on an island
- X: island area

species	Coef.	Std. H	Err.	t	P> t	E95% Conf.	Interval]
area _cons	.0021112 24.04928	.00044 9.0740		4.69 2.65	0.005 0.045	.0009548 .7237545	.0032677 47.3748
n lspecies	=log(species)						
n larea=lo	g(area)						
g lspecies	larea						
Source	SS	df	ł	15		Number of obs	
Model Residual	6.99619059 .082249514	1 5	6.99619059 .016449903			and an all contracts of the	= 0.0000 = 0.9884
Total	7.0784401	6	1.1797	4002		Adj R-squared Root MSE	= 0.9861 = .12826
lspecies	Coef.	Std. H	Err.	t	P>1t1	E95% Conf.	Interval]
larea _cons	.2496799	.01210		20.62	0.000	.218558	.2808018

$\mu\{\log(Y)|\log(X)\} = \beta_0 - \beta_1 \log(X)$

$\mu\{log(Y)|log(X)\} = 1.94 - .25 log(X)$ Since $e^{.25log(2)} = .19$

"Associated with each doubling of island area is a 19% increase in the median number of bird species"

Example: Log-Log

In order to graph the Log-log plot we need to generate two new variables (natural logarithms)

