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Closer Look at:

Linear Regression Model
Least squares procedure
Inferential tools
Confidence and Prediction Intervals

Assumptions
Robustness 
Model checking
Log transformation (of Y, X, or 
both)
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Linear Regression: Introduction

Data: (Yi, Xi) for i = 1,...,n

Interest is in the probability 
distribution of Y as a function of X

Linear Regression model: 
Mean of Y is a straight line function of X, 
plus an error term or residual
Goal is to find the best fit line that 
minimizes the sum of the error terms
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Estimated regression line
Steer example (see Display 7.3, p. 177)

.73
Intercept=6.98

1 Y= 6.98Y= 6.98--.73X.73X

Equation for estimated regression line:Equation for estimated regression line:

^
Fitted line

Error term
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Create a new variable
ltime=log(time)

Regression analysis
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Regression Terminology
RegressionRegression: the mean of a response variable as a 
function of one or more explanatory variables: 

µ{Y | X}

Regression modelRegression model: an ideal formula to approximate 
the regression

Simple linear regression modelSimple linear regression model:

XXY 10}|{ ββµ +=

Intercept Slope
“mean of Y given X” or
“regression of Y on X”

Unknown
parameter
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Y’s  probability distribution is to be 
explained by X

b0 and b1 are the regression coefficientsregression coefficients

(See Display 7.5, p. 180)

Note: Y = b0 + b1 X is NOT simple regression

Control variableResponse variable

Explanatory variableExplained variable

Independent variableIndependent variableDependent variableDependent variable

XXYY

Regression Terminology
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Regression Terminology: Estimated coefficients
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Fitted valueFitted value for obs. i is its estimated 
mean:

ResidualResidual for obs. i:

Least SquaresLeast Squares statistical estimation 
method finds those estimates that 
minimize the sum of squared residuals.

Solution (from calculus) on p. 182 of Sleuth
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Least Squares Procedure
The Least-squares procedure obtains estimates of the linear 
equation coefficients β0 and β1, in the model

by minimizing the sum of the squared residuals or errors (ei)

This results in a procedure stated as

Choose β0 and β1 so that the quantity is minimized.  

ii xy 10ˆ ββ +=

22 )ˆ( iii yyeSSE −== ∑∑

2
10

2 ))(( iii xyeSSE ββ +−== ∑∑
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Least Squares Procedure
The slope coefficient estimator is

And the constant or intercept indicator is
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Least Squares Procedure(cont.)

Note that the regression line always goes through 
the mean X, Y.

Relation Between Yield and Fertilizer
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Trend lineThat is, for any value of the 
independent variable there is 
a single most likely value for 
the dependent variable

Think of this 
regression line as 
the expected value 
of Y for a given 
value of X. 
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Tests and Confidence Intervals for β0, β1

Degrees of freedom: 
(n-2) = sample size - number of coefficients 

Variance {Y|X}
σσ22= (sum of squared residuals)/(n-2)

Standard errors (p. 184)
Ideal normal model: 

the sampling distributions of β0 and β1 have the 
shape of a t-distribution on (n-2) d.f. 

Do t-tests and CIs as usual (df=n-2)



Spring 2005 14U9611

Confidence 
intervals

P values 
for Ho=0
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Inference Tools
Hypothesis TestHypothesis Test and Confidence IntervalConfidence Interval for mean 
of Y at some X:

Estimate the mean of Y at X = X0 by

Standard Error of  

Conduct t-test and confidence interval in the usual 
way (df = n-2)
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Confidence bands for conditional means

the lfitcilfitci command 
automatically 

calculate and graph 
the confidence bands

confidence bands 
in simple regression 

have an hourglass shape, 
narrowest at the mean of X
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Prediction
PredictionPrediction of a future Y at X=X0

Pred
Standard error of predictionStandard error of prediction:

}|{ˆ)|( 00 XYXY µ=

Variability of Y 
about its mean

Uncertainty in 
the estimated mean

95% prediction interval95% prediction interval:

)]|(Pred[*)975(.)|(Pred 00 XYSEtXY df±

2
0

2
0 )])|(ˆ[(ˆ)]|(Pred[ XYSEXYSE µσ +=
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Residuals vs. predicted values plot

After any regression analysis 
we can automatically draw a 
residual-versus-fitted plot 

just by typing
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Predicted values (yhatyhat)

After any regression,
the predictpredict command can create 

a new variable yhatyhat
containing predicted Y values

about its mean
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Residuals (ee)

the residresid command can create 
a new variable ee

containing the residuals
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The residual-versus-predicted-values plot could be 
drawn “by hand” using these commands



Second type of confidence interval for regression 
prediction: ““prediction bandprediction band””

This express our uncertainty 
in estimating 

the unknown value of Y 
for an individual observation 

with known X value

Command:
lftcilftci with 
stdfstdf option



Additional note: Predict: Predict can generate two kinds of standard errorsstandard errors
for the predicted y value, which have two different applications. 
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Confidence bands for individual-case predictions (stdf)

95% confidence interval95% confidence interval
for µ{Y|1000}

95% prediction interval95% prediction interval
for Y at X=1000

confidence bandconfidence band: 
a set of 

confidence intervals
for µ{Y|X0}

Calibration intervalCalibration interval: 
values of X for which Y0is in a 

prediction interval
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Notes about confidence and prediction bands

Both are narrowest at the mean of X
Beware of extrapolation

The width of the Confidence Interval is zero if n is 
large enough; this is not true of the Prediction this is not true of the Prediction 
Interval.Interval.
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Review of simple linear regression
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2. Least squaresLeast squares: 
choose estimators 

β0 and β1
to minimize the sum of 

squared residuals.

3. PropertiesProperties
of estimators.
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Assumptions of Linear Regression

A linear regression model assumes:
Linearity:

µ {Y|X} = β0 + β1X
Constant Variance:

var{Y|X} = σ2

Normality
Dist. of Y’s at any X is normal

Independence
Given Xi’s, the Yi’s are independent
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Examples of Violations
Non-Linearity 

The true relation between the independent and 
dependent variables may not be linear. 

For example, consider campaign fundraising and the 
probability of winning an election. 

$ 5 0 ,0 0 0 

P (w)  

S p e n d in g  

Probability of 
Winning an 

Election

The probability of 
winning increases with  
each additional dollar 
spent and then levels 

off after $50,000.
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Consequences of violation of linearity
If “linearity” is violated, misleading conclusions 
may occur (however, the degree of the problem 
depends on the degree of non-linearity)

:
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Examples of Violations: Constant Variance

Constant Variance or Homoskedasticity
The Homoskedasticity assumption implies that, on 
average, we do not expect to get larger errors in 
some cases than in others.

Of course, due to the luck of the draw, some errors will turn 
out to be larger then others.  
But homoskedasticity is violated only when this happens in 
a predictable manner.

Example:  income and spending on certain goods. 
People with higher incomes have more choices about what 
to buy. 
We would expect that there consumption of certain goods 
is more variable than for families with lower incomes.
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Violation of constant variance
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As income increases so 
do the errors (vertical 
distance from the 
predicted line)

Relation between Income 
and Spending violates 

homoskedasticity

ε6= − +Y a bX6 6( ( ))
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Consequences of non-constant variance

If “constant variance” is violated, LS estimates 
are still unbiased but SEs, tests, Confidence 
Intervals, and Prediction Intervals are incorrect

However, 
the degree 
depends…
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Violation of Normality

Non-Normality 

Nicotine use is characterized 
by a large number of people 
not smoking at all and 
another large number of 
people who smoke every 
day.

An example of a bimodal distribution

Frequency of 
Nicotine use
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Consequence of non-Normality 
If “normality” is violated, 

LS estimates are still unbiased
tests and CIs are quite robust 
PIs are not

Of all the 
assumptions, this is 
the one that we 
need to be least 
worried about 
violating. 

Why? 
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Violation of Non-independence
Non-Independence 

The independence assumption means 
that errors terms of two variables will not 
necessarily influence one another. 

Technically, the RESIDUALS or error 
terms are uncorrelated.

The most common violation occurs with 
data that are collected over time or time 
series analysis. 

Example: high tariff rates in one period 
are often associated with very high tariff 
rates in the next period. 
Example: Nominal GNP and 
Consumption

Residuals of GNP and 
Consumption over Time

Highly Correlated
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Consequence of non-independence
If “independence” is violated:

- LS estimates are still unbiased
- everything else can be misleading

Plotting
code is

litter
(5 mice

from each
of 5 litters)

Log Weight 

Lo
g 

H
ei

gh
t 

Note that mice from 
litters 4 and 5 have 
higher weight and 

height
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Robustness of least squares
The “constant variance” assumption is important.

Normality is not too important for confidence intervals 
and p-values, but is important for prediction intervals.

Long-tailed distributions and/or outliers can heavily 
influence the results.

Non-independence problems: serial correlation (Ch. 15) 
and cluster effects (we deal with this in Ch. 9-14).

Strategy for dealing with these potential problemsStrategy for dealing with these potential problems

Plots; Residual plots; Consider outliers (more in Ch. 11)

Log Transformations (Display 8.6)
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Tools for model checking

Scatterplot of Y vs. X (see Display 8.6 p. 213)*

Scatterplot of residuals vs. fitted values*

*Look for curvature, non*Look for curvature, non--constantconstant
variance, and outliersvariance, and outliers

Normal probability plot (p.224)
It is sometimes useful—for checking if the 
distribution is symmetric or normal (i.e. for PIs).

Lack of fit F-test when there are replicates
(Section 8.5).
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Scatterplot of Y vs. X

Command: graph twoway Y X 
Case study: 7.01 page175
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Scatterplot of residuals vs. fitted values

Command: rvfplot, yline(0)…
Case study: 7.01 page175
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Normal probability plot (p.224)

Command: qnorm variable, grid 
Case study: 7.01,  page 175

Quantile normal plots compare 
quantiles of a variable distribution 

with quantiles of a normal distribution 
having the same 

mean and standard deviation. 

They allow visual inspection 
for departures from normality 
in every part of the distribution.
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Diagnostic plots of residuals

Plot residuals versus fitted values almost always:

For simple reg. this is about the same as residuals vs. x

Look for outliers, curvature, increasing spread (funnel or 
horn shape); then take appropriate action.

If data were collected over time, plot residuals 
versus time 

Check for time trend and 
Serial correlation

If normality is important, use normal probability 
plot. 

A straight line is expected if distribution is normal
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Voltage Example (Case Study 8.1.2)

Goal: to describe the distribution of 
breakdown time of an insulating fluid as a 
function of voltage applied to it.

Y=Breakdown time
X= Voltage

Statistical illustrations
Recognizing the need for a log transformation of the 
response from the scatterplot and the residual plot

Checking the simple linear regression fit with a lack-of-fit 
F-test

Stata (follows)
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The residuals vs
fitted values plot 

presents 
increasing spread 

with 
increasing 

fitted values 

Simple regression

Next step:
We try with 

log(Ylog(Y) ~ ) ~ log(timelog(time))
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Simple regression with Y logged

The residuals vs
fitted values plot 
does not present 

any obvious 
curvature 

or trend in spread.
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Interpretation after log transformations 

% ∆y=(β1)%∆xlog(X)log(Y)Log-log

%∆y=(100β1)∆xXlog(Y)Log-level

∆y=(β1/100)%∆xlog(X)YLevel-log

∆y=β1∆xXYLevel-level

Interpretation of β1
Independent 

Variable
Dependent 

VariableModel
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Dependent variable logged

µ{log(Y)|X} = β0 + β1X is the same as:

(if the distribution of log(Y), given X, is symmetric)

As As X X increases by 1, what happens?increases by 1, what happens?
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Interpretation of Y logged
“As X increases by 1, the median of Y 
changes by the multiplicative factor of      

.”

Or, better:
If β1>0: “As X increases by 1, the median of Y 
increases by                          ”

If β1 < 0: “As X increases by 1, the median 
of Y decreases by                         ”%100*)1( 1βe−

%100*)1( 1 −βe

1βe
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Example: µ{log(time)|voltage} = β0 – β1 voltage
1- e-0.5=.4
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µ{log(time)|voltage} = 18.96 - .507voltage
1- e-0.5=.4

It is estimated that the median breakdown time decreases 
by 40% with each 1kV increase in voltage
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If the explanatory variable (X) is logged

If µ{Y|log(X)} = β0 + β1log(X) then:
“Associated with each two-fold increase 
(i.e doubling) of  X is a β1log(2) change 
in the mean of Y.”

An example will follow:
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Example with X logged (Display 7.3 – Case 7.1):

Y = pH
X = time after slaughter (hrs.)
estimated model: µ{Y|log(X)} = 6.98 - .73log(X).

-.73´log(2) = -.5 “It is estimated that for each
doubling of time after slaughter (between 0 and 8 hours) the
mean pH decreases by .5.”
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Both Y and X logged

µ{log(Y)|log(X)} = β0 + β1log(X) is the same as:

As As X X increases by 1, what happens?increases by 1, what happens?

If β1>0: “As X increases by 1, the median of Y 
increases by                                  ”

If β1 < 0: “As X increases by 1, the median of Y
decreases by                                 ”

%100*)1( 1)2log( −βe

%100*)1( 1)2log( βe−
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Example with Y and X logged Display 8.1 page 207

Y: number of species on an island
X: island area

µ{log(Y)|log(X)} = β0 – β1 log(X)
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µ{log(Y)|log(X)} = 1.94 – .25 log(X)
Since e.25log(2)=.19

“Associated with each doubling of
island area is a 19% increase in the

median number of bird species”

Y and X logged
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Example: Log-Log
In order to graph the Log-log plot 

we need to generate two new variables 
(natural logarithms)


